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1 INTRODUCTION 
A perfect and accurate tourism prediction plays a 

vital role in the commercial and business airline 
industry because of its various real-life applications. 
In the airline sector, short-term, medium-term and 
long-term predictions are useful for market planning, 
daily business operation, and fleet arrangement. 
Highly precise forecasts help in making effective and 
successful policies for the government/private 
agencies. This feature of planning relates to the 
decision-making process regarding future demand. 
Therefore, more highly reliable and accurate 
forecasting tools are required to plan effectively.  

Time series forecasting has an effective impact on 
the planning of all activities of the airline industry and 
it also defines the relationship with other factors. Time 
series methods include univariate using previous data 
points as well as multivariate using the relationship 
between dependent and independent variables. 
Different univariate and multivariate econometric 
techniques such as; autoregressive integrated moving 
average (ARIMA), seasonal autoregressive integrated 
moving average (SARIMA), seasonal naïve and 
simple exponential smoothing have been used to 
develop some models for forecasting non-stationary 
airline passenger’s data along with trend components 
(Hsu & Wen, 1998;  Ippolito, 1981; Kaemmerle, 
1991; Russon & Riley, 1993). Nancy et al. (2016) 

presented an efficient clinical decision-making system 
related to the temporal rough set induced neuro-fuzzy 
(TRiNF) framework for mining clinical time series 
data obtained from electronic health records. The 
study of Nancy et al. (2017) also proposed a bio-
statistical mining framework to tackle the 
complexities related to mining in the clinical time 
series data, which is an effective classification model. 

Most of the commonly used time series and 
econometric models are based on some statistical 
assumptions, which have certain limitations such as 
normal distribution and independent identical 
distribution (iid) requirements. Correspondingly, such 
models (Regression model, ARIMA, Error correction 
model, etc.) are unable to give any kind of prediction 
about the data or its analysis specifically when 
interdependent variables are showing unknown 
probability distribution, they can only provide a few 
conclusions. Some soft computing methods including 
neural networks models have been commonly used in 
airline passenger traffic data (Alekseev & Seixas, 
2009; Nam & Schaefer, 1995). A neural network has 
its own advantages and limitations. The advantage of 
this model is that it does not need many statistical 
assumptions compared to earlier statistical time series 
models (Li et al. 2006; Martin & Witt, 1989). In 
addition, these models still require a large sample for 
modeling and forecasting time series data (Khashei et 
al., 2012). However, it turns out to be difficult to 
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obtain such large samples. Therefore, this study 
employs the double exponential smoothing forecasting 
model for air transport passengers. 

The double exponential smoothing (DES) model is 
proposed by Holt (1957) for level and the trend 
estimation process (Holt, 2004; Gardner, 1981). The 
main advantage of the smoothing model is future 
prediction, which has been obtained by using 
previously estimated levels and trends in time series 
data with some appropriate smoothing parameters as 
mentioned in Chatfield (1995). In addition, statistical 
distributional assumptions are not necessary for time 
series when the double exponential smoothing model 
is used. For this reason, the double exponential 
smoothing model has frequently been adopted in 
empirical studies related to forecasting of tourist 
arrivals. For, instance Yu & Schwartz (2006) 
compared the forecasting performance of two simple 
models i.e. double exponential smoothing, and double 
moving average with the artificial intelligence (AI) 
model under the mean absolute percentage error 
(MAPE) indicator. In the study of Law & Au (1999) 
and Law (2000), the authors have applied exponential 
smoothing to forecast tourist arrivals in Hong Kong, 
Japan and Taiwan. In addition, Wu et al. (2016) 
applied the grey double exponential smoothing model 
to forecast pig price.   

The problem for evaluating and selecting 
appropriate criteria using different forecasting models 
has been studied in various domains including, stock 
exchange (Shen & Loh, 2004; Yao & Herbert, 2009; 
Pal & Kar, 2017), tourism (Xiaoya & Zhiben, 2011), 
hospitality (Xu et al., 2016), etc. Therefore, evaluation 
and selection of criteria can be considered as a multi-
criteria decision making (MCDM) problem, which 
concerns many factors ranging from customer needs to 
the resource constraints of the enterprise. These real-
world problems become more complicated due to 
imprecise data, decision-makers' subjective judgments 
using linguistic terms, and multiple sources of 
information. Hence, a lot of research on MCDM has 
been done on fuzzy sets (Cosgun et al., 2014, Korol, 
2014), rough sets (Zhai et al. 2010), hesitant fuzzy sets 
(Ye, 2014), etc. Recently Alcantud (2016) conducted a 
study, which reveals that the hesitant fuzzy set can be 
considered as interval type-2 fuzzy sets and interval-
valued fuzzy sets can be considered as soft sets over 
the universe [0, 1]. In addition, Alcantud et al. (2016) 
proposed a ranking methodology for the hesitant fuzzy 
set and applied it in an MCDM problem. 

This article attempts to employ the double 
exponential smoothing model to forecast air transport 
passengers. Here we propose a novel approach that 
combines the double exponential smoothing and rough 
set to improve the forecasting accuracy of the classical 
forecasting model. The rough set theory (Lingras, 
1996; Pawlak, 1982; Pawlak, 1991; Pawlak, 1996) 
pays attention to incomplete knowledge to classify the 
objects in an information system. This methodology is 

different from other previously used methods, which 
do not require any distributional assumption (Chen et 
al. 2011; Pawlak & Slowinski, 1994; Salamo & 
Lopez-Sanchez, 2011; Yao & Lin, 1996). Nowadays, 
the rough set theory is applied in various fields, such 
as acoustical analysis (Kostek, 1996), machine 
learning (Kaya & Uyar, 2013; Tsumoto & Tanaka, 
1996), hospitality (Sharma & Kar, 2018), supplier 
evaluation (Omurca, 2013), disease diagnosis (Xu & 
Liu, 2012), feature selection (Aijun et al. 2004), data 
analysis (Mahapatra & Sreekumar, 2010; Nassiri & 
Rezaei, 2012; Tay et al. 2003) and so on. Recently, 
there are some articles where the rough set theory is 
used for the generation of decision rules for 
forecasting tourism demand (Goh & Law, 2003; Law 
& Au, 2000; Li et al. 2011; Liou et al. 2016). In the 
literature, forecasting accuracy of the rough set theory 
has been compared with other time series models. For 
example, in Faustino et al. (2011), a comparison has 
been done between the accuracy of the rule-based 
model and the Holt-Winters exponential smoothing 
model for the electrical charge demand in the United 
States and the level of Sapucal River in Brazil. 
However, in the literature, a study on forecasting air 
transport passenger’s data, using the combination of 
the double exponential smoothing time series model 
and the rough set theory is yet to be conducted.  

This research investigates on modeling and 
forecasting of air transport passengers and presents a 
new integrated approach for forecasting by 
considering both the double exponential smoothing 
and rough set theory. The empirical results of the 
combined improved double exponential smoothing 
model have been compared to the classical double 
exponential smoothing model using the percentage of 
corrected classified accuracy (PCCA) criterion. The 
rest of this paper is as follows: The preliminary 
concepts for the study are discussed in Section 2. In 
Section 3, the IDES model has been proposed by 
employing the Rough set theory. The proposed work 
related to the study is discussed in Section 4. Two case 
studies from the Department of Infrastructure and the 
Regional Development in Australia and their 
empirical findings are provided in Section 5 and 
conclusions in Section 6.  

2 PRELIMINARIES 
In this section, we introduce some basic concepts 

of the double exponential smoothing (DES), the rough 
set theory (RST) and related properties.  

2.1 Double Exponential Smoothing Model 
The double exponential smoothing model is the 

augmentation of the simple exponential smoothing to 
forecasting time series data with trend components. 
This model is used when the trend element is present 
in the time series data. It consists of two smoothing 
equations to estimate level and trend. The estimated 
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level and trend of the double exponential smoothing 
model for time series 𝐴𝑡 is given by: 

𝐿𝑡 = 𝜇𝐴𝑡 + (1 − 𝜇)(𝐿𝑡−1 + 𝑇𝑡−1)                
𝑇𝑡 = 𝜌(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝜌)𝑇𝑡−1 

In these equations, 𝐿𝑡 and 𝑇𝑡 show the estimated 
level and trend of the time series. Also, µ and ρ are 
smoothing parameters for level and trend, 
respectively, which lie in the range 0 and 1. The 
forecasted value of time series the series 𝐴𝑡 for period 
ℎ is obtained as 

𝐴̂𝑡+ℎ = 𝐿𝑡 + ℎ𝑇𝑡  

2.2 Rough set theory  
The concept of the rough set is based on the 

assumption that every element of the universal set X is 
related to information and the associated attributes for 
each object, and describes its relevant information. 
Information will have indiscernibility when the object 
has the same description. For the evaluation of a 
vague description of the member rough set theory is 
an excellent mathematical tool. The adjective vague 
expresses the information quality that is uncertainty or 
ambiguity, that chase from information granulation. 
The indiscernibility relation developed in this manner 
is a mathematical foundation of the rough set theory; it 
induces a separation of the universe into pieces of 
indiscernible (similar) objects, named the elementary 
set. The rough set theory can be expressed in the form 
of two approximation sets called lower and upper 
approximation of a set. 

Let 𝑋 be the non-empty finite set of objects 
referred to as universe and 𝐴 be a non-empty finite set 
of attributes, then 𝑆 =  (𝑋,𝐴) is called an information 
system where 𝐶,𝐷 are two subsets of 𝐴, 𝐶 and 𝐷 are 
condition and decision attributes, respectively. For any 
P ⊆ A there exist an indiscernibility relation 
K(P) defined as K(P) = {(p, q) ∈ X × X | ∀b ∈
P, b(p) = b(q)}, where (p, q) is a couple of instances, 
𝑏(𝑝) represents the value of attribute b for instance p 
and 𝐾(𝑃) indicate the indiscernibility relation. For 
𝑆 = (𝑋,𝐴) and 𝑃 ⊆ 𝐴, 𝑅 ⊆ 𝑋 can be approximated 
based on the knowledge having in P by assembling the 
P-lower and P-upper approximations of 𝑅, represented 
by P(R) and P(R) respectively; where  

 P(R) = {𝑥 | [𝑥]𝑃 ⊆ R}  (1) 

 P(R) = {𝑥 | [𝑥]𝑃 ∩ R ≠ ∅} (2) 

The objects in P(R) is known as the set of all 
members of 𝑋, which can be surely classified as the 
member of 𝑅 in knowledge P, whereas objects in P(R) 
is the set of all elements of 𝑋 that can be classified as 
member of 𝑅 involving knowledge P. The boundary 
region of 𝑅 is expressed as; BNP(R) =  P(R) − P(R) 
is the set of member, which cannot decisively classify 
into 𝑅 consisting of knowledge P. If the lower 
approximation and upper approximation sets are the 

same then, 𝑅 becomes an exact set with the boundary 
region representing an empty set. In the adverse case, 
if the boundary region contains some objects then set 
𝑅 is referred to as the rough set with respect to P. 

2.3 Reduction of Attributes 
Attributes reduction procedure removes the surplus 

attributes from information set and generates ‘minimal 
good enough’ subset of attributes for an information 
system. Such ‘minimum good enough’ subset of 
attributes is called a reduct. Reduct is an essential 
segment of the information system, which can 
understand all objects discernible by way of the data 
set and cannot be minimized anymore. Condition 
attributes (C) of any information system may consist 
of one or more reducts.  The set of condition attributes 
similar to all reducts of C is known as the ‘core’ of 
condition attributes. 

2.4 Positive Region and Reduct  
The positive region is an essential concept of the 

classical rough set theory (Pawlak, 1991). The C-
Positive region of D consists of all cases of universe U 
that are definitely classified into partition of U/D by 
involving attributes from C. We suppose that C and D 
be the condition and decision attribute of U, which 
represents the C-Positive region of D, as 

 𝑃𝑃𝑃𝐶(D)  = ⋃ 𝐶𝑅𝑅∈𝑈/𝐷  

If E is a subset of attribute set C, then E becomes a 
reduct of C with respect to decision attribute D, if and 
only if the following two conditions are satisfied 
 (𝑖) 𝑃𝑃𝑃𝐶(𝐷) = 𝑃𝑃𝑃𝐸(𝐷), 

 (𝑖𝑖) 𝑃𝑃𝑃𝐶(𝐷) ≠ 𝑃𝑃𝑃𝐸−{𝑒}(𝐷), 𝑓𝑓𝑓 𝑎𝑎𝑎 𝑒 ∈ 𝐸.  

The core is known as the set of all common reducts 
of C. The core consists of the set of all indispensable 
attributes. 

2.5 Accuracy of Approximation and 
Dependency of Attributes (Pawlak, 1991)  

The accuracy of approximation of any subset can 
be denoted in the following manner 

 𝛼𝑃(𝑅) = �P(R)�
�P(R)�

,  (3) 

Where 0 ≤ 𝛼𝑃(𝑅) ≤ 1.  If the accuracy of 
approximation of set is equal to 1 then set is called 
exact otherwise the set is rough.  
The dependency of attributes (DA) is based on the 
total member in the lower approximation to the total 
member in universe and it is described as follows: 

 𝛾𝐶(𝐷) = |𝑃𝑃𝑃𝐶(𝐷)|
|𝑈|

   (4) 

If  𝛾𝐶(𝐷) = 1 we say that D depends completely on C, 
and if 0 ≤ 𝛾𝐶(𝐷) ≤ 1, we say that D depends partially 
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on C. Furthermore, if  𝛾𝐶(𝐷) = 0 then D is entirely 
independent from C. 

2.6 Decision Rules  
Decision rules are used to preserve the core 

semantics of the feature set, from the provided 
information of particular problem, which is an 
additional significant aspect of the rough set theory. 
The reduction of needless situations from the decision 
rules is called as attribute reduction. Hence it can also 
be called as the generation of decision rules from the 
data (Omurca, 2013). 

The following steps are used for the information 
table exploration: 

1. Collection of data. 
2. Computation of lower and upper 

approximation of the universal set. 
3. Obtain C-positive region of D. 
4. Obtain reduct and core of attribute sets. 

The decision rules can be obtained from the 
information table. Rules can be considered as “if 
𝑝𝑗 = 𝑟 then 𝑑 = 𝑞”. Where 𝑝𝑗 ⊆ 𝐶 having attribute 
value r and d is decision attribute accept attribute 
value q. 

3 IMPROVED DES MODEL BASED ON RST 
In this section, the rough set theory is used to 

improve the forecasting accuracy of the double 
exponential smoothing model. First, an information 
system of the rough set is constructed using three 
attributes, 𝐴𝑡 , 𝐿𝑡 and 𝑇𝑡 of the double exponential 
smoothing model as described in the previous section. 
Then the decision rules are created from the 
information table. Creation of decision rules for a 
given information system is the most important stage 
of the rough set theory for the prediction of new 
objects (samples) by employing the ‘IF and THEN’ 
logical statement(s). Further, the information system 
of the rough set is discussed below. 

Let, the data table 𝒟 = {𝐴,𝐵}, where 𝐴 is the 
universe of samples, i.e. 𝐴 = {𝐴𝑡

(1),𝐴𝑡
(2), … ,𝐴𝑡

(𝑖)}. 𝐴𝑡 , 
𝐿𝑡 and 𝑇𝑡 parameters are used as the conditional 
attributes. 𝐴̂𝑡  is the decision attribute to construct the 
𝑛 number of ‘IF…THEN’ rules (𝑅𝑛). In this way, we 
can have many decisions rules to classify the objects. 
The decision rules are obtained by using the IDES 
model based on the rough set theory. The information 
system for the rough set with their conditional and 
decision attributes are reported in Table1 

Table 1.   The Information System for IDES Model based on the 
Rough Set Approach. 

      Condition attribute                                 Decision attribute 

 𝐴𝑡                𝐿𝑡                      𝑇𝑡                               𝐴̂𝑡 
 𝐴𝑡 (1)           𝐿𝑡 (1)                   𝑇𝑡

 (1)                          𝐴̂𝑡
 (1) 

𝐴𝑡
 (2)             𝐿𝑡 (2)                   𝑇𝑡

 (2)                         𝐴̂𝑡
 (2) 

.                      .                          .                                . 

.                      .                          .                                . 

.                      .                          .                                . 

𝐴𝑡
 (𝑖)              𝐿𝑡 (𝑖)                    𝑇𝑡

 (𝑖)                        𝐴̂𝑡
 (𝑖) 

 
From Table 1, the rules are represented as 

If 𝐴𝑡 = 𝐴𝑡
 (𝑖), 𝐿𝑡 = 𝐿𝑡

 (𝑖) and  𝑇𝑡 = 𝑇𝑡
 (𝑖), then we have 

𝐴̂𝑡 = 𝐴̂𝑡
(i)  defined by 𝑅𝑛  . 

And if 𝐴𝑡 = 𝐴𝑡
 (𝑖), 𝐿𝑡 = 𝐿𝑡

 (𝑖) and  𝑇𝑡 = 𝑇𝑡
 (𝑖), then we 

have 𝐴̂𝑡 = 𝐴̂𝑡
(i)  defined by 𝑛 numbers of rules 𝑅𝑛  for 

the 𝑖𝑡ℎ samples. 
𝑅1: If 𝐴𝑡 = 𝐴𝑡

 (1), 𝐿𝑡 = 𝐿𝑡
 (1) and  𝑇𝑡 = 𝑇𝑡

 (1), then  
𝐴̂𝑡 = 𝐴̂𝑡

 (1) 

𝑅2: If 𝐴𝑡 = 𝐴𝑡
 (2), 𝐿𝑡 = 𝐿𝑡

 (2) and  𝑇𝑡 = 𝑇𝑡
 (2), then  

𝐴̂𝑡 = 𝐴̂𝑡
 (2) 

. 

. 

. 
𝑅𝑛: If 𝐴𝑡 = 𝐴𝑡

 (𝑖), 𝐿𝑡 = 𝐿𝑡
 (𝑖) and  𝑇𝑡 = 𝑇𝑡

 (𝑖), then 
𝐴̂𝑡 =  𝐴̂𝑡

 (i). 

4 PROPOSED APPROACH FOR MODELING 
AND FORECASTING AIR PASSENGERS  

Here we propose an improved double exponential 
smoothing model to forecast time series of the air 
passenger’s data using the rough set theory. The 
designed structure of this research consists of several 
stages; time series data collection, double exponential 
smoothing modeling, generation of improved DES 
model based on rough set theory, analysis though 
quality of approximations and dependency of 
attributes, correlation analysis, creation of decision 
rules, comparison of the double exponential 
smoothing time series and improved double 
exponential smoothing (IDES) models via the rough 
set. The different stages of the proposed method are 
described in Figure 1. Accordingly, we discuss the 
proposed approach in the following subsections. 

4.1 Data Collection and Problem Classification 
Data related to air passengers are collected from 

the Australian Department of Infrastructure and 
Regional Development 
(https://www.otexts.org/fpp/7/2). The time series data 
for the air passengers are carefully studied for analysis 
purpose.  

https://www.otexts.org/fpp/7/2
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Figure 1. Stages for the Air Transport Passengers Forecasting based on DES and IDES Models. 

4.2 Rough Set Theory Modeling 
After data collection, the DES model is applied to 

the forecast the time series data related to the air 
passengers. Then an information system can be built 
to further analyse the data using the rough set theory. 
Actual time series (𝐴𝑡), level (𝐿𝑡) and trend (𝑇𝑡) are 
used as the condition attributes and forecasted value 
(𝐴̂𝑡)  is used as the decision attribute. The proposed 
IDES, which is based on the rough set theory, is 
applied on the data set for forecasting purposes. 

4.3 Indispensable Attributes  
To identify the important attribute of the 

information table related to the data set, the reduct and 
core are determined by employing the rough set 
theory. Moreover, the correlation analysis has been 
performed to determine the essential attributes of 
information table. 

4.4 Generation of the IDES Model via the 
Decision Rules 

The decision rules are derived from the information 
table using the rough set theory. Subsequently, the 
percentage of corrected classified accuracy criterion is 
used to evaluate the accuracy of the double 
exponential smoothing and improved double 
exponential smoothing models for forecasting. The 
different stages of the proposed work are depicted in 
Figure 1. 

4.5 Empirical Results of the DES and Improved 
DES Analysis 

Two case studies are selected based on the 
Australian airline passenger’s data. The data related to 
the air transport passengers (ATP) and airport traffic 
movement passengers (ATMP) in Australia are 
considered within the periods of 1992 to 2004, and 
1987 to 2014. 

The empirical study explains the efficiency of the 
proposed method. The main goal of this research is to 
induce a set of decision rules from the rough set 
information system, to improve the accuracy of the 
double exponential smoothing model.  The 
experimental results of two different passenger series 
show, ATP and ATMP are evaluated using R-3.0.3 
software for the double exponential smoothing model. 
The correlation analysis has been performed by 
employing Minitab 16 software. The rough set 
modeling for forecasting has been explored with 
Rough Set Data Explorer (ROSE2) software to 
produce decision rules (Predki et al. 1998).  

4.6 Indispensable Attributes  
The double exponential smoothing model is used 

to estimate the level (mean) and trend from the time 
series data using the smoothing parameters μ and ρ,
respectively. The previously estimated level and 
trend are utilized in predicting the future of the air 
transport passengers. The results of the estimated 
parameters for the double exponential smoothing 
model are given in Table 2. Figures 2 and 3 explain 

Data Collection Forecasting using DES 
model 

Proposed Improved DES 
model based on rough set 

theory 

Construct rough set 
information system 

Determine the Lower  and 
Upper approximations Calculate reduct and core  

Generate IF and THEN 
decision rules Correlation analysis 

Compare the performance 
of classical DES and 

proposed hybrid model 



6  SHARMA ET AL 
 

 

the relationship between the actual, level, trend and 
forecasted values for ATP and ATMP based on the 
double exponential smoothing model. In the next 
section, the rough set analysis has been performed to 
improve the forecasting accuracy of the double 
exponential smoothing model. 

4.7 Rough Set Analysis 
To generate information system of the rough set, 

estimated 𝐴𝑡 , 𝐿𝑡 ,𝑇𝑡 and 𝐴̂𝑡 of the double exponential 
smoothing forecasting is used as conditional and 
decision variables. In the next step the estimated 

results are normalized for the rough set analysis. The 
information system of the normalized values (NV) is 
classified into three qualitative classes; low (IF 0 <
𝑁𝑁 ≤ 0.4), average (IF 0.4 < 𝑁𝑁 ≤ 0.8), and high 
(IF 𝑁𝑁 > 0.8). The normalized decision table for 
ATP and ATMP are given in Tables 3 and 4 
respectively. Therefore, the information system is 
used for the rough set analysis is to study the 
forecasting accuracy of the improved double 
exponential smoothing model. 

 
Table 2. Estimated Parameters of the DES Model for the ATP and ATMP Series.  

Data µ 𝜌 Mean Trend 
ATP 0.8 0.2 41.93 1.87 

ATMP 0.8 0.2 147664021 4578307 

 
    

 
 

Figure 2.  The Relationship between the Actual, Level, Trend and Forecasted Passengers of the ATP. 

 

Figure 3. The Relationship between Actual, Level, Trend and Forecasted Passengers of the ATMP. 
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Table 3.  Information System for the ATP series. 

Universe Year At Lt Tt 𝐴̂𝑡 

1 1992 Low Low High Low 

2 1993 Low Low High Low 

3 1994 Low Low High Low 

4 1995 Low Low Average Low 

5 1996 Low Low Average Low 

6 1997 Low Average Low Low 

7 1998 Low Average Low Average 

8 1999 Average Average Low Low 

9 2000 Average Average Low Average 

10 2001 Average Average Low Average 

11 2002 High Average Low Average 

12 2003 High High Low High 
13 2004 High High Low High 

 
 
Table 4. Information System for the ATMP Series. 

Universe Year At Lt Tt 𝐴̂𝑡 
1 1987 Low Low Low Low 
2 1988 Low Low Low Low 
3 1989 Low Low Low Low 
4 1990 Low Low Low Low 
5 1991 Low Low Low Low 
6 1992 Low Low Low Low 
7 1993 Low Low Low Low 
8 1994 Low Low Average Low 
9 1995 Low Low Average Low 

10 1996 Low Low Average Low 
11 1997 Low Low Average Low 
12 1998 Low Low Average Low 
13 1999 Low Low Average Low 
14 2000 Low Low Low Low 
15 2001 Average Low Average Low 
16 2002 Low Average Average Average 
17 2003 Average Low Low Low 
18 2004 Average Average Low Average 
19 2005 Average Average Average Average 
20 2006 Average Average Average Average 
21 2007 Average Average High Average 
22 2008 Average Average High Average 
23 2009 Average Average High High 
24 2010 High High High High 
25 2011 High High High High 
26 2012 High High High High 
27 2013 High High High High 
28 2014 High High High High 
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 Indiscernibility Relations for the 4.7.1
Information System of the ATP Data 

The indiscernibility relations and equivalence 
classes of the rough set information system are 
described as follows: 
𝐴 𝐴𝑡 = {(1, 2, 3, 4, 5, 6, 7), (8, 9, 10), (11, 12, 13)}⁄ , 
since the first seven 1-7 are contained as the ‘low’ of 
attribute At, cases 8, 9 and 10 having the same value 
‘average’ and cases 11, 12 and 13 consist of the value 
‘high’ for attribute At. 
 Similarly, we can calculate other indiscernibility 
relations. 
𝐴 𝐿𝑡 = {(1, 2, 3, 4, 5), (6, 7, 8, 9, 10, 11), (12, 13)},⁄  
𝐴 𝑇𝑡 = {(6, 7, 8, 9, 10, 11, 12, 13), (4, 5), (1, 2, 3)⁄ }. 
Next, an indiscernibility relation of the set of all 
condition attributes is 
𝐴 (𝐴𝑡, 𝐿𝑡,𝑇𝑡)⁄
= {(1, 2, 3), (4, 5), (6, 7), (8, 9, 10), (11), (12, 13)}. 

 The Concept of Reduct and Core  4.7.2
For calculating the reduct and core, initially, we 

determine the indiscernibility relation for the sequence 
of attribute sets. 
𝐴 (𝐿𝑡,𝑇𝑡)⁄
= {(1, 2, 3), (4, 5), (6, 7, 8, 9, 10, 11), (12, 13)}, 
𝐴 (𝐴𝑡,𝑇𝑡)⁄
= {(1, 2, 3), (4, 5), (6, 7), (8, 9, 10), (11, 12, 13)}, 
𝐴 (𝐴𝑡, 𝐿𝑡)⁄
= {(1, 2, 3, 4, 5), (6, 7), (8, 9, 10), (11), ( 12, 13)}, 
Thus the indiscernibility relation of the decision 
attribute 𝑦𝑡�  is as follows: 
𝐴 𝐴̂𝑡⁄ = {(1, 2, 3, 4, 5, 6, 8), (7, 9, 10, 11), (12, 13)}. 
Now we calculate the positive region of information in 
Table 4. 
𝐴 (𝐴𝑡, 𝐿𝑡,𝑇𝑡)⁄ =
{(1, 2, 3), (4, 5), (6, 7), (8, 9, 10), (11), (12, 13)}, and 
𝐴 𝐴̂𝑡⁄ = {(1, 2, 3, 4, 5, 6, 8), (7, 9, 10, 11), (12, 13)}, 
We have, 
 𝑃𝑃𝑃�𝐴𝑡, 𝐿𝑡, 𝑇𝑡��𝐴̂𝑡� = 𝐶(𝑅{𝐴�𝑡=low}) ∪ 𝐶(𝑅{𝐴�𝑡=average}) 
∪ 𝐶(𝑅{𝐴�𝑡=high}), Where 

(i) 𝐶(𝑅{𝐴�𝑡=low})  =  (1, 2, 3, 4, 5).  
(ii) 𝐶(𝑅{𝐴�𝑡=average}) = (11).   
(iii) 𝐶(𝑅{𝐴�𝑡=high}) = (12, 13). 

Hence, 𝑃𝑃𝑃�𝐴𝑡, 𝐿𝑡, 𝑇𝑡��𝐴̂𝑡� = (1, 2, 3, 4, 5, 11, 12, 13). 
The positive region theory reveals that the set of all 
indispensable attribute is called core. Therefore, we 
have 

(𝑖) 𝐼𝐼 𝑃𝑃𝑃� 𝐿𝑡, 𝑇𝑡��𝐴̂𝑡� ≠ 𝑃𝑃𝑃�𝐴𝑡, 𝐿𝑡, 𝑇𝑡��𝐴̂𝑡�, then the 
attribute 𝐴𝑡 is called indispensable. 

(𝑖𝑖) 𝐼𝐼 𝑃𝑃𝑃� 𝐴𝑡, 𝑇𝑡��𝐴̂𝑡� ≠ 𝑃𝑃𝑃�𝐴𝑡, 𝐿𝑡, 𝑇𝑡��𝐴̂𝑡�, then 
the attribute 𝐿𝑡 is called indispensable. 

(𝑖𝑖𝑖) 𝐼𝐼 𝑃𝑃𝑃� 𝐴𝑡, 𝐿𝑡��𝐴̂𝑡� = 𝑃𝑃𝑃�𝐴𝑡, 𝐿𝑡, 𝑇𝑡��𝐴̂𝑡�, then 
the attribute 𝑇𝑡  is called dispensable. 
Similarly, the decision of Table 4 has been analysed 
by employing the rough set theory. 𝐴𝑡 and  𝐿𝑡  are 

selected as the indispensable attributes for information 
in Table 4. Thus, the quality and accuracy of 
approximation has been discussed in next section. 

 Accuracy of Approximation and 4.7.3
Dependency of Attributes  

The attribute selection is one of most important 
steps in this study, which can reveal the efficiency of 
indispensable attributes to forecasting the air 
passenger’s data. We can find a smaller attribute set, 
which describes their important role in the decision 
table for forecasting. From decision Table 3, the core 
is the set of (𝐴𝑡 , 𝐿𝑡) as discussed in the previous 
section. Therefore, these two attributes are essential 
for forecasting ATP data. Similarly, the core element 
of decision Table 4 is (𝐿𝑡,𝑇𝑡). Hence, 𝐿𝑡 and 𝑇𝑡 are 
indispensable attributes to forecast the ATMP series 
for the double exponential smoothing model. The 
accuracy of approximation for the three decision 
classes (Low, Average and High) is shown in Table 5. 
For the ATP series, the accuracy of approximation for 
the decision class ‘high’ is  more consistent  than  the 
decision classes ‘low’ and ‘average’. Whereas, for the 
ATMP series,  the decision class ‘low’ has more 
consistent accuracy of approximation compared to the 
decision classes ‘average’ and ‘high’. The overall 
dependency between conditional and decision 
attributes for both the series are 61% and 89% 
respectively. In our analysis, it is assumed that all the 
attributes are of equal importance for the air transport 
passengers forecasting based on the double 
exponential smoothing model. Some of the attributes 
are more essential than the others during the data 
analysis. 

 
Table 5. Accuracy of Approximation. 

Class         No. of 
objects         

Lower 
approximation 

      Upper 
approximation 

      
Accuracy      

ATP              
    1 7 5 10 0.5 

2 4 1 6 0.16 
3 2 2 1 1 

ATMP     
1 16 16 16 1 
2 6 4 7 0.57 
3 6 5 8 0.62 

 Correlation Analysis  4.7.4
In this section, the correlation analysis has been 

performed to find the correlation coefficient between 
the conditional and decision variables. We considered 
the most indispensable attributes based on the largest 
correlation coefficient with the decision attribute. The 
results of the correlation coefficient for the different 
parameters are shown in Table 6. There is a very high 
degree of association in terms of the positive 
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correlation between the various parameters. The 
correlation coefficient between 𝐴̂𝑡  on At and Lt is 
positive i.e., 0.93 and 0.98, it indicates that 𝐴̂𝑡 has 
highly positively correlation with At and Lt. It is also 
found that  T𝑡   has negative low correlation with At, Lt 
and 𝐴̂𝑡 attributes. Table 7 shows correlation 
coefficients between 𝐴̂𝑡 on Lt and T𝑡 positive i.e. 0.99 
and 0.89, which indicates that 𝐴̂𝑡 has highly positive 
correlation with Lt and T𝑡. The correlation between 𝐴̂𝑡 
on Lt is 99%, which shows that strong relation of 𝐴̂𝑡 
with Lt. Hence, the results of attribute reduction 
statistical inference are the same and that the attribute 
sets (𝐴𝑡, 𝐿𝑡) and (𝐿𝑡 ,𝑇𝑡) play an important role in 
forecasting ATP and ATMP. So we choose 
(𝐴𝑡 , 𝐿𝑡) and (𝐿𝑡 ,𝑇𝑡) attribute sets as the indispensable 
attributes in an information system. 

 
Table 6. Correlation between Conditional and Decision 
Attributes of the ATP Series. 

 
  At   Lt   T𝑡    𝐴̂𝑡  

At 
 

1 
 

0.95 
 

-0.72 
 

0.93 

Lt 
 

0.95 
 

1 
 

-0.74 
 

0.98 

T𝑡  
 

-0.72 
 

-0.74 
 

1 
 

-0.62 
𝐴̂𝑡    0.93   0.98   -0.62   1 
 

Table 7. Correlation between Conditional and Decision 
Attributes of the ATMP series. 

    At   Lt   T𝑡    𝐴̂𝑡  

At 
 

1 
 

0.99 
 

0.87 
 

0.99 
Lt 

 
0.99 

 
1 

 
0.89 

 
1 

T𝑡  
 

0.87 
 

0.89 
 

1 
 

0.89 
𝐴̂𝑡    0.98   0.99   0.89   1 

 Improved DES Forecasting 4.7.5
This section formulated the improved double 

exponential smoothing model to forecasting both the 
air transport passengers’ data using the decision rules. 
To create the decision rules, information Tables 3 and 
4 have been analysed by applying the rough set theory 
technique. The minimal decision rules describe the 
reduced information table, which contains strong 
information about the passengers’ data. Now are the 
decision rules of the improved double exponential 
smoothing model to calculate the forecasting accuracy 
of air passenger’s data. Five decision rules are 
produced from Table 3 and Table 4, which are given 
below for both data series. 

 

Rules for the ATP series: 

𝑅1. 𝐼𝐼 [0 ≤ 𝐿𝑡 ≤ 0.4]   𝑇𝑇𝑇𝑇   𝐴̂𝑡 = 𝑙𝑙𝑙. 
 
𝑅2. 𝐼𝐼 [𝐴𝑡 > 0.8] 𝐴𝐴𝐴 [0.4 < 𝐿𝑡 ≤ 0.8]   𝑇𝑇𝑇𝑇  
 𝐴̂𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎.  
 
𝑅3. 𝐼𝐼 [𝐿𝑡 > 0.8]   𝑇𝑇𝑇𝑇   𝐴̂𝑡 = ℎ𝑖𝑖ℎ.     
 
𝑅4. 𝐼𝐼 [0.4 < 𝐴𝑡 ≤ 0.8]   𝑇𝑇𝑇𝑇   𝐴̂𝑡 = 𝑙𝑙𝑙 𝑜𝑜  
 𝐴̂𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎.  
 
𝑅5. 𝐼𝐼 [0 ≤ 𝐴𝑡 ≤ 0.4] 𝐴𝐴𝐴 [0.4 < 𝐿𝑡 ≤ 0.8]    
𝑇𝑇𝑇𝑇  𝐴̂𝑡 = 𝑙𝑙𝑙 𝑜𝑜 𝐴̂𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎.    

Rules for the ATMP series: 

𝑅1. 𝐼𝐼 [ 0 ≤ 𝐿𝑡 ≤ 0.4]   𝑇𝑇𝑇𝑇   𝐴̂𝑡 = 𝑙𝑙𝑙.  
 
𝑅2. 𝐼𝐼 [0.4 < 𝐿𝑡 ≤ 0.8] 𝐴𝐴𝐴  
[0.4 < 𝑇𝑡 ≤ 0.8]   𝑇𝑇𝑇𝑇  𝐴̂𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎.  
 
𝑅3. 𝐼𝐼 [0.4 < 𝐿𝑡 ≤ 0.8] 𝐴𝐴𝐴 
 [0 ≤ 𝑇𝑡 ≤ 0.4]   𝑇𝑇𝑇𝑇   𝐴̂𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎.    
 
𝑅4. 𝐼𝐼 [𝐴𝑡 > 0.8]   𝑇𝑇𝑇𝑇   𝐴̂𝑡 = ℎ𝑖𝑖ℎ.  
 
𝑅5. 𝐼𝐼 [0.4 ≤ 𝐴𝑡 ≤ 0.8] 𝐴𝐴𝐴 [𝑇𝑡 >
0.8]   𝑇𝑇𝑇𝑇  𝐴̂𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜 𝐴̂𝑡 = ℎ𝑖𝑖ℎ.   

These rules are used to predict the air transport 
passengers to Australia. From Figure 4, 𝑅1 has the 
highest support for both series. It indicates that 𝑅1 is 
the strongest rule for the prediction. The corrected 
classified prediction for the three classes (Low, 
Average, and High) is shown in Table 8 using IDES. 
Thus the forecasting results of the improved double 
exponential smoothing model are highly accurate for 
the prediction of the passenger’s data. In the next 
section the accuracy of the improved double 
exponential smoothing model is compared with the 
classical DES model under PCCA criterion.  

 

Figure 4. Support for the Decision Rules of the ATP and ATMP 
series. 
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Table 8: Validation of the IDES Model. 

ATP 
 

Class1 
 

Class2 
 

Class 3 
Class1 

 
5 

 
2 

 
0 

Class2 
 

1 
 

3 
 

0 
Class3 

 
0 

 
0 

 
2 

ATMP   Class1 
 

Class2   Class 3 
Class1 

 
16 

 
0 

 
0 

Class2 
 

0 
 

5 
 

0 
Class3   0   1   5 
None 

 
NA 

 
1 

 
NA 

 

4.8 Evaluation and Comparison of the 
Proposed Approach with the DES Model 

To compare the forecasting performance of the 
double exponential smoothing and improved double 
exponential smoothing models, percentage of 
corrected classified accuracy (PCCA) criterion is used 
(Goh, & Law, 2003). In general, the accuracy 
represents the percentage of the corrected classified 
(CC) instances in an information system. Percentage 
of the corrected classified accuracy is the ratio of the 
corrected classified instances and the total number of 
classified instances. The empirical results show that 
the average accuracy of the double exponential 
smoothing and the rough set based improved the 
double exponential smoothing models being 76.92%, 
84.61%, 85.71% and 88.88%, respectively, for both 
series. Table 10 reveals that the forecasting accuracy 
of the rough set based improved the double 
exponential smoothing model being superior to that of 
the classical double exponential smoothing model for 
both the passengers’ series. Therefore, the improved 
double exponential smoothing model is more accurate 
for forecasting the air transport passenger as compared 
to the double exponential smoothing model. The 
comparison of actual and forecasted values for the 
ATP and ATMP series is shown in Figures 5 and 6 

based on the double exponential smoothing and 
improved double exponential smoothing models.  

For validation purposes, the classical double 
exponential smoothing and improved double 
exponential smoothing models are applied on the data 
set related to the tourism demand of Luxembourg (Yu 
& Schwartz, 2006). Subsequently, the performance of 
both models has been compared with respect to PCCA 
criterion.  The accuracy of the double exponential 
smoothing and improved double exponential 
smoothing are respectively determined as 62.5 and 75 
and therefore based on the values of accuracy, we can 
conclude that the forecasting of the improved double 
exponential smoothing is better than the double 
exponential smoothing. The results of the actual and 
forecasted values for Luxembourg data is shown in 
Figure 7 based on the double exponential smoothing 
and improved double exponential smoothing model. 
The corrected classified prediction on the data related 
to the tourism demand of Luxembourg is shown in 
Table 9 for the improved double exponential 
smoothing.  
 
Table 9. Validation for the IDES Model. 

Luxembourg Class 1 Class 2 Class 3 
Class 1 5 1 0 
Class 2 0 5 0 
Class 3 1 2 2 

 
Table 10. PCCA Criterion of the Classical DES and IDES Models 
(in %). 

Series                         DES                        IDES 
ATP                            76.92                       84.61 
ATMP                         85.71                       88.88 
Luxembourg               62.50                      75.00 

  

 

 

Figure 5.  Actual and Forecasted Values of the ATM Series for the DES and IDES Models. 
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Figure 6. Actual and Forecasted Values of ATMP Series for the DES and IDES Models. 

 

Figure 7. Actual and Forecasted Values of Luxembourg Data Set for the DES and IDES Models.  

5 CONCLUSIONS 
This study explains the usefulness of the rough set 

approach for improving the accuracy of the DES 
model to forecast air transport passengers in Australia. 
We have applied the double exponential smoothing 
time series model for predicting air transport 
passengers in Australia. The DES is a highly efficient 
model to forecast time series data without any 
particular statistical distributional assumptions. In this 
research, we have proposed the IDES model by 
integrating the classical DES model with the rough set 
theory. The working principle of the proposed model 
depends on the decision rules generated from an 
information system. Moreover, we have evaluated the 
performance of the DES and improved double 
exponential smoothing models using a percentage of 
corrected classified accuracy (PCCA) criterion.  

In this study, we have considered the indispensable 
factors for the prediction of air transport passengers by 
using attribute reduction and correlation analysis. 

According to the attribute reduction and correlation 
analysis (𝐴𝑡, 𝐿𝑡) and (𝐿𝑡,𝑇𝑡) these are the most 
essential factors to forecast the future of air transport 
passengers. Correlation is positively high between 
conditional and decision attributes. The forecasting 
conducted by the improved double exponential 
smoothing indicates that the prediction accuracy of the 
proposed approach is superior to that of the classical 
DES time series model. Therefore, our empirical 
analysis reveals that the improved double exponential 
smoothing has a better prediction capacity compared 
to that of the classical DES model. Moreover, the 
derived decision rules are easier to understand with 
respect to the statistical time series methods without 
any distributional assumptions.  

The limitation of this study is that we have used 
only air transport passengers’ time series data for the 
future prediction. The time series data from other 
resources are necessary to be considered in order to 
analyse more robustly the performance of the 
proposed IDES model in the future. 
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