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1 INTRODUCTION 
SWARM Intelligence (SI) techniques are 

population-based metaheuristics inspired by the 
social behavior of living and non-living 
organisms. SI algorithms are self-organized and 
the individuals of each algorithm share 
information without centralized control 
mechanism. Particle swarm optimization (James 
& Russell, 1995) and ant colony optimization 
(Dorigo & Di Caro, 1999) are widely used SI 
algorithms in various applications. Others recent 
SI algorithms are firefly algorithm (Yang, 2008), 
cuckoo search (Yang & Deb, 2009), earthworm 
optimization algorithm (Wang, Deb Coelho, 
2015), krill herd (Wang et al., 2016), monarch 
butterfly optimization (Wang, Deb Cui, 2015), 
moth search (Wang, 2016), whale optimization 
algorithm (Mirjalili & Lewis, 2016), to name just 
a few.  

The concept of PSO (Eberhart & Kennedy, 
1995; James & Russell, 1995), we call it basic 
PSO (BPSO), inspired by social behavior of bird 
flocking and fish schooling, was put forth in 
1995. It is a population-based optimization techn-

ique, which adopts leaders and shares information 
in order to guide the search for each particle in 
the swarm. Due to its simple concept and ease of 
implementation, BPSO has been applied to solve 
many optimization problems (Ali et al., 2012; 
Chu et al., 2016; Engelbrecht, 2006; Rauf & 
Aleisa, 2015; Sadhasivam & Thangaraj, 2017). 

In spite of its simplicity, BPSO has several 
limitations which prevent it from achieving an 
efficient solutions (Bonyadi & Michalewicz, 
2016). However, the two main limitations are its 
slow convergence rate and the local trapping 
dilemma. By slow convergence means the low 
rate of the fitness improvement of particles in the 
successive iterations. This is a very obliging 
feature of BPSO especially when the particles are 
near the optimal solution. However, on contrary 
to this, it happens that the most of the particles 
(except few particles) do not improve their fitness 
in the successive iterations. Therefore, these 
particles waste the computational resources and 
increase the computational cost (in terms of 
function evaluations or CPU time) (Hu et al., 
2013; Zhan et al., 2011). Another drawback of 
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BPSO is the local trapping which means that all 
particles get stuck at some local optimum in the 
search space and no further improvement takes 
place. This is called premature convergence or 
stagnation (Van den Bergh & Engelbrecht, 2010). 
The convergence speed and premature conver- 
gence are the trade-off issues of BPSO. Because 
of the increase in convergence speed, the 
diversity rapidly lost which eventually leads to an 
undesirable premature convergence (Nakisa et al., 
2014). In order to tackle this situation, researchers 
have tried to avoid the premature convergence by 
performing some extra computations (Adewumi 
& Arasomwan, 2016; Cui et al., 2009; Cui et al., 
2012; Liang et al., 2006; Mendes et al., 2004; 
Tian, 2017) and have improved the convergence 
speed by introducing new parameters in BPSO 
(Eberhart & Shi, 2001; Eberhart, 1998; Park et 
al., 2010). 

In order to enhance the performance of BPSO, 
for locating the global optima in complex 
multimodal problems, we have proposed an 
accelerated convergent PSO (ACPSO). In the 
projected model, the velocity-updating rule is 
modified by excluding the inertia part and 
altering the cognitive part of the equation.  As a 
result, this reduces the need of memorizing the 
previous flying direction during evolution. 
Likewise, it does not incorporate any new 
parameter in BPSO and does not perform any 
extra computation while dealing with complex 
multimodal problems. 

The advantages of ACPSO through compreh-
ensive comparisons with eight state-of-the-art 
BPSO variants have been demonstrated. The 
empirical results reveal the fact that the ACPSO 
is faster, more accurate, consistent, reliable, and 
robust than the compared algorithms on 28 
benchmark test functions (including unimodal, 
multimodal, and rotated) given in Table 1. It is 
also suggested that the proposed technique is the 
simplest among all the compared BPSO variants. 

The rest of the paper is structured as follows: 
Section 2 describes the BPSO. Section 3 
demonstrates the literature review. The ACPSO 
algorithm is introduced in Section 4. Section 5 
discusses the experimental setup. The experim- 
ental results and discussion are summarized in 
Section 6. The paper is concluded in Section 7. 

2 THE BASIC PSO (BPSO) 
IN BPSO algorithm (James & Russell, 1995), 

the group of particles makes a swarm and each 
particle in a swarm represents a potential solution 
to a given optimization problem. Each particle i  
at iteration t  is represented by a position vector 
𝑋𝑋𝑡𝑡𝑖𝑖, the velocity vector 𝑉𝑉𝑡𝑡𝑖𝑖 , and the personal best 
position vector 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 , . At the start, the position 
vectors are randomly initialized within the 
domain of a problem and the velocity vectors are 
initialized to zero (Engelbrecht, 2012; 2013). The 
velocity and position vectors are updated using 
Equation (1) and (2). 
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where c1 and c2 are cognitive and social 
acceleration coefficients and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1𝑡𝑡𝑖𝑖 , and 
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2𝑡𝑡𝑖𝑖 , are uniformly distributed random 
numbers between 0 and 1. The 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 is the best 
position discovered by the whole swarm using 
Equation (4). The performance of each particle is 
evaluated using the fitness function f. During the 
evolution process, if the fitness of a particle is 
better than the fitness of its 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 position, it 
will be updated using Equation (3).  
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The velocity acts as a step size and is an 
aggregation of three components: the inertia, the 
cognitive component, and the social component 
as in Equation (5). The inertia performs the role 
of exploration while cognitive and social comp-
onents perform the role of exploitation (Bonyadi 
et al., 2014). 
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where 𝜔𝜔𝑖𝑖 is introduced in (Eberhart, 1998) and its 
value is dynamically adjusted in every iteration 
using Equation (7). The iter is the current 
iteration and 𝑀𝑀𝑟𝑟𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖is the predefined maximum 
number of iterations. The 𝜔𝜔𝑓𝑓𝑖𝑖𝑓𝑓 and 𝜔𝜔𝑖𝑖𝑓𝑓𝑖𝑖𝑡𝑡 are the 
final and the initial inertia weight values set to 0.9 
and 0.4 respectively. 

3 RELATED WORK 
SINCE the design of BPSO, its many 

improved variants have been reported in the 
literature. The aim of these modifications was to 
improve the performance of BPSO either by 
introducing the additional parameters or by 
performing some extra computation. 

Many researchers have introduced new 
parameters into BPSO to enhance the 
convergence speed. Shi and Eberhart (Eberhart, 
1998) have proposed the linearly decreasing 
inertia weight ω  in velocity update rule as in 
Equation (5). The proposed model achieved better 
performance than many other BPSO variants. In 
(Kennedy, 2002) suggested using the constriction 
factor χ into the velocity update Equation (7) and 
the value of χ is calculated using Equation (8). 
The proposed variant resolved he local trapping 
issue in unimodal problems. 
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where the values of 1c and 2c  are set to 2.05, 
which returns the value of χ = 0.719. The use of χ 
prevents each particle from exploring too far 
away from the search range and it eliminates the 
need of Vmax. The (Eberhart & Shi, 2001) 
introduced a new variant of BPSO in which an 
inertia weight vector for each particle is randomly 
generated between 0.5 and 1.0. Researchers have 
also performed some extra computation to 
enhance the convergence rate (Qu et al., 2013; 
Zhan et al., 2009).  

There is not only a slow convergence rate, but 
the local trapping dilemma is also a challenging 

task in BPSO. Many researchers have employed 
some extra computation to deal with this issue. In 
chaotic and crossover PSO (CCPSO) (Park et al., 
2010), the chaotic sequences and the crossover 
operation are combined to deal with the 
premature convergence issue. In order to improve 
the global search ability, a chaotic inertia weight 
has been suggested that dynamically combined 
the chaotic sequences with linearly decreasing 
inertia weight.  Moreover, the crossover operation 
performed to enhance the diversity of the 
population.   

It is quite difficult to accelerate the conver-
gence speed and to avoid the local trapping 
problems at the same time. Mendes et. al. 
proposed the fully informed particle swarm 
(FPSO) (Mendes et al., 2004) to accelerate the 
convergence speed. Each particle updates its 
position by taking the mean of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 from its 
surrounding neighborhood. Although it is a 
simple concept, yet it requires additional 
computation and the premature convergence 
problem is still there. Another approach namely a 
fitness-distance-ratio PSO (FDRPSO) (Peram et 
al., 2003) was proposed to resolve the premature 
convergence problem. In this method, the 
particles are influenced by its closest neighbor 
having better fitness rather than its personal best 
and global best positions. This strategy improved 
the premature convergence with extra 
computation and at the expense of slow 
convergence rate. In (Beheshti & Shamsuddin, 
2015), the authors combined the global and local 
topologies to update the position of particles. 
Furthermore, they generated two new particles in 
the successive iteration to avoid the local trapping 
dilemma. However, this strategy needs an 
additional number of function evaluations in each 
iteration. In comprehensive learning PSO 
(CLPSO) (Liang et al., 2006), the comprehensive 
learning (CL) strategy discourages premature 
convergence problem by using personal best 
information of all other particles instead of global 
best position. As a result, the CLPSO enables to 
generate better quality solutions in multimodal 
problems. However, the limitation of this model 
is that it performs extra computation and as a 
result causes a slow convergence in unimodal 
problems.  

Simultaneously alleviating this trade-off goal 
is really a challenging task for the researchers. 
There are many attempts have been made to 
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achieve these goals. However, concurrently 
achieving these goals in an efficient manner still 
need to address and it requires more robust and 
efficient algorithms.  

4 ACCELERATED CONVERGENT PSO 
(ACPSO) 

IN literature, there are numerous global BPSO 
variants have been reported to accelerate the 
convergence speed and to reduce the premature 
convergence. Nevertheless, accelerating the 
convergence speed while avoiding the premature 
convergence problem has not been addressed 
well.  In order to address this issue, we have 
proposed a new learning strategy that accelerates 
the convergence speed while avoiding the 
premature convergence using Equation (9).  
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where 𝜔𝜔𝑖𝑖  is a linearly decreasing weight proposed 
in (Eberhart, 1998). The values of acceleration 
coefficients 1c and 2c  are usually selected by trial 
and error methods (Engelbrecht, 2013; Li, 2004; 
Parrott & Li, 2006) or according to the fitness 
values (Wang & Yang, 2016). We have 
empirically set both values to 0.5. The other 
parameters are same as in Equation (1).  

This new velocity equation is different from 
the BPSO variants, as it does not have the inertia 
part of Equation (5). However, the linearly decre-
asing weight decreases the impact of the personal 
best experience of particles. Furthermore, it 
modifies the cognitive component by multi-plying 
𝜔𝜔𝑖𝑖 along with 1c and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟1𝑡𝑡𝑖𝑖  by the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 
position of a particle and then the current position 
of that particle is subtracted from it. The social 
part adopts the global version of BPSO. The 
position update equation is same as Equation (2). 

The basic inspiration of ACPSO has been 
taken from (R.C. Eberhart, 1995) which suggests 
to use the velocity update equation without 
previous velocity term. The projected variant is 
much simpler but inappropriate for locating a 
global optimum from multimodal problems. 
Hence, by utilizing this simpler variant, we have 
proposed a new velocity update equation that 
accelerates the convergence speed while reducing 

the local trapping issue in complex multimodal 
problems. 

4.1 Managing the premature convergence 
problem 

The risky property of BPSO is that the current 
position of a particle can be same as its 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 
𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 positions as in Equation (10). In this case, 
the cognitive component and the social 
component become zero as in Equation (11) and 
(12). Therefore, the acceleration coefficients and 
the random parameters also become useless and 
the movement of particles will solely depend on 
inertia part. If the inertia part is very close to 
zero, all the particles will stop moving. 
Meanwhile, if the 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 particle caught by some 
local optimum, it will misguide the whole swarm 
and cause the premature convergence (van den 
Bergh & Engelbrecht, 2002).  
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In the proposed learning model, Equation (9), 
if the current position of a particle, its 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
position, and the 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 position become same, 
the cognitive component will produce non-zero 
result. Hence, this non-zero value will produce 
non-zero velocity with non-zero probability. 
Therefore, the modified model still can bring a 
change in the position of particles even if the 
current position, it’s 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and the 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
positions are same at any iteration. In ACPSO, 
we did not perform any additional operation 
neither to detect premature convergence nor to 
avoid from it.  

Moreover, in the proposed learning model, 
particles will take long jumps at initial iterations, 
as particles are far from the targets and there will 
be larger position differences, and they gradually 
converge towards the optimum location in the 
latter iterations. In earlier iterations, the long 
jumps will explore the search space by mainta-
ining the diversity, which avoids the algorithm to 
be trapped at some local optimum. However, in 
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later iterations, the particles will be exploiting 
around the promising solutions.  

4.2 Accelerating the convergence speed 
The fitness improvement rate of particles is 

usually very high at the initial stage of evolution 
and it gradually declines as evolution progress. 
This monotonic decreasing property is essential 
which prevents the particles to oscillate around 
the optimum location of a problem. However, 
during the convergence process, only a few 
number of particles may improve their fitness or 
the fitness improvement rate is very low in the 
successive iterations. This is because of poor 
exploration ability of particles that prevent them 
from moving towards the promising region in the 
search space. The convergence speed may 
improve if we let the particles move towards 
better location during iterations. This strategy 
reduces the unnecessary function evaluations, 
which ultimately improves the convergence 
speed.  

In the proposed learning model, there is a 
larger momentum at initial iterations and it 
enthusiastically converges the swarm towards the 
global best location of a problem. The cognitive 
component plays the main role of exploration that 
brings larger changes at initial iterations while the 
social part exploits toward the optimum location. 
These combined explorative and exploitative 
behaviours of ACPSO make sure that the 
particles move toward the promising region 
during the convergence process. 

The proposed learning strategy ensures that 
the current position never becomes same as its 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 positions and continuously 
moves the particles towards the better position 
and never freezes even for a single iteration. This 
fitness improvement procedure enhances the 
convergence speed and ensuring that the 
cognitive component never approaches to zero, 
which improves the explorations and avoids the 
trapping issue. 

5 EXPERIMENTAL SETUP 
IN this section, the benchmark test functions, 

contender algorithms and the performance 
metrics are presented.  

5.1 Benchmark test functions  
To validate the performance of the proposed 

approach, we have selected 28 benchmark test 

functions listed in Table 1. The test set includes 
nine unimodal functions, eleven multimodal 
functions, and eight rotated (rotated using 
Salomon’s method (Salomon, 1996)) non-separa-
ble unimodal and multimodal functions with 
varying characteristics such as scalability, repara-
bility, continuity, differentiability, and modality 
(Jamil & Yang, 2013; Suganthan et al., 2005). By 
definition, all the test functions are minimization 
functions and have an optimal value at the origin. 

5.2 An experimental setting 
In this study, the performance of proposed 

technique is compared with the following eight 
state-of-the-art BPSO variants on 10 and 30-D 
test functions. The population size of 20 is 
selected for all experiments and the other 
parameters of these algorithms are remained same 
as used in the original papers. For a fair 
comparison, all algorithms are executed 30 times 
and the mean results are reported.  

• LWPSO: PSO with linear inertia weight  
• RWPSO: PSO with random inertia weight  
• CFPSO: PSO with constriction factor  
• FDRPSO: Fitness-Distance-Ratio based PSO  
• FPSO: Fully Informed PSO  
• CLPSO: Comprehensive Learning PSO  
• NPSO: Novel PSO  
• CCPSO: PSO with Chaotic sequences and 

Crossover operation 

Currently, two types of experiments have been 
conducted to evaluate the different measures 
mentioned in sub-section 4.3. In the first 
experiment, all algorithms are run for a fixed 
number of function evaluations (𝑀𝑀𝑟𝑟𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹, i.e. 
10000*D, where D is the dimension of a 
problem) and the best fitness values is recorded. 
In the second experiment, the execution of each 
algorithm is terminated when the error threshold 
𝜺𝜺 (1.00e-5) had reached or in the worst case, 
𝑀𝑀𝑟𝑟𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 had executed and the number of function 
evaluations FEs were recorded. 

5.3 Performance metrics 
The experimental results are verified in terms 

of (a) - The convergence accuracy, which shows 
the closeness of the best solution found by an 
algorithm with the actually known value of a 
problem using Equation (13). (b) - The 
convergence speed determines how long an 
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algorithm will take to reach an acceptable 
accuracy level ɛ and the mean number of function 
evaluations are recorded. (c) - The success 
performance (SP) determines the number of FEs 
of successful runs to solve a problem within the 
pre-specified accuracy level ɛ using Equation 
(14). (d) - The success rate (SR) is a ratio of 
numbers of successfully runs over the total 
number of runs using Equation (15). 

In addition, the (e) - t-test compares the 
performance statistically. Two-tailed t-test with 
58 degrees of freedom at a 0.05 level of 
significance was conducted between the ACPSO 
and the BPSO variants. Two algorithms are 
statistically different if the value of t-test is 
greater than 2.0017 (Hu et al., 2013; Suganthan et 
al., 2005). 
 

Table 1. Summary of Benchmark Test Functions 

Name Test Function Properties Domain Optimum 
Sphere 𝐹𝐹1(𝑋𝑋) =  ∑ 𝑀𝑀𝑑𝑑2  𝐷𝐷

𝑑𝑑=1   S,C,D,U [±150]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
Quartic 𝐹𝐹2(𝑋𝑋) =  ∑ 𝑟𝑟 𝑀𝑀𝑑𝑑4   𝐷𝐷

𝑑𝑑=1   S,C,D,U [± 50]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
Quartic with 
noise 𝐹𝐹3(𝑋𝑋) =  ∑ 𝑟𝑟 𝑀𝑀𝑑𝑑4 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[0,1]  𝐷𝐷

𝑑𝑑=1   S,C,D,U [± 50]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Elliptic 𝐹𝐹4(𝑋𝑋) =  ∑ (106)
𝑑𝑑−1
𝐷𝐷−1  𝑀𝑀𝑑𝑑2

 
𝐷𝐷
𝑑𝑑=1   S,C,D,U [± 0.5]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Step 𝐹𝐹5(𝑋𝑋) =  ∑ (⌊𝑀𝑀𝑑𝑑 +  0.5⌋)2𝐷𝐷
𝑑𝑑=1   S,Cn,Dn,U [±100]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Schwefel 1.2 𝐹𝐹6(𝑋𝑋) =  ∑  �∑ 𝑀𝑀𝑖𝑖𝑑𝑑
𝑖𝑖=1 �2         𝐷𝐷

𝑑𝑑=1   Sn,C,D,U [±100]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
Schwefel 2.22 𝐹𝐹7(𝑋𝑋) =  ∑  |𝑀𝑀𝑑𝑑| +  ∏ |𝑀𝑀𝑑𝑑|𝐷𝐷

𝑑𝑑=1          𝐷𝐷
𝑑𝑑=1   Sn,C,Dn,U [±100]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Bent Cigar 𝐹𝐹8(𝑋𝑋) =  𝑀𝑀𝑑𝑑2 +  106 ∑ 𝑀𝑀𝑑𝑑2𝐷𝐷
𝑑𝑑=2   Sn,C,D,U [±100]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Schaffer’s F7 𝐹𝐹9(𝑋𝑋) = (∑ 𝑀𝑀𝑑𝑑2𝐷𝐷
𝑑𝑑=1 )1 4�  �sin2 �50(∑ 𝑀𝑀𝑑𝑑2𝐷𝐷

𝑑𝑑=1 )1 10� � + 1.0�. Sn,C,D,U [±100]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Csendes 𝐹𝐹10(𝑋𝑋) =  ∑ 𝑀𝑀𝑑𝑑6  �2 + sin 1
𝑥𝑥𝑑𝑑
�𝑑𝑑

𝑑𝑑=1   S,C,D,M [± 1]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
Rastrigin 𝐹𝐹11(𝑋𝑋) =  ∑ ( 𝑀𝑀𝑑𝑑2  − 10 cos (𝐷𝐷

𝑑𝑑=1  2𝜋𝜋𝑀𝑀𝑑𝑑) + 10)             S,C,D,M [± 50]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Weierstrass 𝐹𝐹12(𝑋𝑋) =  ∑ �∑ �0.5𝑘𝑘 cos�2𝜋𝜋3𝑘𝑘 (𝑀𝑀𝑑𝑑 +  0.5 )��20
𝑘𝑘=0 �𝐷𝐷

𝑑𝑑=1    
 − 𝐷𝐷 ∑ [0.5𝑘𝑘 cos (2𝜋𝜋3𝑘𝑘 ∗ 0.5)]20

𝑘𝑘=0   
S,C,D,M [±0.5]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Alpine 𝐹𝐹13(𝑋𝑋) =  ∑ |𝑀𝑀𝑑𝑑𝑝𝑝𝑠𝑠𝑟𝑟(𝑀𝑀𝑑𝑑) +  0.1 𝑀𝑀𝑑𝑑|𝐷𝐷
𝑑𝑑=1   S,C,Dn,M [± 10]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Deb 1 𝐹𝐹14(𝑋𝑋) =  1
𝐷𝐷

 ∑ 𝑝𝑝𝑠𝑠𝑟𝑟6(5𝜋𝜋𝑀𝑀𝑑𝑑)𝐷𝐷
𝑑𝑑=1   S,C,D,M [±  1]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Non_continued 
Rastrigin 

𝐹𝐹15(𝑋𝑋) =   ∑ (𝑦𝑦𝑑𝑑 − 10 cos(2𝜋𝜋𝑦𝑦𝑑𝑑) + 10 )  ,   𝐷𝐷
𝑑𝑑=1   

        𝑦𝑦𝑑𝑑 =  𝑓𝑓(𝑀𝑀) = �
 𝑀𝑀𝑑𝑑 ,                |𝑀𝑀𝑑𝑑| <  

1
2

  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (2 𝑀𝑀𝑑𝑑)
2

, |𝑀𝑀𝑑𝑑| ≥  
1
2

 S,Cn,Dn,M [± 50]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Salomon 𝐹𝐹16(𝑋𝑋) =  1 − 𝑐𝑐𝑟𝑟𝑝𝑝�2𝜋𝜋�∑ 𝑀𝑀𝑑𝑑2𝐷𝐷
𝑑𝑑=1 � +  0.1�∑ 𝑀𝑀𝑑𝑑2𝐷𝐷

𝑑𝑑=1   Sn,C,D,M [±100]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Ackley 
𝐹𝐹17(𝑋𝑋) =  −20 exp �−0.2�1

𝐷𝐷
∑ 𝑀𝑀𝑑𝑑2𝐷𝐷
𝑑𝑑=1    �   

                 − exp �1
𝐷𝐷

 ∑ 𝑐𝑐𝑟𝑟𝑝𝑝( 2𝜋𝜋𝑀𝑀𝑑𝑑)𝐷𝐷
𝑑𝑑=1 �  + 20 + 𝑝𝑝   

Sn,C,D,M  
[± 50]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Griewank 𝐹𝐹18(𝑋𝑋) =  ∑ 𝑥𝑥𝑑𝑑
2

4000
−  ∏ 𝑐𝑐𝑟𝑟𝑝𝑝 𝐷𝐷

𝑑𝑑=1
𝐷𝐷
𝑑𝑑=1 �𝑥𝑥𝑑𝑑

√𝑑𝑑
� + 1             Sn,C,D,M [±500]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Mishra 11 𝐹𝐹19(𝑋𝑋) =  �1
𝐷𝐷
∑ |𝑀𝑀𝑑𝑑| − (∏ |𝑀𝑀𝑑𝑑|𝐷𝐷

𝑑𝑑=1 )
1
𝐷𝐷𝐷𝐷

𝑑𝑑=1 �
2
  Sn,C,D,M [± 10]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Rot_Elliptic 𝐹𝐹22(𝑋𝑋) =  𝐹𝐹 4(𝑦𝑦)   ,   𝑦𝑦 = 𝑀𝑀 ∗  𝑀𝑀   Sn,C,D,U [± 0.5]D 𝑓𝑓(�̅�𝑀) = 0 
Rot_Sphere 𝐹𝐹21(𝑋𝑋) =  𝐹𝐹 1(𝑦𝑦)   ,   𝑦𝑦 = 𝑀𝑀 ∗  𝑀𝑀  Sn,C,D,U [±150]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
Rot_Elliptic 𝐹𝐹22(𝑋𝑋) =  𝐹𝐹 4(𝑦𝑦)   ,   𝑦𝑦 = 𝑀𝑀 ∗  𝑀𝑀   Sn,C,D,U [± 0.5]D 𝑓𝑓(�̅�𝑀) = 0 
Rot_Schwefel 
1.2 

𝐹𝐹23(𝑋𝑋) =  𝐹𝐹6(𝑦𝑦)   ,   𝑦𝑦 = 𝑀𝑀 ∗  𝑀𝑀  Sn,C,Dn,U [±100]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Rot_Rastrigin 𝐹𝐹24(𝑋𝑋) =  𝐹𝐹11(𝑦𝑦)  ,   𝑦𝑦 = 𝑀𝑀 ∗  𝑀𝑀  Sn,C,D,M [±5.12]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
Rot_Wierstras 𝐹𝐹25(𝑋𝑋) =  𝐹𝐹12(𝑦𝑦)  ,   𝑦𝑦 = 𝑀𝑀 ∗  𝑀𝑀  Sn,C,D,M [± 0.5]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
Rot_Noncon 
Rast 

𝐹𝐹26(𝑋𝑋) =  𝐹𝐹15(𝑧𝑧)  ,   𝑧𝑧 = 𝑦𝑦 ∗  𝑀𝑀 Sn,Cn,D,M [±  50]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 

Rot_Ackley 𝐹𝐹27(𝑋𝑋) =  𝐹𝐹17(𝑦𝑦)  ,   𝑦𝑦 = 𝑀𝑀 ∗  𝑀𝑀  Sn,C,D,M [±  50]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
Rot_Griwank 𝐹𝐹28(𝑋𝑋) =  𝐹𝐹18(𝑦𝑦)  ,   𝑦𝑦 = 𝑀𝑀 ∗  𝑀𝑀  Sn,C,D,M [±500]𝐷𝐷 𝑓𝑓(�̅�𝑀) = 0 
*S=Separable, Sn=Non- Separable, C=Continue, Cn=Non-continue, D=differentiable, Dn=Non- differentiable, U 
=Unimodal, M=Multimodal 
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 ( ) ( )ˆ   Accuracy f x f x= −


 (13) 

 ( ) ( )
( )

      
   

mean FEs of successful runs Total number of runs
SP

Number of successful runs
×

= (14) 

 

( )
( )

   
100

   
Number of successful runs

SR
Total number of runs

= ×
 (15) 

6 EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

EXPERIMENTS have been conducted to find 
the global optimum of 28 test functions listed in 
Table 1. The results demonstrate the closer 
picture of how much the ACPSO algorithm 
outperforms its contenders. The effectiveness of 
the results on the base of different metrics 
(described in sections 5.3) is presented below. 

6.1 Results on convergence accuracy 
The convergence accuracy of ACPSO and 

other BPSO variants is summarized in Table 2 
and Table 3 for 10-D and 30-D test functions 
respectively. The results demonstrate that the 
ACPSO has outperformed its contenders in 
the majority of the test functions.  

6.1.1 Convergence accuracy of 10-D test 
functions 

The first column of each test function in Table 
2 presents the mean accuracy of 10-D test 
functions. The results demonstrated that the 
ACPSO has higher accuracy than the majority of 
other BPSO variants. The FPSO has the same 
results as ACPSO for 13 functions that are F5, 
F10, F11, F12, F14, F15, F17, F18, F24, F25, 
F26, F27, and F28. In addition, the FPSO has 
competitive results with the ACPSO in 10 
functions: F1, F2, F4, F6, F8, F16, F20, F21, F22, 
and F23. So overall, the ACPSO has better 
accuracy than the FPSO for five functions only. 
The CFPSO also achieved global optimum for F5 
and F11 test functions. In noisy test function (F3), 
the ACPSO could not converge to the global 
optimum, but still has better accuracy than other 
BPSO variants. Except for ACPSO, other BPSO 
variants experience different levels of perform-
ance degradation on rotated test functions.  

The presented results are obtained using 
Equation (13), where 𝑓𝑓(𝑀𝑀�) is the mean fitness 
found by the algorithm and 𝑓𝑓(𝑀𝑀) is a known 
global optimum. The proposed learning model 
has larger momentum at initial iterations, which 
enables the particles to explore the search space 
thoroughly. This exploration capability ensures 
that the particles cannot trap at a local optimum. 

6.1.2 Convergence accuracy of 30-D test 
functions  

The first column of each test function in Table 
3 presents the mean accuracy of 30-D test 
functions. The F5 function is a step function, as 
the dimensions of test function F5 increases from 
10 to 30, four (ACPSO, FPSO, CFPSO, and 
FDRPSO) out of nine BPSO variants can 
converge to the global optimum. In this experi-
ment, the FPSO has the same results of the 
proposed technique and it has successfully found 
the global optimum for 13 test functions (F5, F10, 
F11, F12, F14, F15, F17, F18, F24, F25, F26, 
F27, and F28), whereas FPSO achieved the near 
to optimum solution for 10 test functions (F1, F2, 
F4, F6, F8, F16, F20, F21, F22, and F23). The 
proposed technique outperforms the FPSO for 
five test functions only. 

The results show that the performance of 
ACPSO on 30-D test functions is better than the 
results of the 10-D test functions. This is because, 
in the proposed technique, each dimension is 
updated independently. At initial iterations, there 
is a larger momentum in each dimension of a 
particle, as the dimensions increase, the particles 
move more enthusiastically. This exploration 
strategy, as the dimensions increase, avoids the 
local trapping issue and improves the converg-
ence accuracy. 

The comprehensive results are presented in 
Table 4. In the first row, the w/t/l presents the 
number of problems for which ACPSO wins, 
equal, or loss in terms of solution accuracy on 10 
and 30-D test functions. The results reveal that 
the ACPSO significantly performs better than the 
other BPSO variants. However, LWPSO, 
RWPSO, FDRPSO, CLPSO, and NPSO can 
achieve equal results for only one function and 
CFPSO can achieve better results for two 
functions in case of 10-D test functions. The 
FPSO is the only competitor, which has equal 
results of 13 test functions for both 10 and 30-D 
test functions. 
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Table 2. Results of 10-dimensional Test Functions  

 Mean FEs SP SR Mean FEs SP SR Mean FEs SP SR Mean FEs SP SR 

 F1 F2 F3 F4 
LWPSO 1.7E-20 1.1E+05 1.1E+05 100 9.5E-33 1.0E+05 1.0E+05 100 6.5E-03 2.0E+05 Inf 0 1.3E-23 9.6E+04 9.6E+04 100 
RWPSO 2.5E-01 1.9E+05 1.6E+06 10 1.1E-02 1.7E+05 1.9E+05 80 1.9E-01 2.0E+05 Inf 0 3.1E-04 1.4E+05 1.4E+05 100 
CFPSO 4.6E-48 1.7E+04 1.7E+04 100 2.4E-86 1.2E+04 1.2E+04 100 8.9E-04 2.0E+05 Inf 0 1.1E-51 1.2E+04 1.2E+04 100 
FDRPSO 4.2E-54 1.7E+04 1.7E+04 100 9.3E-94 1.1E+04 1.1E+04 100 2.8E-03 2.0E+05 Inf 0 3.9E-01 1.4E+06 3.6E+05 70 
FPSO 4.9E-134 6.1E+03 6.1E+03 100 4.5E-269 3.7E+03 3.7E+03 100 7.9E-05 1.5E+05 1.8E+05 40 1.2E-134 5.3E+03 5.3E+03 100 
CLPSO 7.6E-08 7.1E+04 7.1E+04 100 3.9E-12 5.7E+04 5.7E+04 100 2.2E-02 2.0E+05 Inf 0 2.4E-10 5.5E+04 5.5E+04 100 
NPSO 1.4E-33 2.1E+04 2.1E+04 100 3.5E-59 1.4E+04 1.4E+04 100 3.3E-03 2.0E+05 Inf 0 7.7E-15 2.8E+04 2.8E+04 100 
CCPSO 2.3E+04 2.0E+05 Inf 0 9.1E+06 2.0E+05 Inf 0 6.3E+06 2.0E+05 Inf 0 6.2E+01 2.0E+05 Inf 0 
ACPSO 0 6.0E+02 6.0E+02 100 0 4.0E+02 4.0E+02 100 1.1E-05 1.8E+05 4.1E+05 27 0 4.6E+02 4.6E+02 100 
 F5 F6 F7 F8 
LWPSO 0 7.6E+04 7.6E+04 100 2.7E-19 1.2E+05 1.2E+05 100 1.7E-11 1.3E+05 1.3E+05 100 9.9E-18 1.2E+05 1.2E+05 100 
RWPSO 0 1.1E+04 1.1E+04 100 2.6E+00 2.0E+05 Inf 0 7.0E-01 2.0E+05 Inf 0 8.3E+02 2.0E+05 Inf 0 
CFPSO 0 2.7E+03 2.7E+03 100 4.6E-48 1.9E+04 1.9E+04 100 1.0E-25 2.7E+04 2.7E+04 100 4.9E-45 2.8E+04 2.8E+04 100 
FDRPSO 0 2.3E+03 2.3E+03 100 4.4E-55 4.0E+05 4.0E+05 100 2.2E+00 1.0E+05 9.8E+04 80 5.7E-53 8.1E+02 8.1E+02 100 
FPSO 0 7.4E+02 7.4E+02 100 5.5E-133 6.9E+03 6.9E+03 100 3.3E-67 1.0E+04 1.0E+04 100 1.9E-130 8.7E+03 8.7E+03 100 
CLPSO 0 1.9E+04 1.9E+04 100 6.6E-07 7.7E+04 7.7E+04 100 9.2E-05 9.7E+04 9.7E+04 100 2.5E-04 8.9E+04 8.9E+04 100 
NPSO 0 2.5E+03 2.5E+03 100 6.3E-31 2.5E+04 2.5E+04 100 9.2E-05 3.9E+04 3.9E+04 100 9.2E+03 1.9E+05 2.2E+06 5 
CCPSO 1.1E+04 2.0E+05 Inf 0 2.7E+05 2.0E+05 Inf 0 1.2E+03 2.0E+05 Inf 0 7.9E+07 2.0E+05 Inf 0 
ACPSO 0 2.9E+02 2.9E+02 100 0 6.7E+02 6.8E+02 100 0 9.1E+02 9.1E+02 100 0 8.1E+02 8.1E+02 100 
 F9 F10 F11 F12 
LWPSO 3.6E-01 2.0E+05 Inf 0 1.1E-58 3.3E+04 3.3E+04 100 5.9E+00 2.0E+05 Inf 0 4.1E-04 1.4E+05 1.5E+05 95 
RWPSO 2.2E+00 2.0E+05 Inf 0 2.7E-14 5.7E+03 5.7E+03 100 2.5E+01 2.0E+05 Inf 0 2.7E-01 2.0E+05 Inf 0 
CFPSO 3.7E-03 1.7E+05 1.9E+05 80 1.7E-140 2.4E+03 2.4E+03 100 0 3.5E+04 3.5E+04 100 5.5E-01 1.2E+05 8.4E+04 53 
FDRPSO 3.8E-02 2.0E+05 Inf 0 1.4E-159 1.8E+03 1.8E+03 100 7.6E+00 1.9E+05 5.9E+05 10 1.0E-01 2.4E+06 1.5E+06 50 
FPSO 3.7E-34 1.6E+04 1.6E+04 100 0 9.9E+02 9.9E+02 100 0 7.1E+03 7.1E+03 100 0 1.4E+04 1.4E+04 100 
CLPSO 1.7E+00 2.0E+05 Inf 0 8.9E-22 1.7E+04 1.7E+04 100 7.3E+00 2.0E+05 Inf 0 1.2E-02 1.4E+05 1.7E+05 65 
NPSO 1.7E+00 2.0E+05 Inf 0 1.3E-12 1.9E+03 1.9E+03 100 6.5E+00 2.0E+05 Inf 0 3.3E-01 1.7E+05 2.4E+05 25 
CCPSO 1.2E+01 2.0E+05 Inf 0 1.4E-01 2.0E+05 Inf 0 2.8E+03 2.0E+05 Inf 0 1.0E+01 2.0E+05 Inf 0 
ACPSO 0 1.4E+03 1.4E+03 100 0 1.0E+02 1.0E+02 100 0 7.0E+02 7.0E+02 100 0 1.2E+03 1.2E+03 100 
 F13 F14 F15 F16 
LWPSO 4.4E-06 1.3E+05 1.3E+05 100 2.8E-05 1.2E+05 1.2E+05 100 6.4E+00 2.0E+05 Inf 0 9.9E-02 4.6E+03 4.6E+03 100 
RWPSO 5.0E-02 2.0E+05 Inf 0 2.9E-04 1.7E+05 3.2E+05 40 3.2E+01 2.0E+05 Inf 0 2.7E-01 2.0E+05 Inf 0 
CFPSO 8.9E-20 2.9E+04 2.9E+04 100 2.3E-03 2.0E+05 Inf 0 1.9E+00 1.1E+05 1.1E+05 80 1.2E-03 2.0E+05 Inf 0 
FDRPSO 7.4E-16 6.0E+05 6.0E+05 100 8.9E-19 8.9E+05 6.0E+05 90 3.4E+00 1.8E+05 5.8E+05 20 9.9E-02 2.0E+05 Inf 0 
FPSO 3.6E-69 7.1E+03 7.1E+03 100 0 2.4E+03 2.4E+03 100 0 7.1E+03 7.1E+03 100 2.9E-135 4.9E+03 4.9E+03 100 
CLPSO 4.1E-05 9.0E+04 9.0E+04 100 5.7E-09 7.9E+04 7.9E+04 100 9.4E+00 2.0E+05 Inf 0 9.9E-02 2.0E+05 Inf 0 
NPSO 3.4E-01 2.0E+05 Inf 0 3.7E-04 1.1E+05 1.1E+05 65 4.6E+00 1.9E+05 1.0E+06 15 9.9E-02 2.0E+05 Inf 0 
CCPSO 1.0E+01 2.0E+05 Inf 0 1.5E-02 2.0E+05 Inf 0 2.5E+03 2.0E+05 Inf 0 1.0E+03 2.0E+05 Inf 0 
ACPSO 0 7.0E+02 7.0E+02 100 0 1.3E+03 1.3E+03 100 0 6.9E+02 6.9E+02 100 0 5.2 E+02 5.2 E+02 100 
 F17 F18 F19 F20 
LWPSO 2.1E-11 1.3E+05 1.3E+05 100 1.1E-01 2.0E+05 Inf 0 2.1E-12 4.2E+04 4.2E+04 100 1.3E-23 9.8E+04 9.8E+04 100 
RWPSO 8.4E-01 2.0E+05 Inf 0 4.8E-01 2.0E+05 Inf 0 1.8E-10 2.9E+04 2.9E+04 100 7.9E-04 1.8E+05 2.2E+05 80 
CFPSO 3.0E-15 6.3E+04 3.6E+04 80 4.4E-11 5.2E+04 5.2E+04 100 6.4E-07 6.5E+03 6.5E+03 100 5.4E-52 1.2E+04 1.2E+04 100 
FDRPSO 2.0E+00 2.6E+04 2.6E+04 100 9.4E-02 2.0E+05 Inf 0 3.2E-06 6.0E+03 6.0E+03 100 1.7E-56 1.2E+04 1.2E+04 100 
FPSO 8.9E-16 9.1E+03 9.1E+03 100 0 6.1E+03 6.1E+03 100 3.2E-07 3.5E+03 3.5E+03 100 1.1E-136 4.5E+03 4.5E+03 100 
CLPSO 1.8E+00 1.2E+05 1.3E+05 80 4.8E-02 2.0E+05 Inf 0 5.8E-08 2.7E+04 2.7E+04 100 1.1E-10 5.7E+04 5.7E+04 100 
NPSO 5.8E-02 4.2E+04 4.2E+04 100 7.8E-02 2.0E+05 Inf 0 1.7E-07 1.5E+04 1.5E+04 100 3.0E-36 1.6E+04 1.6E+04 100 
CCPSO 2.0E+01 2.0E+05 Inf 0 8.9E+01 2.0E+05 Inf 0 1.9E-08 1.8E+04 1.8E+04 100 6.5E+09 2.0E+05 Inf 0 
ACPSO 8.9E-16 8.7 E+02 8.7 E+02 100 0 6.1 E+02 6.1 E+02 100 0 4.0 E+02 4.0 E+02 100 0 4.8 E+02 4.8 E+02 100 
 F21 F22 F23 F24 
LWPSO 1.3E-20 1.1E+05 1.1E+05 100 4.8E-01 2.0E+05 Inf 0 6.1E-01 1.9E+05 9.7E+05 20 2.5E+01 2.0E+05 Inf 0 
RWPSO 1.0E-01 2.0E+05 Inf 0 2.1E+00 2.0E+05 Inf 0 8.5E+02 2.0E+05 Inf 0 5.6E+01 2.0E+05 Inf 0 
CFPSO 2.5E-50 1.7E+04 1.7E+04 100 2.4E-01 1.3E+05 1.5E+05 70 1.6E-17 3.2E+04 3.2E+04 100 1.7E+01 1.8E+05 3.9E+05 23 
FDRPSO 4.7E-55 1.9E+04 1.9E+04 100 5.2E+00 2.0E+05 Inf 0 2.4E-08 8.8E+04 8.3E+04 90 4.0E+01 2.0E+05 Inf 0 
FPSO 4.2E-134 6.1E+03 6.1E+03 100 3.6E-135 5.2E+03 5.2E+03 100 3.9E-133 6.9E+03 6.9E+03 100 0 7.1E+03 7.1E+03 100 
CLPSO 6.4E-09 7.3E+04 7.3E+04 100 3.8E+00 2.0E+05 Inf 0 8.1E+02 2.0E+05 Inf 0 2.3E+01 2.0E+05 Inf 0 
NPSO 7.7E-33 2.3E+04 2.3E+04 100 1.5E+00 2.0E+05 Inf 0 2.0E+00 1.8E+05 5.9E+05 20 1.5E+01 2.0E+05 Inf 0 
CCPSO 2.3E+04 2.0E+05 Inf 0 4.2E+01 2.0E+05 Inf 0 2.9E+05 2.0E+05 Inf 0 2.6E+03 2.0E+05 Inf 0 
ACPSO 0 9.6 E+02 9.6 E+02 100 0 5.0 E+02 5.0 E+02 100 0 9.7 E+02 9.7 E+02 100 0 7.1 E+02 7.1 E+02 100 
 F25 F26 F27 F28 
WPSO 1.6E+00 2.0E+05 Inf 0 2.3E+01 2.0E+05 Inf 0 4.0E-01 1.6E+05 2.0E+05 65 1.9E-01 2.0E+05 Inf 0 
RWPSO 2.4E+00 2.0E+05 Inf 0 4.3E+01 2.0E+05 Inf 0 1.3E+00 2.0E+05 Inf 0 7.1E-01 2.0E+05 Inf 0 
CFPSO 7.7E-01 1.2E+05 9.7E+04 50 1.3E+01 1.9E+05 1.8E+06 5 4.4E-15 3.1E+04 2.6E+04 97 3.0E-01 1.4E+05 1.1E+05 35 
FDRPSO 3.2E+00 2.0E+05 Inf 0 1.7E+01 2.0E+05 Inf 0 2.3E-01 1.2E+06 6.9E+05 80 3.7E-01 2.0E+05 Inf 0 
FPSO 0 1.4E+04 1.4E+04 100 0 7.1E+03 7.1E+03 100 8.9E-16 9.1E+03 9.1E+03 100 0 6.1E+03 6.1E+03 100 
CLPSO 4.3E+00 2.0E+05 Inf 0 2.1E+01 2.0E+05 Inf 0 2.5E+00 1.3E+05 1.3E+05 80 1.0E-01 1.9E+05 1.9E+06 5 
NPSO 2.5E+00 2.0E+05 Inf 0 1.8E+01 2.0E+05 Inf 0 2.7E-01 7.6E+04 4.6E+04 75 1.1E-01 2.0E+05 Inf 0 
CCPSO 1.0E+01 2.0E+05 Inf 0 2.6E+03 2.0E+05 Inf 0 2.0E+01 2.0E+05 Inf 0 9.5E+01 2.0E+05 Inf 0 
ACPSO 0 1.2E+03 1.2E+03 100 0 7.2 E+02 7.2 E+02 100 8.9E-16 8.5 E+02 8.5 E+02 100 0 6.1 E+02 6.1 E+02 100 
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Table 3. Results of 30-dimensional Test Functions  

 Mean FEs SP SR Mean FEs SP SR Mean FEs SP SR Mean FEs SP SR 
 F1 F2 F3 F4 

LWPSO 2.8E-02 5.5E+05 5.5E+05 100 8.7E-01 5.5E+05 5.5E+05 100 6.8E-01 6.0E+05 Inf 0 2.7E-05 4.9E+05 4.9E+05 100 
RWPSO 3.6E+03 6.0E+05 Inf 0 5.9E+05 6.0E+05 Inf 0 6.6E+05 6.0E+05 Inf 0 3.7E+00 6.0E+05 Inf 0 
CFPSO 8.2E-16 1.4E+05 1.4E+05 100 2.4E-20 1.3E+05 1.3E+05 100 6.7E-03 6.0E+05 Inf 0 5.3E-18 1.1E+05 1.1E+05 100 
FDRPSO 1.1E-09 2.4E+05 2.4E+05 100 5.1E-13 2.5E+05 2.3E+05 90 6.2E+05 6.0E+05 Inf 0 3.5E+01 6.0E+05 Inf 0 
FPSO 2.8E-133 2.0E+04 2.0E+04 100 1.1E-267 1.1E+04 1.1E+04 100 6.9E-05 4.8E+05 6.9E+05 55 9.0E-135 1.8E+04 1.8E+04 100 
CLPSO 1.9E+01 6.0E+05 Inf 0 9.1E+02 6.0E+05 Inf 0 3.7E+02 6.0E+05 Inf 0 5.6E-02 5.8E+05f 3.9E+06 10 
NPSO 2.5E-08 2.1E+05 2.1E+05 100 4.1E-09 1.9E+05 1.9E+05 100 6.4E-02 6.0E+05 Inf 0 1.5E+00 5.6E+05 2.1E+06 20 
CCPSO 1.1E+05 6.0E+05 Inf 0 1.8E+08 6.0E+05 Inf 0 1.7E+08 6.0E+05 Inf 0 6.1E+02 6.0E+05 Inf 0 
ACPSO 0 2.1 E+03 2.1 E+03 100 0 1.5 E+03 1.5 E+03 100 1.9E-05 5.3E+05 1.2E+06 27 0 1.6 E+03 1.6 E+03 100 
 F5 F6 F7 F8 
LWPSO 2.3E+00 4.4E+05 4.4E+05 100 2.2E+00 5.9E+05 7.8E+05 75 1.3E+02 6.0E+05 1.2E+07 5 1.3E+02 5.9E+05 3.9E+06 0 
RWPSO 1.1E+03 6.0E+05 Inf 0 1.8E+05 6.0E+05 6.0E+05 100 2.8E+18 6.0E+05 Inf 0 1.3E+07 6.0E+05 Inf 0 
CFPSO 0 3.2E+04 3.2E+04 100 2.4E-14 1.7E+05 1.7E+05 100 2.4E-10 1.9E+05 1.9E+05 100 1.8E-11 2.8E+05 2.8E+05 100 
FDRPSO 0 5.5E+04 5.5E+04 100 2.8E+04 1.0E+07 1.8E+07 30 3.3E+02 6.0E+05 Inf 0 5.0E+03 2.7E+03 2.7E+03 100 
FPSO 0 2.4E+03 2.4E+03 100 3.2E-131 2.4E+04 2.4E+04 100 1.5E-66 3.1E+04 3.1E+04 100 1.2E-129 2.7E+04 2.7E+04 100 
CLPSO 4.4E+01 1.3E+05 1.3E+05 100 1.1E+03 6.0E+05 Inf 0 3.0E+01 6.0E+05 Inf 0 8.4E+04 6.0E+05 Inf 0 
NPSO 1.0E-01 1.6E+05 1.6E+05 100 4.3E+03 6.0E+05 Inf 0 3.0E+01 4.8E+05 6.1E+05 70 4.5E+05 6.0E+05 Inf 0 
CCPSO 5.0E+04 6.0E+05 Inf 0 1.3E+07 6.0E+05 Inf 0 2.2E+28 6.0E+05 Inf 0 4.9E+08 6.0E+05 Inf 0 
ACPSO 0 9.0 E+02 9.0 E+02 100 0 2.4 E+03 2.4 E+03 100 0 3.2E+03 3.2E+03 100 0 2.7E+03 2.7E+03 100 
 F9 F10 F11 F12 
LWPSO 6.2E+00 6.0E+05 Inf 0 8.7E-10 3.6E+05 3.6E+05 100 8.9E+01 6.0E+05 Inf 0 8.2E-01 6.0E+05 Inf 0 
RWPSO 9.8E+00 6.0E+05 Inf 0 6.7E-04 6.0E+05 Inf 0 7.9E+02 6.0E+05 Inf 0 1.5E+01 6.0E+05 Inf 0 
CFPSO 2.1E-01 6.0E+05 Inf 0 2.0E-36 3.9E+04 3.9E+04 100 1.8E-01 2.7E+05 2.7E+05 100 5.2E+00 6.0E+05 Inf 0 
FDRPSO 3.4E+00 6.0E+05 Inf 0 7.4E-09 7.1E+04 7.1E+04 100 6.2E+01 6.0E+05 Inf 0 1.3E+00 6.0E+05 Inf 0 
FPSO 5.7E-34 4.8E+04 4.8E+04 100 0 4.1E+03 4.1E+03 100 0 2.3E+04 2.3E+04 100 0 4.3E+04 4.3E+04 100 
CLPSO 8.7E+00 6.0E+05 Inf 0 6.9E-07 1.6E+05 1.6E+05 100 1.1E+02 6.0E+05 Inf 0 3.3E+00 6.0E+05 Inf 0 
NPSO 8.7E+00 6.0E+05 Inf 0 8.8E-07 8.9E+04 8.9E+04 100 1.0E+02 6.0E+05 Inf 0 6.7E+00 6.0E+05 Inf 0 
CCPSO 1.7E+01 6.0E+05 Inf 0 1.9E+00 6.0E+05 Inf 0 1.2E+04 6.0E+05 Inf 0 4.2E+01 6.0E+05 Inf 0 
ACPSO 0 4.7E+03 4.7E+03 100 0 5.7 E+02 5.7 E+02 100 0 2.4 E+03 2.4 E+03 100 0 3.9 E+03 3.9 E+03 100 
 F13 F14 F15 F16 
LWPSO 6.2E-02 5.9E+05 1.3E+06 45 3.8E-03 5.9E+05 1.4 E+06 40 1.2E+02 6.0E+05 Inf 0 6.2E-01 2.6E+03 2.6E+03 100 
RWPSO 1.4E+01 6.0E+05 6.0E+05 100 4.3E-02 6.0E+05 6.0E+05 100 6.6E+02 6.0E+05 Inf 0 1.2E+02 6.0E+05 Inf 0 
CFPSO 5.4E-09 1.9E+05 1.9E+05 100 6.9E-02 6.0E+05 6.0E+05 100 3.9E+01 4.0E+05 4.4E+05 85 9.9E-02 6.0E+05 Inf 0 
FDRPSO 5.1E-06 6.1E+06 6.1E+06 100 8.0E-04 4.0E+06 2.5E+06 80 8.4E+01 6.0E+05 Inf 0 2.0E-01 6.0E+05 Inf 0 
FPSO 1.5E-68 2.4E+04 2.4E+04 100 0 7.9E+03 7.9E+03 100 0 2.3E+04 2.3E+04 100 1.2E-134 1.5E+04 1.5E+04 100 
CLPSO 4.4E-01 6.0E+05 Inf 0 6.1E-04 4.8E+05 6.5E+05 60 1.2E+02 6.0E+05 Inf 0 4.2E+00 6.0E+05 Inf 0 
NPSO 5.1E+01 6.0E+05 Inf 0 1.8E-02 6.0E+05 Inf 0 1.4E+02 6.0E+05 Inf 0 2.2E-01 6.0E+05 Inf 0 
CCPSO 4.6E+01 6.0E+05 Inf 0 5.6E-02 6.0E+05 Inf 0 1.2E+04 6.0E+05 Inf 0 4.9E+03 6.0E+05 Inf 0 
ACPSO 0 2.4 E+03 2,40 E+03 100 0 1.1 E+03 1.1 E+03 100 0 2.4 E+03 2.4 E+03 100 0 1.9E+03 1.9E+03 100 
 F17 F18 F19 F20 
LWPSO 6.9E+00 6.0E+05 Inf 0 4.6E-02 5.9E+05 2.2E+06 25 7.7E-14 2.4E+05 2.4E+05 100 4.8E-05 4.9E+05 4.9E+05 100 
RWPSO 1.4E+01 6.0E+05 Inf 0 1.1E+01 6.0E+05 Inf 0 2.9E-09 1.7E+05 1.7E+05 100 5.4E+06 6.0E+05 Inf 0 
CFPSO 3.5E-09 6.0E+05 Inf 0 6.2E-14 1.6E+05 1.6E+05 100 7.0E-06 3.9E+04 3.9E+04 100 5.2E-18 1.1E+05 1.1E+05 100 
FDRPSO 5.6E+00 4.2E+05 4.8E+05 70 5.4E-03 5.6E+05 2.3E+06 10 7.5E-05 1.2E+03 1.2E+03 100 1.2E+06 4.2E+05 3.8E+05 40 
FPSO 8.9E-16 2.7E+04 2.7E+04 100 0 1.9E+04 1.9E+04 100 2.8E-137 1.1E+04 1.1E+04 100 6.3E-136 1.4E+04 1.4E+04 100 
CLPSO 1.3E+01 6.0E+05 Inf 0 8.7E-01 6.0E+05 Inf 0 2.4E-06 1.9E+05 1.9E+05 100 3.4E+00 5.5E+05 1.9E+06 20 
NPSO 5.0E-01 5.1E+05 8.8E+05 45 2.8E-02 4.7E+05 6.2E+05 35 8.9E-07 1.1E+05 1.1E+05 100 3.8E+01 1.7E+05 1.7E+05 100 
CCPSO 2.1E+01 6.0E+05 Inf 0 3.9E+02 6.0E+05 Inf 0 1.2E-04 1.8E+05 1.8E+05 100 1.7E+14 6.0E+05 Inf 0 
ACPSO 8.9E-16 2.7 E+03 2.7 E+03 100 0 2.1 E+03 2.1 E+03 100 0 1.2E+03 1.2E+03 100 0 1.7 E+03 1.7 E+03 100 
 F21 F22 F23 F24 
LWPSO 5.7E-02 5.5E+05 5.5E+05 100 1.9E+01 6.0E+05 Inf 0 1.2E+04 6.0E+05 Inf 0 2.1E+02 6.0E+05 Inf 0 
RWPSO 3.6E+03 6.0E+05 Inf 0 7.3E+01 6.0E+05 Inf 0 6.9E+05 6.0E+05 Inf 0 7.9E+02 6.0E+05 Inf 0 
CFPSO 4.7E-15 3.0E+05 3.0E+05 100 2.1E+01 6.0E+05 Inf 0 1.1E-04 1.4E+05 1.4E+05 100 1.8E+02 6.0E+05 Inf 0 
FDRPSO 3.9E-10 6.0E+05 Inf 0 2.2E+01 6.0E+05 Inf 0 6.8E+03 2.5E+05 2.5E+05 100 1.8E+02 6.0E+05 Inf 0 
FPSO 2.8E-133 2.4E+04 2.4E+04 100 1.3E-134 1.8E+04 1.8E+04 100 3.1E-131 2.0E+04 2.0E+04 100 0 2.3E+04 2.3E+04 100 
CLPSO 1.9E+01 6.0E+05 Inf 0 2.8E+01 6.0E+05 Inf 0 1.4E+05 6.0E+05 Inf 0 2.4E+02 6.0E+05 Inf 0 
NPSO 5.8E+04 6.0E+05 Inf 0 1.7E+01 6.0E+05 Inf 0 2.2E-08 2.1E+05 2.1E+05 100 1.9E+02 6.0E+05 Inf 0 
CCPSO 1.2E+05 6.0E+05 Inf 0 4.6E+02 6.0E+05 Inf 0 1.1E+07 6.0E+05 Inf 0 1.2E+04 6.0E+05 Inf 0 
ACPSO 0 3.3E+03 3.3E+03 100 0 1.7E+03 1.7E+03 100 0 3.5E+03 3.5E+03 100 0 2.4E+03 2.4E+03 100 
 F25 F26 F27 F28 
WPSO 1.7E+01 6.0E+05 Inf 0 2.5E+02 6.0E+05 Inf 0 1.0E+01 6.0E+05 Inf 0 4.9E-02 6.0E+05 1.2E+07 0 
RWPSO 2.6E+01 6.0E+05 Inf 0 7.4E+02 6.0E+05 Inf 0 1.6E+01 6.0E+05 Inf 0 1.0E+01 6.0E+05 Inf 0 
CFPSO 1.0E+01 4.3E+05 4.6E+05 90 1.7E+02 6.0E+05 Inf 0 1.8E-08 2.1E+05 2.1E+05 100 2.1E-11 1.9E+05 1.8E+05 95 
FDRPSO 1.2E+01 6.0E+05 Inf 0 2.4E+02 6.0E+05 Inf 0 1.3E+00 1.0E+07 1.8E+07 40 6.9E-03 4.6E+05 6.5E+05 50 
FPSO 0 4.3E+04 4.3E+04 100 0 2.3E+04 2.3E+04 100 8.9E-16 2.7E+04 2.7E+04 100 0 1.8E+04 1.8E+04 100 
CLPSO 2.2E+01 6.0E+05 Inf 0 2.6E+02 6.0E+05 Inf 0 1.5E+01 6.0E+05 Inf 0 1.0E+00 6.0E+05 Inf 0 
NPSO 2.1E+01 6.0E+05 Inf 0 2.2E+02 6.0E+05 Inf 0 2.8E+00 6.0E+05 Inf 0 2.4E-02 4.9E+05 8.5E+05 35 
CCPSO 3.9E+01 6.0E+05 Inf 0 1.3E+04 6.0E+05 Inf 0 2.1E+01 6.0E+05 Inf 0 3.9E+02 6.0E+05 Inf 0 
ACPSO 0 3.9E+03 3.9E+03 100 0 2.4 E+03 2.4 E+03 100 8.9E-16 2.7 E+03 2.7 E+03 100 0 2.1 E+03 2.1 E+03 100 
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The ACPSO algorithm is more robust as it 
finds the global optima of unimodal, multimodal, 
and rotated function with significant accuracy. 
The new learning strategy of ACPSO has a better 
exploration ability, which enables the swarm to 
explore the search space. This efficient 
exploration ability of ACPSO helps to avoid local 
trapping and improves its convergence speed. 

6.2 Results on convergence speed 
The mean results on the convergence speed of 

all algorithms are presented in column two of 
Table 2 and Table 3 for 10 and 30-D test 
functions respectively. In this experiment, the 
value of 𝑀𝑀𝑟𝑟𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 is set to 2.0E+05 and 6.0E+05 
for 10 and 30-D test functions respectively. 
Theresults show that the ACPSO outperforms its 
contenders in the majority of test functions. 

6.2.1 Convergence speed of 10-dimensional 
test functions 

The second column of each function in Table 
2 shows the mean number of function evaluations 
FEs for 10-D test functions. It is observed that 
only the ACPSO and FPSO are able to reach the 
pre specified accuracy threshold ɛ for F3 noisy 
function, while other BPSO variants are unable to 
converge until they 𝑀𝑀𝑟𝑟𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 reached. Also, the 
FPSO is faster than the ACPSO for F3 function 
on 10-D test functions. Similarly, the FDRPSO 
has the same number of FEs for F8 function. The 
presented results show that the ACPSO has the 
best number of FEs for almost all functions 
except F3 and F8 functions.  

Although the FPSO has the same mean 
accuracy for 13 test functions and competitive 
results for 10 test functions with the ACPSO, its 
convergence speed toward the optimum location 
is very low, as it requires the larger number of 

FES to achieve the desired goal. To present the 
results qualitatively, the convergence graph of 10-
D test functions is shown Figure 1. Due to space 
limitation, the mean results of eight test functions 
of nine BPSO variants are plotted. The plots show 
that the ACPSO performs better than its 
contenders with better convergence rate. It also 
shows that the convergence rate of ACPSO is 
improving during evolution. However, the 
convergence speed of other BPSO variants is 
decreasing. The function F3 is a noisy function 
so, the ACPSO has a slow convergence rate, but 
still better than other BPSO variants. The Figure 
1 also shows that the ACPSO needs a small 
number of to reach the pre-specified accuracy 
threshold ɛ. This is due to the intelligent learning 
mechanism of ACPSO, which consistently 
improves the fitness of particles during each 
iteration. Moreover, locating the global optimum 
while improving the convergence speed has been 
achieved through the proposed technique.  

6.2.2 Convergence speed of 30-dimensional 
test functions 

The mean number of function evaluations FEs 
for 30-D test functions are presented in the 
second column of Table 3. The reason for 
increasing the number of dimensions for test 
functions is to investigate the impact of 
increasing the size of dimensions of test functions 
on the performance of the proposed algorithm. It 
is noted that the FPSO has less number of FEs for 
the F3 function. In addition, the FDRPSO has an 
equal number of FEs as ACPSO has for F8 and 
F19 functions. For the rest of all functions, 
ACPSO achieved the best number of FEs . For 
each test function, all algorithms have increased 
the number of FEs as compared with 10-D test 
function's results. 

 

Table 4. Statistical results on five different aspects to evaluate the performance 

 D LWPSO RWPSO CFPSO FDRPSO FPSO CLPSO NPSO CCPSO ACPSO 

w/t/l 10 27/1/0 27/1/0 26/2/0 27/1/0 15/13/0 27/1/0 27/1/0 28/0/0  
30 28/0/0 28/0/0 27/1/0 27/1/0 15/13/0 28/0/0 28/0/0 28/0/0 

#bfes 10 0 0 0 0 1 0 0 0 27 
30 0 0 0 0 1 0 0 0 27 

#s/#ps/#ns 10 15/3/10 4/4/20 15/10/3 11/8/9 27/1/0 13/4/11 11/6/11 1/0/27 27/1/0 
30 9/5/14 4/0/24 17/3/8 7/10/11 27/1/0 3/3/22 7/5/16 1/0/21 27/1/0 

+/=/- 10 21/9/0 26/2/0 16/12/0 25/3/0 13/15/0 21/7/0 22/6/0 28/0/0  
30 12/16/0 26/2/0 23/5/0 26/2/0 15/13/0 26/2/0 24/4/0 28/0/0  
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Figure 1. Convergence graphs (a-h) are representing the convergence speed on 10-dimensional functions F1, F3, F7, 
F19, F20, F21, F23, and F26 respectively. 



12 YASIR MEHMOOD AND WASEEM SHAHZAD 

Although the FPSO has the best mean fitness 
value for 13 test functions, it has only one 
function with an equal number of function 
evaluations to ACPSO. For the rest of 27 
problems, the ACPSO has better speed with less 
number of FEs on 30-D test functions.  The row 
number two of Table 4 represents the statistical 
results as the best mean number of function 
evaluations “#bfes” for the 10 and 30-D test 
functions. The comprehensive results show that 
the ACPSO has the tendency to converge faster 
than the compared BPSO variants with a smaller 
number of function evaluations. The results also  
reveal that the FPSO is the only algorithm that 
has the least number of function evaluations for 
F3 test function for both 10 and 30-D test 
functions. 

The ACPSO is a robust algorithm that 
consistently reduces the fitness value (during all 
runs) below the specified accuracy threshold ɛ. 
The efficient learning mechanism of ACPSO 
ensures that the particles do not waste the 
computational resources and improve their fitness 
during evolution. 

6.3 Results on success performance (SP) 
The third column of each test function in 

Table 2 and Table 3 shows the SP for 10-D and 
30-D test functions respectively. If any algorithm 
does not converge to predefined accuracy level ɛ 
within the 𝑀𝑀𝑟𝑟𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 for any run, the number of 
successful runs will be zero and the result will 
become infinity which is represented by ‘Inf’. 
The results show that the FPSO achieves better 
performance than the ACPSO for F3 function in 

both 10 and 30-D test functions. No variants of 
BPSO could converge to the accuracy threshold 
within the maximum number of function 
evaluations for F3 function. The FDRPSO has the 
same value as ACPSO has for F8 in case of 10-D 
test functions and it also has the same results for 
F8 and F19 in the case of 30-D test functions.  

It is also observed that the value of SP for 30-
D test functions are higher than the 10-D test 
functions. An intelligent learning mechanism 
enables the ACPSO to reach the accuracy 
threshold within the 𝑀𝑀𝑟𝑟𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹,which ensures the 
smaller number of function evaluations as success 
performance. 

6.4 Results on success rate (SR)  
The fourth column of each test function in 

Table 2 and Table 3 shows the success rate for 
10-D and 30- D test functions respectively. It is 
observed that the ACPSO offers the highest 
reliability over all the test functions. During all 
runs, the ACPSO reliably achieves the acceptable 
solution with success rate of 100% on all test 
functions except the F3 function. The FPSO has 
higher SR for F3 function. For F9 function, the 
ACPAO and FPSO find the acceptable solution 
during all runs for 10 and 30-D test functions, 
whereas, the CFPSO successfully locates the 
optimum for 80% of runs for 10-D test functions. 
It is observed that the success rate of BPSO 
variants on un-rotated and most of the separable 
functions are significantly better than rotated and 
un-separable functions due to higher complexity. 

The SR is summarized in the third row of 
Table 4 as “#s/#ps/#ns”. It indicates the number 

Table 5. t-test results comparing ACPSO with other algorithms  

Algorithm Dim  
Test Functions 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

LWPSO 10 = = + + = = + + + = + = = = + + + + = + + + + + + + + + 
30 = = + = = = = = + = + = = = + + = = = = = + + + + + + + 

RWPSO 10 + + + + = + + + + + + + + + + + + + = + + + + + + + + + 
30 + + + + + + = + + + + + + + + + + + = + + + + + + + + + 

CFPSO 10 + + + + = + + = + = = + = + = = + = + + + = = + = + = + 
30 + + + + = + + = + + = + + + + + + = + + = + + + + + + + 

FDRPSO 10 + + + + = + + + + = + + + + + + = + + + + + + + + + + + 
30 + + = + = + + + + + + + + + + + + + + + + + + + + + + + 

FPSO 10 + = + + = + + + + = = = + = = + = = = + + + + = = = = = 
30 + = + + = + + + + = = = + = = + = = + + + + + = = = = = 

CLPSO 10 = = + = = + + + + = + + = = + + + + + + + + + + + + + + 
30 + = + + + + + + + + + + + + + + + + + = + + + + + + + + 

NPSO 10 + = + = = = + + + + + + + = + + = + + + + + + + + + + + 
30 + = + + = + + + + + + + + + + + + + + = + + = + + + + + 

CCPSO 10 + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
30 + + + + + + + + + + + + + + + + + + + + + + + + + + + + 
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of test functions that solved the problem 
completely (i.e., SR=100%), partially solved (i.e., 
0%<SR<100%) or has never solved (i.e., 
SR=0%). The results show that the ACPSO and 
FPSO have 100% success rate for 27 test 
functions, whereas one test function was partially 
solved. However, the FPSO has a better success 
rate than ACPSO for the F3 test function. The 
F19 test function has the 100% success rate for all 
algorithms on 10 and 30-D test functions. 

On the other hand, the FPSO successfully 
locates the optimal solution for all test functions, 
except test function F3, with a 100 % success rate 
for the 10 and 30-D test functions. The FPSO has 
competitive results and even better success rates 
than ACPSO for partially solved F3 test function. 
It is also observed that the success rate of other 
variants of BPSO is decreased as the dimensions 
of a test function are increased. Those test 
functions whose success rates are 100% have the 
same FEs . Similarly, the SP is directly propor-
tional to the success rate. As the success rate is 
decreased, the success performance is also 
decreased. The ACPSO and the FPSO are the 
only algorithms, which successfully locate the 
optimum during all runs for 27 test functions on 
10 and 30- D test functions.  

6.5 Results on t-test  
The t-test results are represented as “+/=/-” in 

Table 5 for 10 and 30-D test functions. The ‘+’ 
indicates that the ACPSO is statistically better, 
‘=’ shows that they both are statistically equal, 
and ‘-‘ represents that the proposed algorithm is 
statistically worse than the compared BPSO. The 
results also show that the ACPSO statistically 
performs better than its competitor. For instance, 
the ACPSO performs better than BPSO variants 
on 77% and 92% in 10-D and 30-D test functions.  

An important observation is that despite the 
large difference between the mean fitness values 
produced by the ACPSO and other BPSO 
variants, the t-test results revealed the fact that the 
performance difference is insignificant at the 
statistical level. Like in Table 5, for F16 in 
CFPSO on 10-dimensions test function, the 
statistical result is insignificant in the presence of 
zero percent SR as shown in Table 2. The similar 
ambiguous scenarios are observed for test 
function F2 of NPSO, test function F3 of 
RWPSO, the F7 test function of RWPSO, test 
functions F8, F12, and F17 of LWPSO. This 

ambiguity is because when certain algorithm runs 
for a predefined number of function evaluations, 
it has a probability to stagnate at some local 
optimum and to produce relatively larger fitness 
value.  

The summarized results of t-test are 
represented in the fourth row of Table 4. We have 
also observed that as the dimensions of test 
functions are increased, the performance of 
ACPSO at statistical level is also increased. The 
only LWPSO whose statistical results, for 30-D 
test functions as compared with 10-D test 
functions, are improved. The statistical results of 
ACPSO are significantly better than LWPSO for 
21 test functions in 10-D and for 12 test functions 
in 30-D test functions. Whereas, the statistical 
results for RWPSO are remained same. The 
statistical results of the rest of BPSO variants 
have been decreased.  

7 CONCLUSION 
FROM empirical results and analysis, it has 

been observed that the ACPSO algorithm shows 
very promising results on a diverse set of test 
functions. The achieved results show that the 
ACPSO has higher accuracy, improved 
convergence speed, more consistent, reliable, and 
robust than the other BPSO variants. These 
promising results have been achieved without 
introducing any additional parameter or any extra 
computation into the basic PSO framework. 
Moreover, the ACPSO have better performance 
on 30-D test functions as compared to 10-D test 
functions. Our results also reveal the fact that the 
ACPSO offers better results for those problems 
whose optimal solution lies at the origin. 

Therefore, this simple variant can be applied 
to many real-world optimization problems where 
the quick response with higher accuracy is 
required. In future, we will test the performance 
of ACPSO on a large scale and multimodal test 
functions and will also apply it to some real-
world application. 
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