
CONTACT Xiaochen Kang kxc2005@126.com
© 2019 TSI® Press

Simulation of Real‐Time Path Planning for Large‐Scale Transportation
Network Using Parallel Computation

Jiping Liua,b, Xiaochen Kanga,*, Chun Donga and Fuhao Zhanga
aChinese Academy of Surveying and Mapping, NO. 28 Lianhuachi West Road, Beijing 100830, China;
bInstitute of Geographical Sciences, Henan Academy of Sciences, No. 64 Longhai Middle Road, Zhengzhou 450052, Henan, China

KEY WORDS: Real-time path planning; Simulation; Urban transportation network; Parallel computation

1 INTRODUCTION
IT is well-known that point of interest (POI) and

urban road networks have become the key data
sources for vehicle navigation applications and
location-based services (LBS) (Bakillah, et. al., 2014;
B. Yang, et. al., 2014). POIs are often used to
represent geographical entities, which are usually
static locations (e.g., hospitals, restaurants, and
hotels). The urban street networks play a great role in
forming the city’s structural skeleton and directly
affect the city’s transportation efficiency (Levinson,
2012). To a large degree, POIs are closely inter-
related with the road networks. POIs are often used as
the origin or destination locations in path finding and
deemed as the data carriers of local life activities,
whereas road networks are often used as routing
system for searching the avenues represented by the
POIs (B. Yang, et. al., 2014).

Identifying the optimal routes in the urban
transportation network have always been an
indispensable task for city people in their daily lives.
Most people have to select an optimal route between
home (or another starting place) and the office (or
another target place). The optimal route is ever
changing: an optimal route for a fixed position at this

point in time may change at the next point in time.
This situation occurs for many people every day. As a
whole, the evolution of urban transportation is a group
behavior that results from the interactions of the
participating pedestrians and vehicles, instead of the
simple aggregation of them. This finding means that
the mutual influence between the participants is a
basic property, and a congested road with more
vehicles should be given less attention when walking
by time (Shirabe, 2014). In addition, Martijn, et. al.
(2007) suggests that the drivers’ preferences should
not be negligible. In general, these pervasive relations
between vehicles can be understood based on Tobler's
first law geography: all the locations on a geographic
surface are related to each other, but the closer
locations are more strongly related than more distant
ones (Kim, et. al., 2014; Tobler, 1970). In other words,
the dynamic interactions should be considered when
collaborating the activities from the participants (Kang,
2015). Therefore, a local optimal route at any given
time should take into consideration the surrounding
road conditions.

The present study aims to develop an agent-based
dynamic transportation model that is capable of
capturing both the individual behaviors of the vehicles
and the real-time states of the road segments involved

ABSTRACT
To guarantee both the efficiency and accuracy of the transportation system, the
real-time status should be analyzed to provide a reasonable plan for the near
future. This paper proposes a model for simulating the real-world transportation
networks by representing the irregular road networks with static and dynamic
attributes, and the vehicles as moving agents constrained by the road
networks. The all pairs shortest paths (APSP) for the networks are calculated in
a real-time manner, and the ever-changing paths can be used for navigating
the moving vehicles with real-time positioning devices. In addition, parallel
computation is used to accelerate the shortest path searching and vehicle
navigation. The testing results suggest that considerable time reduction can be
realized in comparison with the non-real-time computations. This finding
demonstrates that the proposed model is useful in improving the efficiency of a
large-scale transportation system.

Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 1, 65–77

2 J. LIU, X. KANG, C. DONG AND F. ZHANG

in the urban transportation network. To update the
traffic status continually, the shortest path for each
pair of locations is computed iteratively. Next, each
vehicle can obtain the most optimal path dynamically
at any given location. In this study, we adopt the
classical Floyd-Warshall algorithm, which has been
widely used in graph-searching algorithms for solving
shortest-path problems for a network (Cormen, et. al.,
2001) . In addition, the proposed model employs the
vector geographic information system (GIS) (both
data model and operations) at map level. This
simulation was performed on an Nvidia GeForce GTX
Titan Black card for the transportation network of
Suzhou, which is a megacity in China. To assess the
performance, the outcomes were compared to those of
a non-real-time model in terms of the average
traveling time.

2 RELATED WORK
AS stated by Wegener (1994), operational urban

models are often built around the inter-relations
between land use and transportation. The dynamic
transportation network is an important component of
the urban dynamics, and it plays a role in physical
distribution of the moving vehicles. Therefore, an
efficient transportation network is the key to
improving urban efficiency. This section reviews the
conventional technologies for modeling urban
dynamics and the commonly used methods in
searching for the optimal paths.

2.1 Modeling of Urban Dynamics
In a GIS, models can be static or dynamic. A

model is static if the input and output both correspond
to the same point in time; a model is dynamic if the
output represents a later point in time than the input
(Longley, et. al., 2005). Static models provide indices
or indicators that can be used to predict impacts,
sensitivities, or vulnerabilities. Dynamic models go
further by attempting to project quantifiable impacts
into the future and are used to assess different
management or development scenarios (Castle and
Crooks, 2006). Cellular automata (CA) and agent-
based modeling (ABM) are two commonly employed
techniques, both of which have significantly advanced
the role of modeling and simulation in geography and
regional science (Clarke, 2014). In particular, these
two methods have been used in exploiting many
aspects of urban dynamics, including urban land-use
(Dahal and Chow, 2014), urban residential dynamics
(Y. Chen, et. al., 2012), urban expansion (Batty and
Xie, 1994), real-time vehicle navigation (Huang, et. al.,
2007), etc. Many applications appeal to the idea of
representing the spatial system on a regular lattice
such as a grid, and then the dynamic change is thus
conceived as change in the state of a cell. In other
words, the function of a cell’s states is designed by
referencing the states of the nearest neighbors (Batty,
et. al., 1999). The immediate association between the

regular lattice and the raster-based representation in
GIS suggests that the dynamics resulting from the
spatial interactions between the cells can be easily
realized in GIS. However, there are some limitations
due to the irregular geometries in the real-world
environments. Instead, the agent-based representation
has a similar association between the discrete agents
and the vector features (such as point, linear,
polygonal features) , and it provides a natural method
for describing and simulating a system composed of
real-world entities (Castle and Crooks, 2006). In
recent years, ABM has become a prevalent approach
for modeling complex urban systems (Y. Chen, et. al.,
2012). In comparison with CA, agent-based
representations are centered around human actions,
rather than landscape and transitions (An, et. al., 2005;
Parker, et. al., 2003), and focus on how to determine
agents’ behavior using spatial information. Agent
technologies and methods have been applied to many
fields of traffic and transportation systems, including
modeling and simulation, dynamic routing and
congestion management, robotic moving, and
intelligent traffic control (Alfaro and Riff, 2008; B.
Chen and Cheng, 2010).

2.2 Shortest Path Algorithms in the
Transportation Network

The shortest path problem lies at the heart of
network flows that seeks for the paths with minimum
cost from source node to sink node in networks (Liu,
et. al., 2016; Sever, et. al., 2013; Xing and Zhou, 2011;
Xu, et. al., 2007), and it is viewed as an issue of
concern in computer science, operations research,
distributed computing, bioinformatics and so on
(Bonifaci, 2013; Y.-L. Chen and Yang, 2000; Kim, et.
al., 2014; Wu, et. al., 2013). The shortest-path
problem can be described as follows: given a weighted,
directed graph and two special vertices, a shortest path
from one vertex to another is a directed path with the
property that no other such path has a lower weight.
Consider a directed weighted network G = (V,E),
where V is the set of vertices and E is the set of arcs.
Each arc is denoted by an ordered pair (i,j), where (i,j)	
⊆V. Suppose that there is only one directed arc (i,j)
from i to j. Let the vertex s be the source and assume t
as the destination. We define a path p(i,j) as a
sequence of alternating vertices and arcs. The shortest-
path weight, also called the distance, from vertex s to t,
denoted d(s,t), is the minimum weight of all possible
directed paths with origin s and destination t. Let

 denote that t is reachable from s through the
directed path p. We have

 (1)

In this equation, the vertices in the graph correspond
to the origin and destination venues for path finding in
a road network.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 3

When finding the optimal path for a traveling
vehicle in the urban network, many classical
algorithms can be used, such as the Dijkstra (Dijkstra,
1959), Bellman-Ford (Bellman, 1958; Ford and
Fulkerson, 1963), Johnson (Johnson, 1977), and
Floyd-Warshal (Floyd, 1962; Warshall, 1962)
algorithms. These algorithms can solve three kinds of
problems: one-to-one (or one-to-some) shortest paths,
one-to-all shortest paths and all-to-all shortest paths
(Zhan, 1997). The Dijkstra algorithm is suitable for
solving the one-to-one and one-to-all shortest-path
problems (Skiena, 1990), and the time complexity is
O(n2) in general (Johnson, 1973). Herein, n is the
number of vertices. The Bellman-Ford algorithm is
also suitable for solving one-to-all shortest-path
problems, and the time complexity is O(mn). Herein,
m is the number of edges. The Johnson algorithm and
the Floyd-Warshal algorithm are both suitable for
solving the All Pairs Shortest Paths (APSP) problem,
and their time complexities are O(n2lg(n)+mn) and
O(n3), respectively. For the urban transportation
network, the number of vehicles is often many times
the number of roads and intersections. Therefore,
performing a round of path finding for each vehicle is
infeasible. Comparatively, the Floyd-Warshall and
Johnson algorithms are more effective. The former is
most effective for dense graphs (many edges), while
the latter is most effective for sparse graphs (few
edges).

2.3 Parallel Computing in Searching for the
Optimal Paths

Most of these path searching algorithms exhibit
high computational complexity for networks that are
changing in real time. To cope with large-scale
transportation network, parallel computing is widely
used, which supports decomposing the task into many
lightweight subtasks and then assigning them to the
CPU or GPU cores. Chang, et. al. (1994) presented a
user-optimum route assignment model for real-time
navigation, and the results showed that parallel model
significantly outperforms the sequential model in
terms of computing speed, especially in a larger
network. Rego and Roucairol (1996) described a
parallel Tabu search algorithm for the vehicle routing
problem; it was shown to be feasible when the number
of tasks was fixed at compilation time. However, the
degree of parallelism was not related to the computing
resources and load imbalance could happen (Talbi,
2002). Alexandre and Gabriel (2005) proposed a
parallel cooperative multi-search method based on the
solution warehouse, which enabled several search
threads to cooperate by asynchronously exchanging
information on the best solutions that have been
identified. This method achieved a linear acceleration,
but was limited in terms of the number of vehicles and
the total distance traveled. Z. Yang, et. al. (2007)
presented an optimization model for a bus network
design based on the coarse-grained parallel ant colony

algorithm (CPACA), which used the parallelization
strategies of an ant colony algorithm (ACA) to
improve the calculation time. Zhang and Wu (2011)
introduced a novel algorithm based on the Pulse
Coupled Neural Network (PCNN) to solve the APSP
problem, and it required no iteration and maintained
low computational complexity. Wu, et. al. (2013)
presented a hybrid programming model that combined
MPI (Message Passing Interface) and CUDA
(Compute Unified Device Architecture) to take full
use of the GPU cluster, and a speedup of hundreds of
times was achieved. However, the number of vertices
and links is limited and real-time navigation, which
requires large-scale shortest-path calculations and
analysis, cannot be realized (Wu, et. al., 2013; Zhang
and Wu, 2011).

2.4 Issues to Be Addressed
For a transportation network with tens of thousands

road intersections and segments, millions of POIs play
the roles of origin and destination venues for millions
of vehicles. This property means that almost infinitely
many computations should be performed in a very
short period of time for determining the optimal path
between each pair of interesting points. Therefore, two
issues on model designing and performance
optimization should be considered.

(1) The road conditions are always changing, and
dynamic shortest paths that consider both internal and
external factors perform better than static shortest
paths (Chang, et. al., 1994). A way to represent the
road networks, moving vehicles, and their
relationships should be determined.

(2) Searching for optimal paths for millions of
vehicles is still a big challenge due to the very high
complexity. Path searching and vehicle navigation
should be performed with very high efficiency through
the use of HPC facilities.

In this paper, we propose an agent-based model for
representing the real-time status of the road and the
changing positions of moving vehicles. The road
agents are static in locations, but dynamic in attributes.
The vehicle agents are always moving along the road
segments during the lifetimes, and serve as the driving
forces for the transportation system. Moreover, the
shortest path is used to calibrate the route choice for
each vehicle, and the GPU-based Floyd-Warshall
algorithm is adopted for its simplicity and obvious
performance advantage in comparison with the CPU
implementation (Katz and Kider Jr, 2008).

3 SIMULATION OF DYNAMIC
TRANSPORTATION

In general, when to simulate a certain phenomenon
using agent-based modeling, the agents and their
interaction rules should both be identified. In this
section, a vehicle movement model under road
network constraints is presented. This model includes

4 J. LIU, X. KANG, C. DONG AND F. ZHANG

three kernel components: a network-based
representation for modeling the road attributes and
real-time conditions, an agent-based model for the
moving vehicles, and the GPU-based Floyd-Warshall
algorithm, which is aimed at searching for the shortest
paths via road vertices for millions of origins and
destinations.

3.1 Representation of the Road Networks
In the real world, the road network is made up of

road segments and the road intersections. A segment
has two categories of attributes: static attributes and
dynamic attributes, as shown in

Table 1. The static attributes include the road
identifier, names, grades, lengths, widths, directions
and vitality. The dynamic attributes include the
number of moving vehicles on a road segment, the
real-time vehicle density, and traffic velocity.

In our daily lives, the road network connects
interesting points with possible routes, and an origin
venue and a destination venue are indispensable for
defining a trip. Figure 1 is a road network layer with
the affiliated POIs. Obviously, the POIs have
enhanced the semantics of a particular road segment,
and they can be integrated with a geometric-based
method (B. Yang, et. al., 2014). Herein, each point is
assigned to a road network by searching for the
nearest road segment. For example, a primary school
and a family home were assigned to corresponding
nearest road segments. Then, two possible routes
could be found. After integrating the road network and
the POIs, searching for an optimal path in navigation
is easily transformed into a search for the shortest path
between each pair of sites.

Table 1. Attributes of a road segment in the transportation network

√

×

√

×

?

Home

Primary school

Figure 1. Integration of the POIs and the network

Attribute Type Attribute List Comments

Static Attributes

Road Identifier The unique identifier of a road segment

Road Name The road name of a road segment

Road length The length of a road segment

Road Width The width of a road segment

Road Area The product of the length and the width of a road segment

Road Vertices The vertices that define the segment

Number of POIs The number of the POIs along a road segment

Dynamic Attributes

Number of vehicles The number of vehicles on a road segment at a given time

Vehicle Density The number of vehicles per square meter on a road segment at a given time

Vitality (Interval) Being blocked or unblocked

Traffic Velocity The average running speed of vehicles

Necessity An particular road segment that must be passed

Default option Searching for the shortest path based only on the road conditions

INTELLIGENT AUTOMATION AND SOFT COMPUTING 5

The streets are often crowded at peak times. As a
result, the graph-based shortest path might be
stuck due to the traffic jams. To simulate the road
conditions in real time, the dynamic attributes listed in

Table 1 should be given more attention. The static
attributes are those factors that are constant during the
entire simulation, while the dynamic attributes are
those factors that change over time. In addition, the
drivers’ preference may also change during travel. For
example, certain drivers may make temporary
decisions regarding going someplace, which could
potentially influence the road conditions and then
result in some changes in other drivers’ routes. In
summary, taking the real-time conditions into account
can contribute to obtaining a better traveling route (Mi
and Liu, 2016).

3.2 Agent‐Based Representation of the Moving
Vehicles

A highly efficient transportation system requires
the vehicles to reach their destinations in as little time
as possible. Each vehicle’ traveling time is determined
by the static attributes and the dynamic attributes, and
agent-based representation of the moving vehicles is
proposed based on some major factors.

3.2.1 Modeling of the Network‐Constrained
Moving Vehicles

According to the car-following models, the average
speed of the vehicles is a function of the vehicle
density (Rothery, 2008; Takashi, 2002). As stated by
Artimy, et. al. (2005), three main quantities are closely
related: vehicle density, flow and speed. The density
represents the number of vehicles per unit distance,
the flow measures the number of vehicles that pass an
observer per unit time, and the speed is the distance a
vehicle travels per unit time. The proposed model
focuses on how to utilize the real-time vehicle density
to reduce the traveling time. Specifically, the road
length l, the road width w, and the real time number of
the vehicles n on a road segment are combined to
approximate the density.

 (2)

where l*w is the area of the road segment.

In the model, each vehicle is represented as an
agent with the following static and dynamic attributes,
which are listed in

Table 2. For each vehicle, a unique identifier is
needed. The origin and the destination are both
determined by the road identifier and the distance to a
road vertex (from which the distance to another vertex
can be calculated). As the road conditions are
changing with time, the present activity for each
vehicle is determined by the previous conditions.
Therefore, an update interval is set for updating the
simulation result. The vitality attribute is used to mark
the vehicle as dead (arrived) or alive (moving), and
the real-time position indicates where the vehicle is
located.

3.2.2 Interaction Rules among the Moving
Vehicles

Except for the vehicle’s performance and the
driver's preferences, the speed of a vehicle is largely
determined by the surrounding vehicles. According to
our daily experiences, the speed of a vehicle is
positively proportional to the vehicle density in a
small local area and limited by the highway speed
limits. Figure 2 shows the interaction radius, which
defines the density units for the vehicles of interest
(the black ones); their density units are highlighted.
Each vehicle’s interaction radius can be recognized by
dividing the road segment into zones, such as the
region A, B, C and D in the figure. In each unit, the
vehicle of interest can directly interact with near
vehicles that are located in the same unit. The
resulting density is used to approximate the speed, and
distant vehicles are not considered when computing
the density.

When a vehicle crosses a road segment, the driver
changes the speed according to the surrounding
vehicle density. In other words, when updating the
status of each vehicle, the neighboring vehicles should
be continually monitored. In the simulation, each
vehicle agent maintains a combined variable that
records the real-time position (p) in a binary form.

 p = [r, d] (3)

where r is the road identifier, and d is distance from
the road intersection.

Table 2. Attributes of each vehicle agent in an update interval

Attribute Type Attribute List Comment

Static Attribute

Vehicle Identifier The unique identifier of a vehicle

Origin
Road Identifier The road identifier where the origin is located

Linear Distance The distance from the origin to one of the road vertices

Destination
Road Identifier The road identifier where the destination is located

Linear Distance The distance from the destination to one of the road vertices

Update Interval Time in seconds for performing an iteration in the simulation

Interval Identifier The number of iterations in the simulation

Dynamic Attributes

Vitality (Interval) Being dead or active

Position Road Identifier
The road identifier where the vehicle is located at the current
time

6 J. LIU, X. KANG, C. DONG AND F. ZHANG

Distance The distance to the next road vertex in the optimal path

D

Moving vehicles

Density Unit

Vehicles of interest

Interaction Radius

Interaction

Figure 2. The interactions among the vehicles

3.3 Modeling the Origins and Destinations
A transportation network is naturally a graph with

weights on the edges, and the numbers of road
intersections and road segments usually range from
several hundreds to tens of thousands. The number of
vehicles that are active at the same time may range
from tens of thousands to millions. For such a network,
millions of paths should be computed when navigating
all the vehicles at the same time. However, computing
the shortest paths for all the vehicles in a short period
of time is a great challenge. Each vehicle on a road
segment has only two exits at the road intersections. In
other words, all the vehicles on the same road segment
will share the two road intersections as the origin or
destination when searching for the optimal paths. In
this way, the size of the problem can be reduced to the
scale of the transportation network.

Figure 3 shows the two possible routes from the
origins or towards the destinations. As the origin and
the destination are both located in the road segments,
four cases are derived through computing the shortest
paths between road intersections: (1) o→1→2→d, (2)
o→1→2→4→3→d, (3) o→4→2→d, and (4)
o→4→3→d. When computing the shortest paths for
millions of vehicles, multiple vehicles on the same
road segment will share the two constrained vertexes
as the exits. In this way, the problem of route planning
for millions of vehicles is transformed into the APSP
problem of a transportation network, and each shortest
path will be one of the four possible paths.

1

4

2

3

Starting
 pos ition

Ending
pos ition

o

d

Figure 3. Possible paths from origin (o) to the destination (d)
in a road network

3.4 Using Floyd‐Warshall Algorithm to Solve
APSP Problem

As the route planning problem for millions of
vehicles is transformed into the APSP problem, each
road segment may carry many vehicles for a period of
time. In this way, the shortest path between each pair
of vertices can be reused for the corresponding
vehicles. Table 3 shows the pseudo-code of the
commonly used APSP algorithm, namely, the Floyd-
Warshall algorithm.

4 IMPLEMENTATION AND EXPERIMENT
In this section, we discussed the design and

implementation of the proposed simulation model. In
addition, the experimental result are introduced with
detailed discussions.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 7

Table 3. Pseudo‐code of the Floyd‐Warshall algorithm

Initialization
let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
let next be a |V| × |V| array of vertex indices initialized to null

APSP Computation

Procedure Sequential_
for each edge (u,v)

dist[u][v] ← w(u,v) , next[u][v] ← v
for k from 1 to |V|

for i from 1 to |V|
for j from 1 to |V|

 if dist[i][k] + dist[k][j] < dist[i][j] then
 dist[i][j] ← dist[i][k] + dist[k][j], next[i][j] ← next[i][k]

Path Construction

Procedure Path(u, v)
if next[u][v] = null then

return []
path = [u]
while u ≠ v

u ← next[u][v]
path.appends

return path

4.1 Implementation

4.1.1 Matrix and Path Initialization
The popular ESRI shapefile format is a simple,

non-topological format for storing the geometric
location and attribute information of geographic
features. The road network data in this format should
be preprocessed for building adjacency relations.
Moreover, a topological matrix is used for storing the
relations by referencing the GPU computing model.
The four steps are as follows.

(1) Vertex extraction and matrix building. When
traversing each linear feature (road segment), the two
vertices are first recorded. As the adjacent road
segments have common vertices, some duplicate
vertices should be removed. After locating all the
incoming vertices in the set of vertices that have
already been extracted, an adjacent matrix can be
constructed with the road segments. In this study, an
open-source library Geometry Engine - Open Source
(GEOS) was used to computing the topological
relations, and the value for any pair of vertices is set to
true or false.

(2) Path construction. A road-segment-based
network is constructed, which involves the static and
dynamic attributes that were introduced in

Table 1. The static attributes are only related to the
road, while the dynamic attributes are also related to
the vehicles. Therefore, the dynamic attributes should
be initialized and updated according to the moving
vehicles.

(3) Vehicle generator construction. Vehicle
generator is an interface layer that supports the
generation of some simulated vehicles or actual

vehicles along the road. The simulated vehicles are
used to test the system, while the actual ones are used
in real-time path planning through the reception of
continuous GPS Signals from the actual vehicles. The
attributes of the vehicles are introduced in

Table 2.
(4) Matrix initialization. The next step is to

initialize the adjacency matrix according to the
attributes of the road segments and initial
transportation conditions, which serve as the initial
weights of the matrix.

4.1.2 GPU‐Based APSP Path Searching
After initialization, the raw network data and

vehicle information are transformed into the adjacency
matrix. To accelerate the path solving procedure, the
matrix is first copied from host memory to GPU
memory. Next, the operations on the data will be
performed in parallel with the help of threads and
blocks. After this, the resulting path matrix will be
sent again from the GPU to the CPU. Table 4 shows
the source code for the GPU-based Floyd-Warshall
algorithm.

4.1.3 Iterative Framework
To support the simulation, a framework is

implemented with three components: an initializer, an
iterator and a display window (Figure 4). The
initializer takes charge of the initialization of the
program with all the initial conditions; the iterator
drives the iteration; and the display window
implements the visualization of the real-time status in
each iteration.

8 J. LIU, X. KANG, C. DONG AND F. ZHANG

Table 4. The source code for the Floyd‐Warshall algorithm

Source code Note

__global__ void _floyd_kernel (int k, int *d_g,int *d_p, int n)
{

int thread_idx=blockIdx.x*blockDim.x + threadIdx.x;
if(thread_idx >=n) return;
int idx=n*blockIdx.y+ thread_idx;
__shared__ int best;
if(threadIdx.x==0) tok=d_g[n*blockIdx.y+k];

__syncthreads();
if(tok ==INF) return;
int fromk=d_g[k*n+ thread_idx];
if(tmp_b==INF) return;
int newdis= fromk + tok;
if(newdis<d_g[idx]) {

d_g[idx] = newdis;
d_p[idx] = k;

}
}

The kernel function of the Floyd‐Warshall algorithm on GPU.
Input:
d_g: adjacency matrix
k: from 1 to n
n: number of the vertices

Output:
d_p: path matrix

Variables
thread_idx: from 1 to n
blockIdx.y: from 1 to n
d_g[idx]: distance from thread_idx to blockIdx.y
tok: distance from blockIdx.y to k
fromk: distance from k to thread_idx
newdis: the potential

dim3 dimGrid((n+1024‐1)/1024,n);
for(int k=0;k<n;k++)
{

_floyd_kernel <<<dimGrid, 1024>>>(k, d_g, d_p, n);
err = cudaThreadSynchronize();

}

(n+1024‐1)/1024: number of blocks
n: number of threads in a CUDA block

Initializing the topological weighted matrix

Computing the static attributes for each adjacent edges

Generating the random vehicles along with the POIs

Computing the APSP for each pair of intersecting vertexes

Navigating each vehicle with the dynamic path in an interval

Updating the matrix with the new distribution of the moving agents

Displaying the transportation status after an interval

Initializer

Iterator

Viewer
Computing the efficiency of the transportation

Evaluating the model

 No act ive vehicles

H
av
in
g
a
ct
iv
e
 v
e
hi
cl
es

Figure 4. The iterative framework of the simulation

The iterator works by looping through four steps:
computing the APSP for the network, navigating each
vehicle with the paths, updating the matrix with the
changing attributes, and displaying the results. Among
these steps, computing the APSP and the navigation of
all the vehicles in their paths are computationally
intensive. First, the GPU-based Floyd–Warshall
algorithm is implemented on NVIDIA GPUs utilizing
the CUDA programming API. When navigating all the
vehicles in the same interval, different vehicles have
no inter-independence. Therefore, the positions of the
vehicles on the road segments can be updated
simultaneously. Open Multi-Processing (OpenMP) is

used to exploit the power of the multi-core
architectures by adding the directive “#pragma omp
parallel for schedule (dynamic)”. In each interval, the
display window only changes once. The results for
each interval are stored as an independent file, which
is directly visualized in GIS software.

4.2 Testing and Discussions

4.2.1 Testing Data
The study area (see Figure 5) is located in Suzhou

City, China and it covers approximately 8488 km2.
The transportation network consists of 8,447
intersections (i.e., vertices) and 13,924 road segments
(i.e., links). The study data are stored in ESRI
Shapefile format.

4.2.2 Testing Environment
The experiment was conducted on a workstation

running Microsoft Windows 7 (×64) with a GTX
Titan Black GPU card (2880 CUDA cores and 6 GB
GDDR5 memory), two Six-Core Intel Xeon E5645
processors (2.40 GHz in each core) and 16 GB DDR3-
1333 ECCSDRAM. In addition, CUDA was used for
solving the APSP problem in GPU, and OpenMP was
used for accelerating the navigation of the vehicles.

4.2.3 Testing Results and Discussions
It is hypothesized that a shorter time interval will

yield path planning results that are closer to the real-
time results and, thus, a more efficient navigation
strategy. However, shorter time intervals will require
more computationally expensive simulations. Thus,

INTELLIGENT AUTOMATION AND SOFT COMPUTING 9

the path planning work will be more expensive in
terms of the time required to compute the paths and
update the dynamic attributes, even when optimized
with the parallel paradigms. The average traveling
times in simulation with different updating intervals
are shown in Table 5. The results include two groups
of experiments: iterative updating without real-time

computation and iterative updating with real-time
computation. A more straightforward illustration is
shown in Figure 6.

As shown in Table 5, the minimum time interval is
set to 15 seconds, this is because performing a
simulation for the testing data consumes about 14
seconds.

Figure 5. The study area: the road network of Suzhou City, China

Table 5. Average traveling times with different intervals: non‐real‐time computation and real‐time computation

Interval (s) Non‐real‐time computation (s) Real‐time computation (s) Efficiency improvements

3840 2465 2456 0.4%
1920 3490 2642 24.3%
960 5832 3077 47.2%
480 6705 3586 46.5%
240 7151 3880 45.7%
120 7407 3988 46.2%
60 7551 4043 46.5%
30 7640 4110 46.2%
15 7714 4120 46.6%

Figure 6. Illustration of the non‐real‐time computation and real‐time computation

0

1000

2000

3000

4000

5000

6000

7000

8000

Non‐real‐time computation Real‐time computation

Ti
m
e
u
se
d
 in

 s
im

u
la
ti
o
n
 (
s)

Time intervals (s) 3840 1920 960 480 240 120 60 30 15

10 J. LIU, X. KANG, C. DONG AND F. ZHANG

Due to the ever changing road conditions, more
iterations with a shorter interval can contribute to a
more realistic simulation in comparison with fewer
iterations with a longer interval. In the non-real-time
computation, the optimal paths were only calculated
once according to the initial conditions. Then, all the
vehicles traveled from the origins to the destinations
in accordance with the established routes. In one
iteration, each vehicle only updated its speed once
according to the conditions after its last iteration.
Therefore, with the decrease of the interval time, the
simulation time increased gradually. When the interval
time reached 120 seconds, the time consumption
tended to a stable value. In the real-time computation,
the optimal paths were calculated in each iteration,
and the ever changing road conditions were used for
updating the road weights in the next iteration.
Similarly, when the interval time reached 120 seconds,
the time consumption tended to a stable level.

In comparison, the real-time computation
simulation only costs a smaller amount of time in each
iteration, and an efficiency improvement of more than
45% can be achieved. As the result from each iteration
was stored in a file, the vehicles in the simulation can
be displayed in the developed viewer, as shown in
Figure 7. The small yellow dots in each interval
represent the vehicles. For the same interval, there
were fewer vehicles in the real-time computation. This
indicates that the average traveling time for real-time
computation is shorter than that for non-real-time
computation.

5 CONCLUSIONS
Transportation network is the foundation of the

modern metropolis, and it determines the urban
distribution, travel activities and development of the
urban system. As a complex system, ubiquitous spatial
associations exist among the participants, and spatial
conflicts (e.g. traffic congestion) are commonly
encountered. To improve the transportation efficiency
and reduce the average traveling time, an agent-based
model was proposed to represent the moving vehicles
constrained by the networks. The road segments and
the moving vehicles were modeled as interrelated
objects with both static and dynamic attributes. Next,
the mutual interactions among the vehicles were
automatically analyzed in the individual units defined
by the interaction radius. Based on the attributes,
which are updated in each iteration, the vehicles could
dynamically choose the optimal paths, and the CUDA-
enabled Floyd-Warshall algorithm and OpenMP-based
vehicle navigation were iteratively used to accelerate
the simulation. Finally, the results of the experiment
suggested that the average traveling time could be
reduced by over 45%.

The primary contributions of this study include two
aspects: (i) a representation of the moving vehicles
and the road networks with static and dynamic
attributes and (ii) agent-based model for simulating
and navigating millions of vehicles that are
constrained by transportation networks using parallel
computation. In the near future, we will further
investigate even larger networks from such cities as
Beijing and Shanghai with GPS signals from the real
environment.

Iterative No. =100 Iterative No. =200 Iterative No. =300 Iterative No. =400

Iterative No. =100 Iterative No. =200 Iterative No. =300 Iterative No. =400

N
o
n
‐r
e
al
‐t
im

e
R
e
al
‐t
im

e

Figure 7. Displays of the non‐real‐time computation and real‐time computation

INTELLIGENT AUTOMATION AND SOFT COMPUTING 11

6 ACKNOWLEDGEMENTS
This work was supported by the National Natural

Science Foundation of China (Grant No. 41701461),
the National Key Research and Development Program
of China (Grant No. 2016YFC0803101) and the Basic
Research Fund of the Chinese Academy of Surveying
and Mapping (Grant No. 7771718). We thank the
editors and the anonymous reviewers for their
insightful comments which have helped to improve
the quality of the paper.

7 REFERENCES
L. B. Alexandre, and Gabriel, C., Teodor. (2005). A

cooperative parallel meta-heuristic for the vehicle
routing problem with time windows. Computers
and Operations Research, 32(7), 1685-1708.

T. Alfaro, and Riff, M.-C. (2008). An Evolutionary
Navigator for Autonomous Agents on Unknown
Large-Scale Environments. Intelligent Automation
and Soft Computing, 14(1), 105-116.

L. An, Linderman, M., Qi, J., Shortridge, A., and Liu,
J. (2005). Exploring complexity in a human–
environment system: an agent-based spatial model
for multidisciplinary and multiscale integration.
Annals of the association of American
Geographers, 95(1), 54-79.

M. M. Artimy, Robertson, W., and Phillips, W. J.
(2005). Assignment of dynamic transmission
range based on estimation of vehicle density.
Paper presented at the International Workshop on
Vehicular Ad Hoc Networks, Vanet 2005,
Cologne, Germany, September.

M. Bakillah, Liang, S., Mobasheri, A., Jokar
Arsanjani, J., and Zipf, A. (2014). Fine-resolution
population mapping using OpenStreetMap points-
of-interest. International Journal of Geographical
Information Science, 28(9), 1940-1963.

M. Batty, and Xie, Y. (1994). From cells to cities.
Environment and Planning B: Planning and
Design, 21(7), 31-48.

M. Batty, Xie, Y., and Sun, Z. (1999). Modeling urban
dynamics through GIS-based cellular automata.
Computers, environment and urban systems,
23(3), 205-233.

R. Bellman, (1958). On a Routing Problem. Quarterly
Appl Math, 16(1), 87-90.

V. Bonifaci, (2013). Physarum can compute shortest
paths: A short proof. Information Processing
Letters, 113(1–2), 4-7.

C. J. Castle, and Crooks, A. T. (2006). Principles and
concepts of agent-based modelling for developing
geospatial simulations. Paper presented at the Ucl
Centre for Advanced Spatial Analysis, University
College London: London, UK.

G. L. Chang, Junchaya, T., and Zhuang, L. (1994). A
user‐optimum route navigation model with a
massively parallel computing architecture.

Transportation Planning and Technology, 18(2),
107-129.

B. Chen, and Cheng, H. H. (2010). A review of the
applications of agent technology in traffic and
transportation systems. Intelligent Transportation
Systems, IEEE Transactions on, 11(2), 485-497.

Y.-L. Chen,, and Yang, H.-H. (2000). Shortest paths
in traffic-light networks. Transportation Research
Part B: Methodological, 34(4), 241-253.

Y. Chen, Li, X., Wang, S., and Liu, X. (2012).
Defining agents' behaviour based on urban
economic theory to simulate complex urban
residential dynamics. International Journal of
Geographical Information Science, 26(7), 1155-
1172.

K. C. Clarke, (2014). Cellular Automata and Agent-
Based Models Handbook of Regional Science (pp.
1217-1233): Springer.

T. H. Cormen, Leiserson, C. E., Rivest, R. L., and
Stein, C. (2001). Introduction to algorithms (Vol.
2): MIT press Cambridge.

K. R. Dahal, and Chow, T. E. (2014). An agent-
integrated irregular automata model of urban land-
use dynamics. International Journal of
Geographical Information Science, 28(11), 2281-
2303.

E. W. Dijkstra, (1959). A Note on Two Problems in
Connection with Graphs. Numerische
Mathematics, 1(1), 269--271.

R. W. Floyd, (1962). Algorithm 97: Shortest path.
Communications of the Acm, 5(6), 345.

D. R. Ford, and Fulkerson, D. R. (1963). Flows in
networks. Physics Today, 16(7), 54-56.

B. Huang, Wu, Q., and Zhan, F. B. (2007). A shortest
path algorithm with novel heuristics for dynamic
transportation networks. International Journal of
Geographical Information Science, 21(6), 625-
644.

D. B. Johnson, (1973). A Note on Dijkstra's Shortest
Path Algorithm. Journal of the Acm, 20(3), 385-
388.

D. B. Johnson, (1977). Efficient Algorithms for
Shortest Paths in Sparse Networks. Journal of the
Acm, 24(1), 1-13.

X. Kang, (2015). Graph-based synchronous
collaborative mapping. Geocarto International,
30(1), 28-47.

G. J. Katz, and Kider Jr, J. T. (2008). All-pairs
shortest-paths for large graphs on the GPU. Paper
presented at the Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware.

J. Kim, Han, W.-S., Oh, J., Kim, S., and Yu, H.
(2014). Processing time-dependent shortest path
queries without pre-computed speed information
on road networks. Information Sciences, 255, 135-
154.

D. Levinson, (2012). Network structure and city size.
PloS one, 7(1), e29721.

12 J. LIU, X. KANG, C. DONG AND F. ZHANG

J. Liu, Xu, S., Zhang, F., and Wang, L. (2016). A
hybrid genetic-ant colony optimization algorithm
for the optimal path selection. Intelligent
Automation and Soft Computing, 1-8.

P. A. Longley, Goodchild, M. F., Maguire, D. J., and
Rhind, D. W. (2005). Geographic information
systems and science: John Wiley and Sons: New
York, NY, USA.

M. Martijn, Matthieu, V. D. H., and Aart, V. H.
(2007). Comparison of agent-based scheduling to
look-ahead heuristics for real-time transportation
problems. European Journal of Operational
Research, 181(1), 59-75.

B. Mi, and Liu, D. (2016). A fuzzy neural approach
for vehicle guidance in real-time. Intelligent
Automation and Soft Computing, 23(1), 13-19.

D. C. Parker, Manson, S. M., Janssen, M. A.,
Hoffmann, M. J., and Deadman, P. (2003). Multi-
agent systems for the simulation of land-use and
land-cover change: a review. Annals of the
association of American Geographers, 93(2), 314-
337.

C. Rego, and Roucairol, C. (1996). A Parallel Tabu
Search Algorithm Using Ejection Chains for the
Vehicle Routing Problem: Springer US.

R. W. Rothery, (2008). Car following models. Trac
Flow Theory, 199(3), 287–291.

D. Sever, Dellaert, N., van Woensel, T., and de Kok,
T. (2013). Dynamic shortest path problems:
Hybrid routing policies considering network
disruptions. Computers and Operations Research,
40(12), 2852-2863.

T. Shirabe, (2014). A path that buys time to decide
where to go. International Journal of Geographical
Information Science, 28(2), 314-325.

S. Skiena, (1990). Dijkstra's algorithm: Reading, MA:
Addison-Wesley.

N. Takashi, (2002). The physics of traffic jams.
Reports on progress in physics, 65(9), 1331.

E. G. Talbi, (2002). A Taxonomy of Hybrid
Metaheuristics. Journal of Heuristics, 8(5), 541-
564.

W. R. Tobler, (1970). A computer movie simulating
urban growth in the Detroit region. Economic
geography, 234-240.

S. Warshall, (1962). A Theorem on Boolean Matrices.
Journal of the Acm, 9(1), 11-12.

M. Wegener, (1994). Operational urban models state
of the art. Journal of the American Planning
Association, 60(1), 17-29.

Q. Wu, Tong, C., Wang, Q., and Cheng, X. (2013).
All-pairs Shortest Path Algorithm based on MPI+
CUDA Distributed Parallel Programming Model.
Journal of Networks, 8(12), 2797-2803.

T. Xing, and Zhou, X. (2011). Finding the most
reliable path with and without link travel time
correlation: A Lagrangian substitution based
approach. Transportation Research Part B:
Methodological, 45(10), 1660-1679.

M. H. Xu, Liu, Y. Q., Huang, Q. L., Zhang, Y. X., and
Luan, G. F. (2007). An improved Dijkstra’s
shortest path algorithm for sparse network.
Applied Mathematics and Computation, 185(1),
247-254.

B. Yang, Zhang, Y., and Lu, F. (2014). Geometric-
based approach for integrating VGI POIs and road
networks. International Journal of Geographical
Information Science, 28(1), 126-147.

Z. Yang, Yu, B., and Cheng, C. (2007). A Parallel Ant
Colony Algorithm for Bus Network Optimization.
Computer-Aided Civil and Infrastructure
Engineering, 22(1), 44–55.

F. B. Zhan, (1997). Three fastest shortest path
algorithms on real road networks: Data structures
and procedures. Journal of geographic information
and decision analysis, 1(1), 69-82.

T. Zhang, and Wu, L. (2011). A novel algorithm for
APSP problem via a simplified delay pulse
coupled neural network. Journal of Computational
Information Systems, 7(3), 737-744.

8 NOTES ON CONTRIBUTORS
Jiping Liu received the Ph.D.
degree in Cartography and GIS
from the PLA Information
Engineering University, China,
in June 2004. Since 1999, he
has been a professor in Chinese
Academy of Surveying and
Mapping. His current research
interests include emergency
geographical information servi-

ce, geospatial big data analysis and spatial decision-
making.

Xiaochen Kang received the
Ph.D. degree in Cartography
and GIS from Wuhan
University, China, in June 2015.
He is currently a research
assistant at Chinese Academy
of Surveying and Mapping. His
principal areas of research are
high performance geo-
computation and geographical

conditions monitoring.

Chun Dong received the Ph.D.
degree in Population, Resources
and Environmental Economics
from Fudan University, China,
in June 2006. Since 2012, she
has been a professor in Chinese
Academy of Surveying and
Mapping. Her research interests
include spatial data mining and

geographical conditions monitoring.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 13

Fuhao Zhang received the
Ph.D. degree in Geographical
Information System from
Liaoning Technical University
in June 2009. His research
interests include e-government
GIS, spatial data fusion and
emergency geographical
information services.

