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1 INTRODUCTION 
IT is well-known that point of interest (POI) and 

urban road networks have become the key data 
sources for vehicle navigation applications and 
location-based services (LBS) (Bakillah, et. al., 2014; 
B. Yang, et. al., 2014). POIs are often used to 
represent geographical entities, which are usually 
static locations (e.g., hospitals, restaurants, and 
hotels). The urban street networks play a great role in 
forming the city’s structural skeleton and directly 
affect the city’s transportation efficiency (Levinson, 
2012). To a large degree, POIs are closely inter-
related with the road networks. POIs are often used as 
the origin or destination locations in path finding and 
deemed as the data carriers of local life activities, 
whereas road networks are often used as routing 
system for searching the avenues represented by the 
POIs (B. Yang, et. al., 2014). 

Identifying the optimal routes in the urban 
transportation network have always been an 
indispensable task for city people in their daily lives. 
Most people have to select an optimal route between 
home (or another starting place) and the office (or 
another target place). The optimal route is ever 
changing: an optimal route for a fixed position at this 

point in time may change at the next point in time. 
This situation occurs for many people every day. As a 
whole, the evolution of urban transportation is a group 
behavior that results from the interactions of the 
participating pedestrians and vehicles, instead of the 
simple aggregation of them. This finding means that 
the mutual influence between the participants is a 
basic property, and a congested road with more 
vehicles should be given less attention when walking 
by time (Shirabe, 2014). In addition, Martijn, et. al. 
(2007) suggests that the drivers’ preferences should 
not be negligible. In general, these pervasive relations 
between vehicles can be understood based on Tobler's 
first law geography: all the locations on a geographic 
surface are related to each other, but the closer 
locations are more strongly related than more distant 
ones (Kim, et. al., 2014; Tobler, 1970). In other words, 
the dynamic interactions should be considered when 
collaborating the activities from the participants (Kang, 
2015). Therefore, a local optimal route at any given 
time should take into consideration the surrounding 
road conditions. 

The present study aims to develop an agent-based 
dynamic transportation model that is capable of 
capturing both the individual behaviors of the vehicles 
and the real-time states of the road segments involved 
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in the urban transportation network. To update the 
traffic status continually, the shortest path for each 
pair of locations is computed iteratively. Next, each 
vehicle can obtain the most optimal path dynamically 
at any given location. In this study, we adopt the 
classical Floyd-Warshall algorithm, which has been 
widely used in graph-searching algorithms for solving 
shortest-path problems for a network (Cormen, et. al., 
2001) . In addition, the proposed model employs the 
vector geographic information system (GIS) (both 
data model and operations) at map level. This 
simulation was performed on an Nvidia GeForce GTX 
Titan Black card for the transportation network of 
Suzhou, which is a megacity in China. To assess the 
performance, the outcomes were compared to those of 
a non-real-time model in terms of the average 
traveling time. 

2 RELATED WORK 
AS stated by Wegener (1994), operational urban 

models are often built around the inter-relations 
between land use and transportation. The dynamic 
transportation network is an important component of 
the urban dynamics, and it plays a role in physical 
distribution of the moving vehicles. Therefore, an 
efficient transportation network is the key to 
improving urban efficiency. This section reviews the 
conventional technologies for modeling urban 
dynamics and the commonly used methods in 
searching for the optimal paths. 

2.1 Modeling of Urban Dynamics 
In a GIS, models can be static or dynamic. A 

model is static if the input and output both correspond 
to the same point in time; a model is dynamic if the 
output represents a later point in time than the input 
(Longley, et. al., 2005). Static models provide indices 
or indicators that can be used to predict impacts, 
sensitivities, or vulnerabilities. Dynamic models go 
further by attempting to project quantifiable impacts 
into the future and are used to assess different 
management or development  scenarios (Castle and 
Crooks, 2006). Cellular automata (CA) and agent-
based modeling (ABM) are two commonly employed 
techniques, both of which have significantly advanced 
the role of modeling and simulation in geography and 
regional science (Clarke, 2014). In particular, these 
two methods have been used in exploiting many 
aspects of urban dynamics, including urban land-use 
(Dahal and Chow, 2014), urban residential dynamics 
(Y. Chen, et. al., 2012), urban expansion (Batty and 
Xie, 1994), real-time vehicle navigation (Huang, et. al., 
2007), etc. Many applications appeal to the idea of 
representing the spatial system on a regular lattice 
such as a grid, and then the dynamic change is thus 
conceived as change in the state of a cell. In other 
words, the function of a cell’s states is designed by 
referencing the states of the nearest neighbors (Batty, 
et. al., 1999). The immediate association between the 

regular lattice and the raster-based representation in 
GIS suggests that the dynamics resulting from the 
spatial interactions between the cells can be easily 
realized in GIS. However, there are some limitations 
due to the irregular geometries in the real-world 
environments. Instead, the agent-based representation 
has a similar association between the discrete agents 
and the vector features (such as point, linear, 
polygonal features) , and it provides a natural method 
for describing and simulating a system composed of 
real-world entities (Castle and Crooks, 2006). In 
recent years, ABM has become a prevalent approach 
for modeling complex urban systems (Y. Chen, et. al., 
2012). In comparison with CA, agent-based 
representations are centered around human actions, 
rather than landscape and transitions (An, et. al., 2005; 
Parker, et. al., 2003), and focus on how to determine 
agents’ behavior using spatial information. Agent 
technologies and methods have been applied to many 
fields of traffic and transportation systems, including 
modeling and simulation, dynamic routing and 
congestion management, robotic moving, and 
intelligent traffic control (Alfaro and Riff, 2008; B. 
Chen and Cheng, 2010). 

2.2 Shortest Path Algorithms in the 
Transportation Network 

The shortest path problem lies at the heart of 
network flows that seeks for the paths with minimum 
cost from source node to sink node in networks (Liu, 
et. al., 2016; Sever, et. al., 2013; Xing and Zhou, 2011; 
Xu, et. al., 2007), and it is viewed as an issue of 
concern in computer science, operations research, 
distributed computing, bioinformatics and so on 
(Bonifaci, 2013; Y.-L. Chen and Yang, 2000; Kim, et. 
al., 2014; Wu, et. al., 2013). The shortest-path 
problem can be described as follows: given a weighted, 
directed graph and two special vertices, a shortest path 
from one vertex to another is a directed path with the 
property that no other such path has a lower weight. 
Consider a directed weighted network G = (V,E), 
where V is the set of vertices and E is the set of arcs. 
Each arc is denoted by an ordered pair (i,j), where (i,j)	
⊆V. Suppose that there is only one directed arc (i,j) 
from i to j. Let the vertex s be the source and assume t 
as the destination. We define a path p(i,j) as a 
sequence of alternating vertices and arcs. The shortest-
path weight, also called the distance, from vertex s to t, 
denoted d(s,t), is the minimum weight of all possible 
directed paths with origin s and destination t. Let 

 denote that t is reachable from s through the 
directed path p. We have  

        (1) 

In this equation, the vertices in the graph correspond 
to the origin and destination venues for path finding in 
a road network. 
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When finding the optimal path for a traveling 
vehicle in the urban network, many classical 
algorithms can be used, such as the Dijkstra (Dijkstra, 
1959), Bellman-Ford (Bellman, 1958; Ford and 
Fulkerson, 1963), Johnson (Johnson, 1977), and 
Floyd-Warshal (Floyd, 1962; Warshall, 1962) 
algorithms. These algorithms can solve three kinds of 
problems: one-to-one (or one-to-some) shortest paths, 
one-to-all shortest paths and all-to-all shortest paths 
(Zhan, 1997). The Dijkstra algorithm is suitable for 
solving the one-to-one and one-to-all shortest-path 
problems (Skiena, 1990), and the time complexity is 
O(n2) in general (Johnson, 1973). Herein, n is the 
number of vertices. The Bellman-Ford algorithm is 
also suitable for solving one-to-all shortest-path 
problems, and the time complexity is O(mn). Herein, 
m is the number of edges.  The Johnson algorithm and 
the Floyd-Warshal algorithm are both suitable for 
solving the All Pairs Shortest Paths (APSP) problem, 
and their time complexities are O(n2lg(n)+mn) and 
O(n3), respectively. For the urban transportation 
network, the number of vehicles is often many times 
the number of roads and intersections. Therefore, 
performing a round of path finding for each vehicle is 
infeasible. Comparatively, the Floyd-Warshall and 
Johnson algorithms are more effective. The former is 
most effective for dense graphs (many edges), while 
the latter is most effective for sparse graphs (few 
edges). 

2.3 Parallel Computing in Searching for the 
Optimal Paths 

Most of these path searching algorithms exhibit 
high computational complexity for networks that are 
changing in real time. To cope with large-scale 
transportation network, parallel computing is widely 
used, which supports decomposing the task into many 
lightweight subtasks and then assigning them to the 
CPU or GPU cores. Chang, et. al. (1994) presented a 
user-optimum route assignment model for real-time 
navigation, and the results showed that parallel model 
significantly outperforms the sequential model in 
terms of computing speed, especially in a larger 
network. Rego and Roucairol (1996) described a 
parallel Tabu search algorithm for the vehicle routing 
problem; it was shown to be feasible when the number 
of tasks was fixed at compilation time. However, the 
degree of parallelism was not related to the computing 
resources and load imbalance could happen (Talbi, 
2002). Alexandre and Gabriel (2005) proposed a 
parallel cooperative multi-search method based on the 
solution warehouse, which enabled several search 
threads to cooperate by asynchronously exchanging 
information on the best solutions that have been 
identified. This method achieved a linear acceleration, 
but was limited in terms of the number of vehicles and 
the total distance traveled. Z. Yang, et. al. (2007) 
presented an optimization model for a bus network 
design based on the coarse-grained parallel ant colony 

algorithm (CPACA), which used the parallelization 
strategies of an ant colony algorithm (ACA) to 
improve the calculation time. Zhang and Wu (2011) 
introduced a novel algorithm based on the Pulse 
Coupled Neural Network (PCNN) to solve the APSP 
problem, and it required no iteration and maintained 
low computational complexity. Wu, et. al. (2013) 
presented a hybrid programming model that combined 
MPI (Message Passing Interface) and CUDA 
(Compute Unified Device Architecture) to take full 
use of the GPU cluster, and a speedup of  hundreds of 
times was achieved. However, the number of vertices 
and links is limited and real-time navigation, which 
requires large-scale shortest-path calculations and 
analysis, cannot be realized (Wu, et. al., 2013; Zhang 
and Wu, 2011). 

2.4 Issues to Be Addressed 
For a transportation network with tens of thousands 

road intersections and segments, millions of POIs play 
the roles of origin and destination venues for millions 
of vehicles. This property means that almost infinitely 
many computations should be performed in a very 
short period of time for determining the optimal path 
between each pair of interesting points. Therefore, two 
issues on model designing and performance 
optimization should be considered. 

(1) The road conditions are always changing, and 
dynamic shortest paths that consider both internal and 
external factors perform better than static shortest 
paths (Chang, et. al., 1994). A way to represent the 
road networks, moving vehicles, and their 
relationships should be determined. 

(2) Searching for optimal paths for millions of 
vehicles is still a big challenge due to the very high 
complexity. Path searching and vehicle navigation 
should be performed with very high efficiency through 
the use of HPC facilities. 

In this paper, we propose an agent-based model for 
representing the real-time status of the road and the 
changing positions of moving vehicles. The road 
agents are static in locations, but dynamic in attributes. 
The vehicle agents are always moving along the road 
segments during the lifetimes, and serve as the driving 
forces for the transportation system. Moreover, the 
shortest path is used to calibrate the route choice for 
each vehicle, and the GPU-based Floyd-Warshall 
algorithm is adopted for its simplicity and obvious 
performance advantage in comparison with the CPU 
implementation (Katz and Kider Jr, 2008). 

3 SIMULATION OF DYNAMIC 
TRANSPORTATION 

In general, when to simulate a certain phenomenon 
using agent-based modeling, the agents and their 
interaction rules should both be identified. In this 
section, a vehicle movement model under road 
network constraints is presented. This model includes 
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three kernel components: a network-based 
representation for modeling the road attributes and 
real-time conditions, an agent-based model for the 
moving vehicles, and the GPU-based Floyd-Warshall 
algorithm, which is aimed at searching for the shortest 
paths via road vertices for millions of origins and 
destinations. 

3.1 Representation of the Road Networks 
In the real world, the road network is made up of 

road segments and the road intersections. A segment 
has two categories of attributes: static attributes and 
dynamic attributes, as shown in  

Table 1. The static attributes include the road 
identifier, names, grades, lengths, widths, directions 
and vitality. The dynamic attributes include the 
number of moving vehicles on a road segment, the 
real-time vehicle density, and traffic velocity. 

In our daily lives, the road network connects 
interesting points with possible routes, and an origin 
venue and a destination venue are indispensable for 
defining a trip. Figure 1 is a road network layer with 
the affiliated POIs. Obviously, the POIs have 
enhanced the semantics of a particular road segment, 
and they can be integrated with a geometric-based 
method (B. Yang, et. al., 2014). Herein, each point is 
assigned to a road network by searching for the 
nearest road segment. For example, a primary school 
and a family home were assigned to corresponding 
nearest road segments. Then, two possible routes 
could be found. After integrating the road network and 
the POIs, searching for an optimal path in navigation 
is easily transformed into a search for the shortest path 
between each pair of sites. 

 
Table 1. Attributes of a road segment in the transportation network 
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Figure 1. Integration of the POIs and the network 

Attribute Type Attribute List Comments

Static Attributes 

Road Identifier  The unique identifier of a road segment

Road Name  The road name of a road segment

Road length  The length of a road segment

Road Width  The width of a road segment

Road Area  The product of the length and the width of a road segment 

Road Vertices  The vertices that define the segment

Number of POIs  The number of the POIs along a road segment

Dynamic Attributes 

Number of vehicles  The number of vehicles on a road segment at a given time 

Vehicle Density  The number of vehicles per square meter on a road segment at a given time

Vitality (Interval)  Being blocked or unblocked

Traffic Velocity  The average running speed of vehicles

Necessity  An particular road segment that must be passed 

Default option  Searching for the shortest path based only on the road conditions 
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The streets are often crowded at peak times. As a 
result, the graph-based shortest path might be 
stuck due to the traffic jams. To simulate the road 
conditions in real time, the dynamic attributes listed in  

Table 1 should be given more attention. The static 
attributes are those factors that are constant during the 
entire simulation, while the dynamic attributes are 
those factors that change over time. In addition, the 
drivers’ preference may also change during travel. For 
example, certain drivers may make temporary 
decisions regarding going someplace, which could 
potentially influence the road conditions and then 
result in some changes in other drivers’ routes. In 
summary, taking the real-time conditions into account 
can contribute to obtaining a better traveling route (Mi 
and Liu, 2016). 

3.2 Agent‐Based Representation of the Moving 
Vehicles 

A highly efficient transportation system requires 
the vehicles to reach their destinations in as little time 
as possible. Each vehicle’ traveling time is determined 
by the static attributes and the dynamic attributes, and 
agent-based representation of the moving vehicles is 
proposed based on some major factors. 

3.2.1 Modeling of the Network‐Constrained 
Moving Vehicles 

According to the car-following models, the average 
speed of the vehicles is a function of the vehicle 
density (Rothery, 2008; Takashi, 2002). As stated by 
Artimy, et. al. (2005), three main quantities are closely 
related: vehicle density, flow and speed. The density 
represents the number of vehicles per unit distance, 
the flow measures the number of vehicles that pass an 
observer per unit time, and the speed is the distance a 
vehicle travels per unit time. The proposed model 
focuses on how to utilize the real-time vehicle density 
to reduce the traveling time. Specifically, the road 
length l, the road width w, and the real time number of 
the vehicles n on a road segment are combined to 
approximate the density. 

    (2) 

where l*w is the area of the road segment. 

In the model, each vehicle is represented as an 
agent with the following static and dynamic attributes, 
which are listed in  

Table 2. For each vehicle, a unique identifier is 
needed. The origin and the destination are both 
determined by the road identifier and the distance to a 
road vertex (from which the distance to another vertex 
can be calculated). As the road conditions are 
changing with time, the present activity for each 
vehicle is determined by the previous conditions. 
Therefore, an update interval is set for updating the 
simulation result. The vitality attribute is used to mark 
the vehicle as dead (arrived) or alive (moving), and 
the real-time position indicates where the vehicle is 
located. 

3.2.2 Interaction Rules among the Moving 
Vehicles 

Except for the vehicle’s performance and the 
driver's preferences, the speed of a vehicle is largely 
determined by the surrounding vehicles. According to 
our daily experiences, the speed of a vehicle is 
positively proportional to the vehicle density in a 
small local area and limited by the highway speed 
limits. Figure 2 shows the interaction radius, which 
defines the density units for the vehicles of interest 
(the black ones); their density units are highlighted. 
Each vehicle’s interaction radius can be recognized by 
dividing the road segment into zones, such as the 
region A, B, C and D in the figure. In each unit, the 
vehicle of interest can directly interact with near 
vehicles that are located in the same unit. The 
resulting density is used to approximate the speed, and 
distant vehicles are not considered when computing 
the density. 

When a vehicle crosses a road segment, the driver 
changes the speed according to the surrounding 
vehicle density. In other words, when updating the 
status of each vehicle, the neighboring vehicles should 
be continually monitored. In the simulation, each 
vehicle agent maintains a combined variable that 
records the real-time position (p) in a binary form. 

 p = [r, d]  (3) 

where r is the road identifier, and d is distance from 
the road intersection. 

 

Table 2. Attributes of each vehicle agent in an update interval 

Attribute Type Attribute List Comment 

Static Attribute 

Vehicle Identifier The unique identifier of a vehicle 

Origin 
Road Identifier The road identifier where the origin is located 

Linear Distance The distance from the origin to one of the road vertices

Destination 
Road Identifier The road identifier where the destination is located

Linear Distance The distance from the destination to one of the road vertices

Update Interval Time in seconds for performing an iteration in the simulation

Interval Identifier The number of iterations in the simulation 

Dynamic Attributes 

Vitality (Interval) Being dead or active

Position  Road Identifier 
The road identifier where the vehicle is located at the current 
time 
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Distance The distance to the next road vertex in the optimal path 

D

Moving vehicles

Density Unit

Vehicles of interest

Interaction Radius

Interaction

 

Figure 2. The interactions among the vehicles 

3.3 Modeling the Origins and Destinations 
A transportation network is naturally a graph with 

weights on the edges, and the numbers of road 
intersections and road segments usually range from 
several hundreds to tens of thousands. The number of 
vehicles that are active at the same time may range 
from tens of thousands to millions. For such a network, 
millions of paths should be computed when navigating 
all the vehicles at the same time. However, computing 
the shortest paths for all the vehicles in a short period 
of time is a great challenge. Each vehicle on a road 
segment has only two exits at the road intersections. In 
other words, all the vehicles on the same road segment 
will share the two road intersections as the origin or 
destination when searching for the optimal paths. In 
this way, the size of the problem can be reduced to the 
scale of the transportation network.  

Figure 3 shows the two possible routes from the 
origins or towards the destinations. As the origin and 
the destination are both located in the road segments, 
four cases are derived through computing the shortest 
paths between road intersections: (1) o→1→2→d, (2) 
o→1→2→4→3→d, (3) o→4→2→d, and (4) 
o→4→3→d. When computing the shortest paths for 
millions of vehicles, multiple vehicles on the same 
road segment will share the two constrained vertexes 
as the exits. In this way, the problem of route planning 
for millions of vehicles is transformed into the APSP 
problem of a transportation network, and each shortest 
path will be one of the four possible paths. 

 

1

4

2

3

Starting
 pos ition

Ending  
pos ition

o

d

 

Figure 3. Possible paths from origin (o) to the destination (d) 
in a road network 

3.4 Using Floyd‐Warshall Algorithm to Solve 
APSP Problem 

As the route planning problem for millions of 
vehicles is transformed into the APSP problem, each 
road segment may carry many vehicles for a period of 
time. In this way, the shortest path between each pair 
of vertices can be reused for the corresponding 
vehicles. Table 3 shows the pseudo-code of the 
commonly used APSP algorithm, namely, the Floyd-
Warshall algorithm. 

4 IMPLEMENTATION AND EXPERIMENT 
In this section, we discussed the design and 

implementation of the proposed simulation model. In 
addition, the experimental result are introduced with 
detailed discussions. 
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Table 3. Pseudo‐code of the Floyd‐Warshall algorithm 

Initialization 
let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity) 
let next be a |V| × |V| array of vertex indices initialized to null 

APSP Computation 

Procedure Sequential_
for each edge (u,v) 

dist[u][v] ← w(u,v) , next[u][v] ← v 
for k from 1 to |V| 

for i from 1 to |V| 
for j from 1 to |V| 

              if dist[i][k] + dist[k][j] < dist[i][j] then 
                                             dist[i][j] ← dist[i][k] + dist[k][j], next[i][j] ← next[i][k] 

Path Construction 

Procedure Path(u, v)
if next[u][v] = null then 

return [] 
path = [u] 
while u ≠ v 

u ← next[u][v] 
path.appends 

return path 

 

4.1 Implementation 

4.1.1 Matrix and Path Initialization 
The popular ESRI shapefile format is a simple, 

non-topological format for storing the geometric 
location and attribute information of geographic 
features. The road network data in this format should 
be preprocessed for building adjacency relations. 
Moreover, a topological matrix is used for storing the 
relations by referencing the GPU computing model. 
The four steps are as follows. 

(1) Vertex extraction and matrix building. When 
traversing each linear feature (road segment), the two 
vertices are first  recorded. As the adjacent road 
segments have common vertices, some duplicate 
vertices should be removed. After locating all the 
incoming vertices in the set of vertices that have 
already been extracted, an adjacent matrix can be 
constructed with the road segments. In this study, an 
open-source library Geometry Engine - Open Source 
(GEOS) was used to computing the topological 
relations, and the value for any pair of vertices is set to 
true or false. 

(2) Path construction. A road-segment-based 
network is constructed, which involves the static and 
dynamic attributes that were introduced in  

Table 1. The static attributes are only related to the 
road, while the dynamic attributes are also related to 
the vehicles. Therefore, the dynamic attributes should 
be initialized and updated according to the moving 
vehicles. 

(3) Vehicle generator construction. Vehicle 
generator is an interface layer that supports the 
generation of some simulated vehicles or actual 

vehicles along the road. The simulated vehicles are 
used to test the system, while the actual ones are used 
in real-time path planning through the reception of 
continuous GPS Signals from the actual vehicles. The 
attributes of the vehicles are introduced in  

Table 2. 
(4) Matrix initialization. The next step is to 

initialize the adjacency matrix according to the 
attributes of the road segments and initial 
transportation conditions, which serve as the initial 
weights of the matrix. 

4.1.2 GPU‐Based APSP Path Searching 
After initialization, the raw network data and 

vehicle information are transformed into the adjacency 
matrix. To accelerate the path solving procedure, the 
matrix is first copied from host memory to GPU 
memory. Next, the operations on the data will be 
performed in parallel with the help of threads and 
blocks. After this, the resulting path matrix will be 
sent again from the GPU to the CPU. Table 4 shows 
the source code for the GPU-based Floyd-Warshall 
algorithm. 

4.1.3 Iterative Framework 
To support the simulation, a framework is 

implemented with three components: an initializer, an 
iterator and a display window (Figure 4). The 
initializer takes charge of the initialization of the 
program with all the initial conditions; the iterator 
drives the iteration; and the display window 
implements the visualization of the real-time status in 
each iteration. 
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Table 4. The source code for the Floyd‐Warshall algorithm 

Source code Note

__global__ void _floyd_kernel (int k, int *d_g,int *d_p, int n) 
{ 

int thread_idx=blockIdx.x*blockDim.x + threadIdx.x; 
if(thread_idx >=n)  return; 
int idx=n*blockIdx.y+ thread_idx; 
__shared__ int best; 
if(threadIdx.x==0) tok=d_g[n*blockIdx.y+k]; 

__syncthreads(); 
if(tok ==INF) return; 
int fromk=d_g[k*n+ thread_idx]; 
if(tmp_b==INF) return; 
int newdis= fromk + tok; 
if(newdis<d_g[idx]) { 

d_g[idx] = newdis; 
d_p[idx] = k; 

} 
} 

The kernel function of the Floyd‐Warshall algorithm on GPU. 
Input: 
d_g: adjacency matrix 
k: from 1 to n 
n: number of the vertices 

Output: 
d_p:  path matrix 

Variables 
thread_idx: from 1 to n 
blockIdx.y: from 1 to n 
d_g[idx]: distance from thread_idx to blockIdx.y 
tok: distance from blockIdx.y to k 
fromk: distance from k to thread_idx 
newdis: the potential  

dim3 dimGrid((n+1024‐1)/1024,n); 
for(int k=0;k<n;k++) 
{ 

_floyd_kernel <<<dimGrid, 1024>>>(k, d_g, d_p, n); 
err = cudaThreadSynchronize(); 

} 

(n+1024‐1)/1024: number of blocks 
n: number of threads in a CUDA block 
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Figure 4. The iterative framework of the simulation 

The iterator works by looping through four steps: 
computing the APSP for the network, navigating each 
vehicle with the paths, updating the matrix with the 
changing attributes, and displaying the results. Among 
these steps, computing the APSP and the navigation of 
all the vehicles in their paths are computationally 
intensive. First, the GPU-based Floyd–Warshall 
algorithm is implemented on NVIDIA GPUs utilizing 
the CUDA programming API. When navigating all the 
vehicles in the same interval, different vehicles have 
no inter-independence. Therefore, the positions of the 
vehicles on the road segments can be updated 
simultaneously. Open Multi-Processing (OpenMP) is 

used to exploit the power of the multi-core 
architectures by adding the directive “#pragma omp 
parallel for schedule (dynamic)”. In each interval, the 
display window only changes once. The results for 
each interval are stored as an independent file, which 
is directly visualized in GIS software. 

4.2 Testing and Discussions 

4.2.1 Testing Data 
The study area (see Figure 5) is located in Suzhou 

City, China and it covers approximately 8488 km2. 
The transportation network consists of 8,447 
intersections (i.e., vertices) and 13,924 road segments 
(i.e., links). The study data are stored in ESRI 
Shapefile format. 

4.2.2 Testing Environment 
The experiment was conducted on a workstation 

running Microsoft Windows 7 (×64) with a GTX 
Titan Black GPU card (2880 CUDA cores and 6 GB 
GDDR5 memory), two Six-Core Intel Xeon E5645 
processors (2.40 GHz in each core) and 16 GB DDR3-
1333 ECCSDRAM. In addition, CUDA was used for 
solving the APSP problem in GPU, and OpenMP was 
used for accelerating the navigation of the vehicles. 

4.2.3 Testing Results and Discussions 
It is hypothesized that a shorter time interval will 

yield path planning results that are closer to the real-
time results and, thus, a more efficient navigation 
strategy. However, shorter time intervals will require 
more computationally expensive simulations. Thus, 
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the path planning work will be more expensive in 
terms of the time required to compute the paths and 
update the dynamic attributes, even when optimized 
with the parallel paradigms. The average traveling 
times in simulation with different updating intervals 
are shown in Table 5. The results include two groups 
of experiments: iterative updating without real-time 

computation and iterative updating with real-time 
computation. A more straightforward illustration is 
shown in Figure 6. 

As shown in Table 5, the minimum time interval is 
set to 15 seconds, this is because performing a 
simulation for the testing data consumes about 14 
seconds. 

 

 

Figure 5. The study area: the road network of Suzhou City, China 

Table 5. Average traveling times with different intervals: non‐real‐time computation and real‐time computation 

Interval (s)  Non‐real‐time computation (s) Real‐time computation (s)  Efficiency improvements

3840  2465 2456 0.4%
1920  3490 2642 24.3%
960  5832 3077 47.2%
480  6705 3586 46.5%
240  7151 3880 45.7%
120  7407 3988 46.2%
60  7551 4043 46.5%
30  7640 4110 46.2%
15  7714 4120 46.6%

 

Figure 6. Illustration of the non‐real‐time computation and real‐time computation 
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Due to the ever changing road conditions, more 
iterations with a shorter interval can contribute to a 
more realistic simulation in comparison with fewer 
iterations with a longer interval. In the non-real-time 
computation, the optimal paths were only calculated 
once according to the initial conditions. Then, all the 
vehicles traveled from the origins to the destinations 
in accordance with the established routes. In one 
iteration, each vehicle only updated its speed once 
according to the conditions after its last iteration. 
Therefore, with the decrease of the interval time, the 
simulation time increased gradually. When the interval 
time reached 120 seconds, the time consumption 
tended to a stable value. In the real-time computation, 
the optimal paths were calculated in each iteration, 
and the ever changing road conditions were used for 
updating the road weights in the next iteration. 
Similarly, when the interval time reached 120 seconds, 
the time consumption tended to a stable level.  

In comparison, the real-time computation 
simulation only costs a smaller amount of time in each 
iteration, and an efficiency improvement of more than 
45% can be achieved. As the result from each iteration 
was stored in a file, the vehicles in the simulation can 
be displayed in the developed viewer, as shown in 
Figure 7. The small yellow dots in each interval 
represent the vehicles. For the same interval, there 
were fewer vehicles in the real-time computation. This 
indicates that the average traveling time for real-time 
computation is shorter than that for non-real-time 
computation. 

5 CONCLUSIONS 
Transportation network is the foundation of the 

modern metropolis, and it determines the urban 
distribution, travel activities and development of the 
urban system. As a complex system, ubiquitous spatial 
associations exist among the participants, and spatial 
conflicts (e.g. traffic congestion) are commonly 
encountered. To improve the transportation efficiency 
and reduce the average traveling time, an agent-based 
model was proposed to represent the moving vehicles 
constrained by the networks. The road segments and 
the moving vehicles were modeled as interrelated 
objects with both static and dynamic attributes. Next, 
the mutual interactions among the vehicles were 
automatically analyzed in the individual units defined 
by the interaction radius. Based on the attributes, 
which are updated in each iteration, the vehicles could 
dynamically choose the optimal paths, and the CUDA-
enabled Floyd-Warshall algorithm and OpenMP-based 
vehicle navigation were iteratively used to accelerate 
the simulation. Finally, the results of the experiment 
suggested that the average traveling time could be 
reduced by over 45%. 

The primary contributions of this study include two 
aspects: (i) a representation of the moving vehicles 
and the road networks with static and dynamic 
attributes and (ii) agent-based model for simulating 
and navigating millions of vehicles that are 
constrained by transportation networks using parallel 
computation. In the near future, we will further 
investigate even larger networks from such cities as 
Beijing and Shanghai with GPS signals from the real 
environment. 
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Figure 7. Displays of the non‐real‐time computation and real‐time computation 
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