
ycchou@mail.nsysu.edu.tw CONTACT Yu-Cheng Chou

© 2019 TSI® Press

A Distributed Heterogeneous Inspection System for High Performance In-
line Surface Defect Detection

Yu-Cheng Chou1, Wei-Chieh Liao2, Yan-Liang Chen2, Ming Chang2, and Po
Ting Lin3
1 Institute of Undersea Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
2 Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
3 Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

KEY WORDS: In-line surface defect detection, concurrent computing, distributed computing, POSIX
threads, compute unified device architecture, message passing interface.

1 INTRODUCTION
EVERY manufactured product ideally needs to be

tested before delivery to ensure that it satisfies the

requirements of customers and has sufficient

reliability. Due to high costs of testing the quality of a

product, manufacturers often test only a small portion

of a batch of products. However, for sensitive

components, such as integrated circuits and glass

panels, in-line inspection is strictly enforced in the

early stages of manufacturing to enable corrective

actions, leading to the improvement of overall

productivity. More than two decades ago, Park and

Bien (1995) designed a machine vision system using

programmable hardware for industrial inspection

applications, such as the liquid-crystal display (LCD)

panel inspection.

Nowadays, the machine vision technology has been

adopted as a non-destructive test protocol for reliable

inspection and localization of surface defects in the

manufacturing industry. The machine vision

technology relies on image analysis to enable useful

and effective functions, such as automated optical

inspection, remote navigation, and dynamic visual

recognition. In the past decade, numerous machine

vision techniques have been proposed for surface

defect inspection.

Some recently reported methods and systems are

summarized as follows. Ryu et al. (2014) designed a

machine vision system with a line scan camera to

detect texture differences and brightness differences

between well-scarfed and poorly-scarfed steel slab

surfaces. Busin et al. (2013) designed a line scan color

vision system to detect printing flaws that appear on

the color surfaces of drinking glasses decorated in a

silk-screen process. Lin et al. (2013) proposed a laser

reflection point inspection method, combining fuzzy

rules with an artificial neural network, for chemical

stain inspection on the surface of polysilicon solar

wafers. Tsai et al. (2012) proposed a regularity

measure as the only discrimination feature to detect

ill-defined subtle defects on non-textured and

homogeneously textured surfaces. Li et al. (2012)

proposed a local annular contrast based image

processing algorithm to find defects on steel bar

surfaces. Tsai et al. (2012) proposed a dissimilarity

measure based on the optical-flow technique for defect

inspection on light-emitting diode (LED) wafer die

ABSTRACT

This paper presents the Distributed Heterogeneous Inspection System (DHIS),
which comprises two CUDA workstations and is equipped with CPU distributed
computing, CPU concurrent computing, and GPU concurrent computing
functions. Thirty-two grayscale images, each with 5,000× 12,288 pixels and
simulated defect patterns, were created to evaluate the performances of three
system configurations: (1) DHIS; (2) two CUDA workstations with CPU
distributed computing and GPU concurrent computing; (3) one CUDA
workstation with GPU concurrent computing. Experimental results indicated
that: (1) only DHIS can satisfy the time limit, and the average turnaround time
of DHIS is 37.65% of the time limit; (2) a good linear relationship exists
between the processing speed ratio and the instruction sequence quantity ratio.

Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 1, 79 –90

2 YU-CHENG CHOU

surfaces. Li and Tsai (2011) developed a machine

vision based scheme to automatically detect saw-mark

defects on solar wafer surfaces. Tsai and Tsai (2011)

proposed an optical flow-based motion analysis

scheme to detect low-contrast blemishes on LCD

panels. Zhang et al. (2011) designed a multi-class

support vector machine (SVM) based vision system

for defect inspection of strongly reflective metal

surfaces. Michaeli and Berdel (2011) proposed an in-

line inspection algorithm for textured plastic surfaces

produced in a high speed continuous process. Tsai et

al. (2011) developed a robot vision system for ill-

defined anomaly detection on surfaces of 3D objects.

Tian et al. (2011) proposed a multiple classifier

system, based on SVM and stacked generalization, for

wheat disease diagnosis through pattern recognition

on the surface of wheat leaves. Rosati et al. (2009)

designed a real-time defect detection system for highly

reflective curved surfaces of coated plastic

components produced in the automotive industry. In

addition, Chiou et al. (2011) and Tsai et al. (2010)

proposed machine vision techniques to inspect micro-

crack defects in the solar wafer manufacturing process.

In terms of screening products based on pre-

defined criteria, the above techniques generate

satisfactory performance in different applications of

surface defect detection. However, the above

techniques have a compromise between the speed and

resolution. In other words, the above techniques avoid

a situation where hundreds of mega pixels have to be

processed per second continuously. Such a

compromise between the speed and resolution

generates a bottleneck for the applications of in-line

surface inspection.

To this end, in our previous work (Chang et al.,

2014), we presented the first non-destructive optical

inspection system equipped with a Compute Unified

Device Architecture (CUDA) workstation to achieve

satisfactory performance in both the speed and

resolution for the extraction and labeling of micro-

sized surface defects. The performance of a single

optical inspection system in the above work was tested

using a back-coated mirror object with 43 mm in

width and 70 mm in length. However, surface defect

detection for a larger object, under the same speed and

resolution requirements, was not addressed in our

previous work. Therefore, this work aims to expand

our previous work to deal with such a more

challenging situation.

Table 1 shows the comparisons between this work,

our previous work, and the above cited works. As

shown in Table 1, due to the resolution requirement

and the test object size, the image sizes concerned in

this work and our previous work are much larger than

those in the cited works. When taking the time limits

into consideration, the speed requirements in this work

and our previous work are calculated as 289.13

(=80,000×24,576×10-6/6.8) mega pixels/sec and

144.56 (=20,000×12,288×10-6/1.7) mega pixels/sec,

respectively. As shown in Table 1, the results in the

cited works are all obtained through single central

processing unit (CPU) based algorithms. Moreover,

according to Table 1, the largest speed in the cited

works is calculated as 40.33 (=512×1,024×10-6/0.013)

mega pixels/sec. Thus, the single CPU-based methods

in the cited works will not satisfy the time limits

applied to this work and our previous work.

As previously mentioned, this work aims to expand

our previous work, in order to handle surface defect

detection for a larger object under the same resolution

and speed requirements as those in our previous work.

As shown in Table 1, in terms of hardware, two

graphics processing units (GPUs) and two CPUs are

employed in this work. More precisely, two computers,

each of which is equipped with a CPU and a CUDA

GPU, are used to simultaneously perform surface

defect detection on an object eight times as large as

that in our previous work. Additionally, this work and

our previous work are targeted toward a production

line scenario, i.e. screening out defective surfaces in

real-time. Hence, this work and our previous work

focus on completing defect detection within the time

limits and consider defect recognition as an off-line

task. Defect recognition is equivalent to image pattern

recognition. Moreover, edge detection is considered a

fundamental step in image pattern recognition

techniques (Umbaugh, 2016). To this end, the defect

detection algorithms in this work and our previous

work are developed to return the defect quantity

indexes, the defect size, and the image data with

identified defect edges.

The line scan camera in our previous work is set up

such that the camera captures and loads an image of

20,000×12,288 pixels to a CPU in 1.7 seconds.

Additionally, due to the maximum CUDA threads

allowable on a CUDA GPU, an image that can be

simultaneously processed by CUDA threads has a

maximum size of 5,000×12,288 pixels. Hence, an

image of 20,000×12,288 pixels is divided into four

separate sub-images, each of which has 5,000×12,288

pixels. The time, 0.487 second shown in Table 1, is

the summation of the four time periods elapsed to

complete only the defect detection process on the four

sub-images. In other words, the time, 0.487 second,

excludes the time used to store the four output sub-

images with extracted edges.

The image acquisition time and the maximum

number of CUDA threads applied to our previous

work are also applied to this work. As mentioned

earlier, the image size handled in this work is eight

times as large as that in our previous work. Meanwhile,

it is necessary to store the processed sub-images for

further off-line operations such as defect recognition.

Therefore, as shown in Table 1, this work is targeted

at a situation where a time limit of 6.8 seconds is

required to perform defect detection on 32 sub-images,

each of which has 5,000×12,288 pixels, and to save 32

processed sub-images as separate files.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 3

Table 1. Comparisons between this work and cited works

 GPU CPU Image size (pixel) Time limit (sec) Time result (sec)

This work 2 2 80,000×24,576 6.8 To be presented

Chang et al. (2014) 1 1 20,000×12,288 1.7 0.487

Ryu et al. (2014) n/a 1 4,096×1,000 n/a n/a

Busin et al. (2013) n/a 1 1,320×1,947 n/a 1

Lin et al. (2013) n/a 1 640×480 n/a n/a

D. M. Tsai, Chen, et al. (2012) n/a 1 400×400 n/a 0.032

W. B. Li et al. (2012) n/a 1 512×1,024 n/a 0.013

D. M. Tsai, Chiang, et al. (2012) n/a 1 115×105 n/a 0.012

W. C. Li & Tsai (2011) n/a 1 1,560×1,560 n/a 9.3

D. M. Tsai & Tsai (2011) n/a 1 200×200 n/a 0.05

Zhang et al. (2011) n/a 1 256×256 n/a n/a

Michaeli & Berdel (2011) n/a 1 512×512 n/a 0.102

Y. H. Tsai et al. (2011) n/a 1 1,600×1,200 n/a 3.55

Tian et al. (2011) n/a 1 640×480 n/a n/a

Rosati et al. (2009) n/a 1 782×582 n/a n/a

Chiou et al. (2011) n/a 1 640×480 n/a 0.18

D. M. Tsai et al. (2010) n/a 1 1,000×1,000 n/a 0.36

To tackle the above situation, this work employs a

distributed memory system consisting of two

computers, each of which is equipped with a CPU and

a CUDA GPU, as the hardware structure. When

applying this distributed memory system to a real

production line, each CUDA computer will control a

line scan camera to capture images of different

portions of the same object surface. Moreover,

information of surface defects obtained at each CUDA

computer has to be integrated to allow for decision

making on whether or not the test object is a defective

one. The Message Passing Interface (MPI) (Gropp et

al., 1996) is a well-established industry standard for

communication among processes that model a parallel

program running on a distributed memory system.

Therefore, as the best option, this work leverages the

MPI standard to tackle the synchronization and data

transmission among inspection tasks running on

distributed CUDA computers.

In our previous work, a surface inspection

procedure is composed of the CPU and GPU

operations executed on a single CUDA computer.

Each CPU operation is executed by the CPU, and each

GPU operation is executed by the CUDA GPU

through a large number of parallel threads. Despite

that each GPU operation is carried out by parallel

threads, all the CPU and GPU operations are still

executed one after another. In other words, our

previous work adopts a sequential computing model.

The objective of this work is to achieve in-line

surface inspection on an object, which is eight times

as large as that in our previous work, through a

distributed system consisting of two CUDA computers.

Thus, on each CUDA computer in this work, the

image size to be processed is 80,000×12,288 pixels,

which is four times as large as that in our previous

work. Owing to the maximum number of CUDA

threads allowable on the GPU, the image on each

CUDA computer must be divided into 16 sub-images,

each with 5,000×12,288 pixels, for GPU computing

purposes. Moreover, on each CUDA computer, defect

detection on the 16 sub-images and saving the 16

processed sub-images as separate files must be

completed within 6.8 seconds. The sequential

computing model adopted in our previous work cannot

satisfy such a speed requirement. Thus, in this work,

the CPU and GPU operations on each CUDA

computer should be managed to handle different parts

of the image data during the same time period. Hence,

this work employs a concurrent computing model to

allow the CPU and GPU operations to run

concurrently on each CUDA computer.

The contributions of this work are summarized as

follows: (1) based on the first non-destructive CUDA-

enabled optical inspection system established by the

authors, this paper presents the first distributed version

of the system to tackle in-line surface defect detection

for a large object; (2) to utilize the presented multi-

CPU and multi-GPU distributed hardware structure

for in-line surface inspection, this paper proposes a

hybrid computing model as the software structure; the

CPU and GPU operations running on a single CUDA

computer are designed based on a concurrent

computing model, and the CPU operations running on

multiple CUDA computers are designed based on a

distributed computing model; (3) to implement the

proposed hybrid computing model, this paper

integrates three different programming models:

multithreaded programming with POSIX threads

(Pthreads), parallel programming with CUDA, and

parallel programming with MPI.

2 HARDWARE AND SOFTWARE SYSTEMS

2.1 Hardware System
THE hardware system proposed in our previous

work is shown in Figure 1. The hardware system

4 YU-CHENG CHOU

consists of a single CUDA workstation equipped with

a line scan camera. The resolution requirement is that

each pixel represents an area of 3.5×3.5μm2. The

camera is a 12288-pixel line scan camera with a 12

kHz acquisition rate. Based on the maximum image

size affordable by the camera’s onboard memory, the

size of the mirror object is chosen to be 70×43 mm2.

Additionally, the image of the test object has

20,000×12,288 pixels. It takes 1.7 seconds to capture

the object image and load the image data to the

computer’s main memory. As mentioned earlier, the

image is divided and saved as four sub-images, each

of which has 5,000×12,288 pixels. In our previous

work, 1.7 seconds is chosen as the time limit to

complete surface inspection on the mirror object,

leading to a speed requirement of 144.56 mega

pixels/sec. The experimental result shows that it takes

0.487 second to complete defect detection on the four

sub-images. However, 0.487 second does not include

the time to save the four output sub-images with

extracted edges.

Figure 1. Hardware system in our previous work.

The hardware system of DHIS is expanded from

the one proposed in our previous work. As shown in

Figure 2, the hardware system of DHIS consists of

two CUDA workstations. Each CUDA workstation is

equipped with a line scan camera. A local area

network (LAN) interconnects the two CUDA

workstations through a high speed Ethernet switch.

The size of a test object in this work is 280×86 mm2,

which is eight times as large as that in our previous

work. In addition, the resolution requirement in this

work is 3.5×3.5μm2/pixel, the same as that in our

previous work. As a result, the image size of a test

object is 80,000×24,576 pixels. Each CUDA

workstation of DHIS is configured to handle an area

of 280×43 mm2, corresponding to an image of

80,000×12,288 pixels. As previously mentioned, it

takes 1.7 seconds to capture and load an image of

20,000×12,288 pixels to the CUDA workstation’s

main memory, and such an image has the maximum

pixels that can be accommodated within the camera’s

on-board memory. Therefore, in this work, an image

of 20,000×12,288 pixels will be loaded to each CUDA

workstation every 1.7 seconds, meaning that a time

limit of 1.7 seconds must be guaranteed on each

CUDA workstation to complete defect detection on

such an image and storage of the processed image.

Moreover, the two CUDA workstations of DHIS are

managed to operate synchronously. Hence, from the

perspective of DHIS, in order to achieve in-line defect

detection on an object of 280×86 mm2, a total of 6.8

seconds must be guaranteed to complete the following

tasks: (1) defect detection on an image of

80,000×12,288 pixels at each CUDA workstation; (2)

integration of the defect information obtained at each

CUDA workstation; (3) storage of the processed sub-

images at each CUDA workstation. As a result, the

speed requirement in this work is calculated as 289.13

mega pixels/sec.

Figure 2. Hardware system of DHIS.

From the perspective of hardware, DHIS is a

distributed system consisting of individual

workstations, each of which contains two different

processors, including the CPU and GPU. Therefore,

DHIS has the distributed heterogeneous nature in the

hardware. More importantly, the hardware system of

DHIS is highly expandable to accommodate more

computational resources to satisfy more rigorous

requirements imposed on the speed and resolution.

2.2 Software System
TO utilize the presented multi-CPU and multi-GPU

distributed hardware structure for in-line surface

inspection, a hybrid computing model is proposed as

the software structure. The hybrid computing model

combines a concurrent computing model and a

distributed computing model. The CPU and GPU

operations running on each CUDA workstation are

designed based on a concurrent computing model. On

the other hand, the CPU operations running on the

distributed CUDA workstations are designed based on

a distributed computing model.

Figure 3. Software system of DHIS.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 5

Figure 4. Concurrent computing scheme on each CUDA workstation.

To implement the proposed hybrid computing

model, this paper integrates three different

programming models: multithreaded programming

with Pthreads, parallel programming with CUDA, and

parallel programming with MPI. Therefore, as shown

in Figure 3, the software system of DHIS comprises

Pthreads, CUDA threads, and MPI processes. On each

CUDA workstation, an MPI process and 17 Pthreads

are executed by the CPU, and a total of 61,440,000

CUDA threads are executed by the GPU. Moreover,

as shown in Figure 4, a concurrent computing scheme

is adopted on each CUDA workstation to manage the

Pthreads and CUDA threads for image data processing.

The operations of five Pthreads, including Pthread

#0 to Pthread #4, within 3.4 seconds from the initial

time point are shown in Figure 4. Each CUDA

workstation is in charge of 1/2 of the object. Block 1

to Block 4 are memory blocks allocated in the

computer’s main memory to store the image data at

runtime. Each block stores 1/8 of the entire object

image. Additionally, each block consists of four sub-

blocks, such as Block 1-A to Block 1-D, and therefore

each sub-block stores 1/32 of the entire object image.

Block E and Block F, each with the same size as a

sub-block in the computer’s main memory, are

memory blocks allocated in the GPU’s global memory

for multithreaded operations on the CUDA GPU.

Block E stores the image data that are sent from the

CPU and will be processed by the CUDA threads to

obtain the defect quantity indexes, the defect size, and

the image data with identified edges. Block F stores

the image data with identified edges that will be sent

back to the corresponding sub-block in the computer’s

main memory.

Block H and Block G, which are not drawn to scale

in Figure 4, are memory blocks to accommodate three

integers in the GPU’s global memory and 48 integers

in the computer’s main memory, respectively. In this

work, the defect quantity indexes include the number

of defect initial pixels and the number of defect

terminal pixels, and the defect size is equivalent to the

number of defect pixels. When the above three

integers for the image data in Block E are obtained,

they will be stored in Block H and sent back to the

corresponding locations in Block G.

The concurrent computing scheme shown in Figure

4 is illustrated as follows:

(1) At 𝑡 = 0: Pthread #0 starts to capture the image of

the first 1/8 of the object and prepares to load the

image data into Block 1. Among Pthread #1 to Pthread

#4, each Pthread waits for the signal from the Pthread

with an ID one less than its own.

(2) At 𝑡 = 1.7: Pthread #0 finishes loading the image

data into Block 1 and thereby signals Pthread #1.

Pthread #0 then starts to capture the image of the next

1/8 of the object and prepares to load the image data

into Block 2. Pthread #1 receives the signal from

Pthread #0, and it then copies the image data from

Block 1-A to Block E and launches CUDA threads to

perform defect detection operations.

(3) At 𝑡 = 1.7 + ∆𝑡1 : Pthread #1 obtains the defect

information kept in Block G and the output image data

· Starts to capture image data
and prepares to load the
image data into Block 1

· Finishes loading the image
data into Block 1

· Signals Pthread #1
· Starts to capture image data

and prepares to load the
image data into Block 2

· Launches CUDA threads to
process Block 1-A

· Waits for the signal from
Pthread #0

· Waits for the signal from
Pthread #1

· Waits for the signal from
Pthread #2

· Waits for the signal from
Pthread #3

· Finishes processing Block 1-A
· Signals Pthread #2
· Starts to save Block 1-A as file

· Launches CUDA threads to
process Block 1-B

· Finishes processing Block 1-B
· Signals Pthread #3
· Starts to save Block 1-B as file

· Launches CUDA threads to
process Block 1-C

· Finishes processing Block 1-C
· Signals Pthread #4
· Starts to save Block 1-C as file

· Launches CUDA threads to
process Block 1-D

· Finishes processing Block 1-D
· Signals Pthread #5
· Starts to save Block 1-D as file

Pthread #0 Pthread #1 Pthread #2 Pthread #3 Pthread #4

· Finishes loading the image
data into Block 2

· Signals Pthread #5
· Starts to capture image data

and prepares to load the
image data into Block 3

~
~

~
~

~
~

~
~

~
~

~
~

t (sec)

G

Computer’s main memory

H

GPU’s global memory

6 YU-CHENG CHOU

kept in Block 1-A, and thereby signals Pthread #2.

Pthread #1 then starts to save the output image data as

a file. Pthread #2 receives the signal from Pthread #1,

and then it copies the image data from Block 1-B to

Block E and launches CUDA threads to perform

defect detection operations.

(4) At 𝑡 = 1.7 + ∑ ∆2
𝑖=1 𝑡𝑖 : Pthread #2 obtains the

defect information kept in Block G and the output

image data kept in Block 1-B, and thereby signals

Pthread #3. Pthread #2 then starts to save the output

image data as a file. Pthread #3 receives the signal

from Pthread #2, and then it copies the image data

from Block 1-C to Block E and launches CUDA

threads to perform defect detection operations.

(5) At 𝑡 = 1.7 + ∑ ∆3
𝑖=1 𝑡𝑖 : Pthread #3 obtains the

defect information kept in Block G and the output

image data kept in Block 1-C, and thereby signals

Pthread #4. Pthread #3 then starts to save the output

image data as a file. Pthread #4 receives the signal

from Pthread #3, and then it copies the image data

from Block 1-D to Block E and launches CUDA

threads to perform defect detection operations.

(6) At 𝑡 = 1.7 + ∑ ∆4
𝑖=1 𝑡𝑖 : Pthread #4 obtains the

defect information kept in Block G and the output

image data kept in Block 1-D, and thereby signals

Pthread #5. Pthread #4 then starts to save the output

image data as a file.

(7) At 𝑡 = 3.4 seconds: Pthread #0 finishes loading

the image data into Block 2 and thereby signals

Pthread #5. Pthread #0 then starts to capture the image

of the next 1/8 of the object and prepares to load the

image data into Block 3.

The idea of the presented concurrent computing

scheme is that the time used to obtain the defect

quantity indexes and the defect sizes for 1/8 of the

object, such as ∑ ∆4
𝑖=1 𝑡𝑖 in Figure 4, can be limited

within 1.7 seconds by decoupling itself from the time

used to save the output image data as four individual

files. Moreover, once the last 1/8 of the object image,

i.e. the image in Block 4, has been processed on each

CUDA workstation, a total of 48 integers, comprising

16 sets of the defect quantity indexes and the defect

size, are stored in Block G. The 48 integers on CUDA

workstation #2 must be sent to CUDA workstation #1

for data integration. As shown in Fig. 3, such inter-

platform operations are designed through a distributed

computing model based on the Message Passing

Interface (MPI) standard. The operations will be

performed by two distributed MPI processes: MPI

process #1 sends the integer array to MPI process #0,

whereas MPI process #0 receives the integer array and

combines it with the local one. Such inter-platform

operations also need to be completed within the same

1.7 seconds allotted to the last 1/8 of the object image.

Based on the maximum CUDA threads allowable

on the CUDA GPU adopted in this work and our

previous work, the image size suitable for CUDA

multithreading is chosen to be 5,000×12,288 pixels.

Therefore, as shown in Figure 3, on each CUDA

workstation, a total of 61,440,000 (=5,000×12,288)

CUDA threads, i.e. CUDA threads with ID #0 to ID

#61,439,999, are launched to perform defect detection

operations concurrently. The defect detection

operations are pixel-wise operations, including the

binarization, defect labeling, and defect edge detection.

For each 1/32 of the object image, such as the image

data in Block 1-A, a corresponding Pthread, such as

Pthread #1, will activate 61,440,000 CUDA threads to

perform these pixel-wise operations one after another.

From the software aspect, DHIS contains a hybrid

computing model: a concurrent computing model for

the CPU and GPU operations running on a single

computer, and a distributed computing model for the

CPU operations running on multiple computers.

Additionally, to implement the hybrid computing

model, DHIS employs a hybrid programming model,

which integrates Pthreads, MPI, and CUDA

programming models. Therefore, DHIS has the

heterogeneous nature in the software.

3 CUDA-BASED DEFECT DETECTION
ALGORITHMS

IN this work, the purpose of performing surface

defect detection on a mirror object is to obtain the

defect quantity indexes, the defect size, and the image

with defect edges. Moreover, in order to exploit the

high performance feature of a CUDA GPU, the defect

detection operations are developed to be pixel-wise

operations, including the binarization, defect labeling

process, and defect edge detection. The binarization

aims to generate a binary image for the subsequent

operations (defect labeling and defect edge detection),

as well as to obtain the defect size, which is equivalent

to the number of defect pixels. The defect labeling

process aims to obtain the defect quantity indexes,

which include the number of defect initial pixels and

the number of defect terminal pixels. The defect edge

detection aims to obtain an image with extracted

defect edges. Each CUDA thread represents a pixel on

a 5,000×12,288 pixel image (1/32 of the object image)

and performs the above pixel-wise operations on the

corresponding pixel.

3.1 Binarization
THE binarization algorithm is straightforward and

based on a predefined threshold. In this work, a pixel

with a value larger than the threshold is considered as

a defect pixel. Therefore, as shown in Figure 5, if a

pixel value is larger than the threshold, the pixel value

is set to 255, and the first element of Block H is

increased by 1. Otherwise, the pixel value is set to

zero. Block H is a memory block allocated in the

GPU’s global memory to store three integers including

the defect quantity indexes and the defect size. The

first element of Block H is used to store the number of

defect pixels, which represents the defect size. To

avoid the race condition among CUDA threads,

INTELLIGENT AUTOMATION AND SOFT COMPUTING 7

increasing the first element of Block H is implemented

as an atomic operation. On each CUDA workstation,

every time when the binarization is completed by all

the CUDA threads, the number of defect pixels on a

5,000×12,288 pixel image (1/32 of the object image)

is acquired, and the resultant binary image is ready for

the subsequent pixel-wise operations.

BEGIN
IF pixel value > threshold THEN
 pixel value ← 255
 Block_H[0] ← Block_H[0] + 1
ELSE
 pixel value ← 0
END

Figure 5. Pseudocode for the binarization.

3.2 Defect Labeling
THE defect labeling process aims to acquire two

defect quantity indexes, including the number of

defect initial pixels and the number of defect terminal

pixels. Therefore, the defect labeling process contains

two pixel-wise operations: the defect initial pixel

labeling and the defect terminal pixel labeling.

The defect initial pixel labeling algorithm is

illustrated in Figure 6. A pixel is considered as a

defect initial pixel, if it satisfies the following

requirements: its value is 255, and the values of the

upper-surrounding pixels (left, upper-left, upper, and

upper-right pixels) are all zero. If a pixel is determined

to be a defect initial pixel, the second element of

Block H is increased by 1. To avoid the race condition

among CUDA threads, increasing the second element

of Block H is implemented as an atomic operation. On

each CUDA workstation, every time when the defect

initial labeling is completed by all the CUDA threads,

the number of defect initial pixels on a 5,000×12,288

pixel image (1/32 of the object image) is acquired.

BEGIN
IF pixel value = 255 THEN
 IF left pixel value = 0 AND
 upper-left pixel value = 0 AND
 upper pixel value = 0 AND
 upper-right pixel value = 0 THEN
 Block_H[1] ← Block_H[1] + 1
END

Figure 6. Pseudocode for the defect initial pixel labeling.

The defect terminal pixel labeling algorithm is

illustrated in Figure 7. A pixel is considered as a

defect terminal pixel, if it satisfies the following

requirements: its value is 255, and the values of the

lower-surrounding pixels (right, lower-right, lower,

and lower-left pixels) are all zero. If a pixel is

determined to be a defect terminal pixel, the third

element of Block H is increased by 1. To avoid the

race condition among CUDA threads, increasing the

third element of Block H is also implemented as an

atomic operation. On each CUDA workstation, every

time when the defect terminal labeling is completed

by all the CUDA threads, the number of defect

terminal pixels on a 5,000×12,288 pixel image (1/32

of the object image) is acquired.

BEGIN
IF pixel value = 255 THEN
 IF right pixel value = 0 AND
 lower-right pixel value = 0 AND
 lower pixel value = 0 AND
 Lower-left pixel value = 0 THEN
 Block_H[2] ← Block_H[2] + 1
END

Figure 7. Pseudocode for the defect terminal pixel labeling.

3.3 Defect Edge Detection
THE defect edge detection aims to generate an

image with defect edges that are composed of defect

edge pixels.

BEGIN
IF pixel value = 255 THEN
 IF left pixel value = 0 AND
 right pixel value = 255 THEN
 Block_F[thread_id] ← 255
 ELSE IF upper-left pixel value = 0 AND
 lower-right pixel value = 255 THEN
 Block_F[thread_id] ← 255
 ELSE IF upper pixel value = 0 AND
 lower pixel value = 255 THEN
 Block_F[thread_id] ← 255
 ELSE IF upper-right pixel value = 0 AND
 lower-left pixel value = 255 THEN
 Block_F[thread_id] ← 255
 ELSE IF right pixel value = 0 AND
 left pixel value = 255 THEN
 Block_F[thread_id] ← 255
 ELSE IF lower-right pixel value = 0 AND
 upper-left pixel value = 255 THEN
 Block_F[thread_id] ← 255
 ELSE IF lower pixel value = 0 AND
 upper pixel value = 255 THEN
 Block_F[thread_id] ← 255
 ELSE IF lower-left pixel value = 0 AND
 upper-right pixel value = 255 THEN
 Block_F[thread_id] ← 255
END

Figure 8. Pseudocode for the defect edge detection.

As shown in Figure 8, if a pixel complies with one

of the following eight conditions, it is considered as

the corresponding defect edge pixel:

(1) defect left edge pixel: its left and right pixel values

are zero and 255, respectively;

(2) defect upper-left edge pixel: its upper-left and

lower-right pixel values are zero and 255, respectively;

(3) defect upper edge pixel: its upper and lower pixel

values are zero and 255, respectively;

(4) defect upper-right edge pixel: its upper-right and

lower-left pixel values are zero and 255, respectively;

(5) defect right edge pixel: its right and left pixel

values are zero and 255, respectively;

(6) defect lower-right edge pixel: its lower-right and

upper-left pixel values are zero and 255, respectively;

(7) defect lower edge pixel: its lower and upper pixel

values are zero and 255, respectively;

(8) defect lower-left edge pixel: its lower-left and

upper-right pixel values are zero and 255, respectively.

8 YU-CHENG CHOU

Block F is a memory block allocated in the GPU’s

global memory to store the image with identified

defect edges. Moreover, Block F is initialized as an

array of zeros. As shown in Figure 8, if a pixel is

determined to be a defect edge pixel, a value of 255 is

assigned to the corresponding element of Block F, i.e.

Block_F[thread_id], where thread_id is the ID of the

CUDA thread in charge of the operations on that pixel.

On each CUDA workstation, every time when the

defect edge detection is completed by all the CUDA

threads, a 5,000×12,288 pixel image (1/32 of the

object image) with defect edges is acquired.

4 EXPERIMENTAL RESULTS
IN this work, the size of a test object is 280×86

mm2 and the resolution requirement is 3.5×3.5μ

m2/pixel. As a result, the image of a test object has

80,000×24,576 pixels. Each CUDA workstation of

DHIS is configured to handle one-half of a test object,

corresponding to an image of 80,000×12,288 pixels.

Due to the maximum CUDA threads allowable on the

CUDA GPU adopted in this work, the above image of

80,000×12,288 pixels needs to be separated into 16

sub-images (each with 5,000×12,288 pixels), which

will be processed sequentially on each CUDA

workstation.

The objective of this work is to validate that the

proposed DHIS can acquire the correct defect quantity

indexes and defect sizes for all the 32 sub-images

(each with 5,000×12,288 pixels) within the time limit

of 6.8 seconds. Thus, for system validation purposes, a

total of 32 grayscale JPEG images, each with

5,000×12,288 pixels and simulated defect patterns, are

created to represent the entire image of an object. The

downscaled versions, defect quantity indexes, and

defect sizes for the 32 grayscale images are shown in

Figure 9 to Figure 12.

Figure 9. Defect information and downscaled versions for
Block 1 images on each CUDA workstation.

Figure 10. Defect information and downscaled versions for
Block 2 images on each CUDA workstation.

Figure 11. Defect information and downscaled versions for
Block 3 images on each CUDA workstation.

Figure 12. Defect information and downscaled versions for
Block 4 images on each CUDA workstation.

Each image for CUDA workstation #1 is rotated by

180o to create its counterpart for CUDA workstation

#2. Therefore, such paired images have the same

number of defect pixels. Due to an angle of 180o

between each pair of images, the numbers of defect

initial and defect terminal pixels for an image on

CUDA workstation #1 are the numbers of defect

terminal and defect initial pixels, respectively, for the

corresponding image on CUDA workstation #2. For

INTELLIGENT AUTOMATION AND SOFT COMPUTING 9

example, as shown in Figure 13, Block2-C1.jpg on

CUDA workstation #1 has two defect initial pixels

and three defect initial pixels, whereas Block2-C2.jpg

on CUDA workstation #2 has three defect initial

pixels and two defect terminal pixels.

Figure 13. Defect initial and defect terminal pixels for Block 2-
C images on each CUDA workstation.

In this work, the above 32 images are used to

conduct the defect detection experiment on the

following three hardware and software configurations:

(1) Configuration #1: distributed system with two

CUDA workstations; CPU distributed computing with

MPI processes, CPU concurrent computing with

Pthreads, and GPU concurrent computing with CUDA

threads; (2) Configuration #2: distributed system with

two CUDA workstations; CPU distributed computing

with MPI processes and GPU concurrent computing

with CUDA threads; (3) Configuration #3: standalone

system with one CUDA workstation; GPU concurrent

computing with CUDA threads.

Configuration #1 is indeed the proposed DHIS,

Configuration #2 is DHIS without CPU concurrent

computing, and Configuration #3 is the system

presented in our previous work. Each of the two

CUDA workstations adopted in this work has an

NVIDIA Tesla C2075 GPU, an Intel Xeon E5-2620

CPU, and 32 gigabytes of RAM. Meanwhile, a 64-bit

Windows 7 operating system runs on each CUDA

workstation.

Under Configuration #1, a total of 32 Pthreads will

simultaneously load the 32 images on the two CUDA

workstations. In addition, on each CUDA workstation,

when Pthread #i starts to process its image through

CUDA threads, the preceding Pthread, Pthread #(i-1),

will begin to save its processed image as a file.

Moreover, when the last Pthread, i.e. Pthread #16,

begins to save its processed image as a file on each

CUDA workstation, MPI process #1 on CUDA

workstation #2 and MPI process #0 on CUDA

workstation #1 will start to send and receive the defect

data, respectively. The defect data include the defect

quantity indexes and the defect sizes for the 16 images

on CUDA workstation #2.

Under Configuration #2, MPI process #0 and MPI

process #1 will simultaneously start the defect

detection operations on CUDA workstation #1 and

CUDA workstation #2, respectively. Moreover, on

each CUDA workstation, a total of 16 images will be

processed one after another through CUDA threads.

Due to such a sequential processing mode on each

CUDA workstation, an image will not be loaded for

processing until the preceding processed image has

been saved as a file. After the last processed image has

been saved as a file, MPI process #1 on CUDA

workstation #2 and MPI process #0 on CUDA

workstation #1 will start to send and receive the defect

data, respectively. The defect data include the defect

quantity indexes and the defect sizes for the 16 images

on CUDA workstation #2.

Under Configuration #3, all the 32 images will be

processed one after another through CUDA threads on

a single CUDA workstation. Thus, an image will not

be loaded for processing until the preceding processed

image has been saved as a file. Once the last processed

image has been saved as a file, the defect quantity

indexes and the defect sizes for all the 32 images are

acquired.

Moreover, for each configuration, in addition to the

defect quantity indexes and the defect sizes for all the

32 images, the defect detection experiment also aims

to measure the turnaround time between two moments

on CUDA workstation #1: (1) the moment when the

first image, Block1-A1.jpg, starts to be loaded for

processing; and (2) the moment when the defect

quantity indexes and the defect sizes for all the 32

images have been acquired. The defect detection

experiment is conducted 30 times under each

configuration to obtain the results.

The experimental results show that, under each

configuration, the defect quantity indexes and the

defect sizes obtained for all the 32 images at each run

of the experiment are the same as those shown in

Figure 9 to Figure 12. However, the performances in

terms of the turnaround times under the three

configurations are significantly different.

Figure 14 shows the turnaround times of 30

experimental runs under each configuration, and Table

2 lists the statistics of the turnaround time results. As

shown in Table 2, the average turnaround time under

Configuration #1 is 2.56 seconds, which is 37.65% of

the time limit, 6.8 seconds. By contrast, the average

turnaround times under Configurations #2 and #3 are

39.09 and 79.59 seconds, respectively, which do not

fall within the time limit. On the other hand, the

average processing speed under Configuration #1 is

15.27 (= 39.09/2.56) and 31.09 (=79.59/2.56) times of

those under Configurations #2 and #3, respectively.

Also, the numbers of independent instruction

sequences used to process the 32 images under

Configurations #1, #2, and #3 are 32, 2, and 1,

respectively. Thus, the number of independent

instruction sequences under Configuration #1 is 16 (=

32/2) and 32 (=32/1) times of those under

Configurations #2 and #3, respectively. Hence, the

experimental results also indicate a good linear

relationship between the processing speed ratio and

the instruction sequence quantity ratio.

10 YU-CHENG CHOU

Figure 14. Turnaround times of 30 experimental runs under each configuration.

Table 2. Statistics of the turnaround time results

 Configuration

Turnaround time (sec)

Configuration #1:
 Distributed system
 CPU distributed computing
 CPU concurrent computing
 GPU concurrent computing

Configuration #2:
 Distributed system
 CPU distributed computing
 GPU concurrent computing

Configuration #3:
 Standalone system
 GPU concurrent computing

Average 2.56 39.09 79.59

Standard deviation 0.12 1.51 0.31

Maximum 3.06 40.33 80.70

Minimum 2.34 35.54 79.29

5 CONCLUSION
AN in-line surface defect detection task, with high

resolution and high speed requirements, essentially

demands that the underlying processing infrastructure

handle a large volume of image data within a short

image acquisition cycle. To this end, the Distributed

Heterogeneous Inspection System (DHIS) was

proposed in this study. DHIS has a distributed multi-

CPU and multi-GPU hardware architecture and is

equipped with functions for CPU distributed

computing, CPU concurrent computing, and GPU

concurrent computing. The resolution and speed

requirements in this study were 3.5×3.5μm2/pixel and

289.13 mega pixels/sec, respectively. A total of 32

grayscale JPEG images, each with 5,000×12,288

pixels and simulated defect patterns, were created to

conduct the performance experiment under three

different system configurations, including: (1) DHIS;

(2) DHIS without CPU concurrent computing function;

(3) a non-distributed, standalone system with only

GPU concurrent computing function. The

experimental results showed that: (1) the defect

quantity indexes and the defect sizes obtained under

the above three system configurations were all correct;

(2) only DHIS completed the required tasks within the

time limit of 6.8 seconds; (3) the average turnaround

time of DHIS was 2.56 seconds, which is 37.65% of

the time limit; (4) a good linear relationship was found

to exist between the processing speed ratio and the

instruction sequence quantity ratio. Therefore, the

proposed DHIS can satisfy the high resolution and

high speed requirements specified in this study.

Furthermore, due to its distributed and expandable

hardware structure and software algorithm, DHIS has

the potential to handle in-line surface defect detection

tasks with even more challenging resolution and speed

requirements.

6 ACKNOWLEDGMENT
This research is supported by the Ministry of

Science and Technology in Taiwan under grants

MOST 106-2221-E-110-042, MOST 105-2221-E-110-

060, MOST 104-2221-E-110-062, MOST 103-2221-

E-110-087, and NSC 102-2218-E-033-002-MY2.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 11

7 REFERENCES
L. Busin, N. Vandenbroucke, and L. Macaire, (2013).

Contribution of a color space selection to a flaw

detection vision system. Journal of Electronic

Imaging, 22(3), 17.

D. R. Butenhof, (1997). Programming with POSIX

Threads (1 ed.): Addison-Wesley Professional.

D. Buttlar, J. Farrell, and B. Nichols, (1996).

PThreads Programming: A POSIX Standard for

Better Multiprocessing (1 ed.): O'Reilly Media.

M. Chang, Y.-C. Chou, P. T. Lin, and J. L. Gabayno,

(2014). Fast and High-Resolution Optical

Inspection System for In-Line Detection and

Labeling of Surface Defects. CMC: Computers,

Materials & Continua, 42(2), 125-140.

Y. C. Chiou, J. Z. Liu, and Y. T. Liang, (2011). Micro

crack detection of multi-crystalline silicon solar

wafer using machine vision techniques. Sensor

Review, 31(2), 154-165.

S. Cook, (2012). CUDA Programming: A Developer's

Guide to Parallel Computing with GPUs (1 ed.):

Morgan Kaufmann.

W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, (2014).

Using Advanced MPI: Modern Features of the

Message-Passing Interface (1 ed.). Cambridge,

MA, USA: MIT Press.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, (1996).

A high-performance, portable implementation of

the MPI message passing interface standard.

Parallel computing, 22(6), 789-828.

W. Gropp, E. Lusk, and A. Skjellum, (2014). Using

MPI: Portable Parallel Programming with the

Message-Passing Interface (3 ed.). Cambridge,

MA, USA: MIT Press.

W. B. Li, C. H. Lu, and J. C. Zhang, (2012). A local

annular contrast based real-time inspection

algorithm for steel bar surface defects. Applied

Surface Science, 258(16), 6080-6086.

W. C. Li and D. M. Tsai, (2011). Automatic saw-mark

detection in multicrystalline solar wafer images.

Solar Energy Materials and Solar Cells, 95(8),

2206-2220.

C.-S. Lin, C.-W. Lin, S.-W. Yang, S.-K. Lin, and C.-C.

Chiu, (2013). The Chemical Stain Inspection of

Polysilicon Solar Cell Wafer by the Fuzzy Theory

Method. Intelligent Automation & Soft

Computing, 19(3), 391-406.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,

(2008). NVIDIA Tesla: A unified graphics and

computing architecture. IEEE micro, 28(2), 39-55.

Message Passing Interface Forum. (2015). MPI: A

Message-Passing Interface Standard, Version 3.1.

Knoxville,Tennessee, USA.

W. Michaeli and K. Berdel, (2011). Inline inspection

of textured plastics surfaces. Optical Engineering,

50(2), 6.

NVIDIA. (2014). CUDA C Programming Guide.

Retrieved from http://docs.nvidia.com/cuda/cuda-

c-programming-guide/

J. Park and Z. Bien, (1995). Design of an Advanced

Machine Vision System for Industrial Inspection.

Intelligent Automation & Soft Computing, 1(2),

209-219.

G. Rosati, G. Boschetti, A. Biondi, and A. Rossi,

(2009). Real-time defect detection on highly

reflective curved surfaces. Optics and Lasers in

Engineering, 47(3-4), 379-384.

S. G. Ryu, D. C. Choi, Y. J. Jeon, S. J. Lee, J. P. Yun,

and S. W. Kim, (2014). Detection of Scarfing

Faults on the Edges of Slabs. ISJI International,

54(1), 112-118.

Y. Tian, C. Zhao, S. Lu, and X. Guo, (2011). Multiple

Classifier Combination for Recognition of Wheat

Leaf Diseases. Intelligent Automation & Soft

Computing, 17(5), 519-529.

D. M. Tsai, C. C. Chang, and S. M. Chao, (2010).

Micro-crack inspection in heterogeneously

textured solar wafers using anisotropic diffusion.

Image and Vision Computing, 28(3), 491-501.

D. M. Tsai, M. C. Chen, W. C. Li, and W. Y. Chiu,

(2012). A fast regularity measure for surface

defect detection. Machine Vision and

Applications, 23(5), 869-886.

D. M. Tsai, I. Y. Chiang, and Y. H. Tsai, (2012). A

Shift-Tolerant Dissimilarity Measure for Surface

Defect Detection. Ieee Transactions on Industrial

Informatics, 8(1), 128-137.

D. M. Tsai, and H. Y. Tsai, (2011). Low-contrast

surface inspection of mura defects in liquid

crystal displays using optical flow-based motion

analysis. Machine Vision and Applications, 22(4),

629-649.

Y. H. Tsai, D. M. Tsai, W. C. Li, W. Y. Chiu, and M.

C. Lin, (2011). Surface defect detection of 3D

objects using robot vision. Industrial Robot-an

International Journal, 38(4), 381-398.

S. E. Umbaugh, (2016). Digital image processing and

analysis: human and computer vision

applications with CVIPtools: CRC press.

X. W. Zhang, Y. Q. Ding, Y. Y. Lv, A. Y. Shi, and R.

Y. Liang, (2011). A vision inspection system for

the surface defects of strongly reflected metal

based on multi-class SVM. Expert Systems with

Applications, 38(5), 5930-5939.

8 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

12 YU-CHENG CHOU

9 NOTES ON CONTRIBUTORS

Yu-Cheng Chou received

his Ph.D. Degree in

Mechanical and Aeronautical

Engineering from University

of California, Davis. He is an

Assistant Professor in the

Institute of Undersea

Technology at National Sun

Yat-sen University, Taiwan.

His research focuses on

intelligent control and design

optimization for underwater vehicles and underwater

instrumentation systems.

Wei-Chieh Liao received his

Master of Science Degree in

Mechanical Engineering

from Chung Yuan Christian

University, Taiwan. His

master thesis relates to real-

time surface defect detection

through a single CUDA

(Compute Unified Device

Architecture) enabled GPU

platform.

Yan-Liang Chen received

his Master of Science Degree

in Mechanical Engineering

from Chung Yuan Christian

University, Taiwan. His

master thesis relates to high

performance surface defect

detection through multiple

CUDA (Compute Unified

Device Architecture) enabled

GPU platforms.

Ming Chang received his

Ph.D. Degree in Mechanical

Engineering from National

Taiwan University. He is the

chairman of the Chinese

Metrology Society and a

Professor in the Department

of Mechanical Engineering at

Chung Yuan Christian

University, Taiwan. His

research interests include

precision metrology, photomechanics, automated

optical inspection, and nanotechnology.

Po Ting Lin received his

Ph.D. Degree in Mechanical

and Aerospace Engineering

from Rutgers University. He

is an Associate Professor in

the Department of

Mechanical Engineering at

National Taiwan University

of Science and Technology.

His research interests include

stochastic parametric

modeling and multidisciplinary design optimization of

complex engineering systems.

