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1 INTRODUCTION 
EVERY manufactured product ideally needs to be 

tested before delivery to ensure that it satisfies the 

requirements of customers and has sufficient 

reliability. Due to high costs of testing the quality of a 

product, manufacturers often test only a small portion 

of a batch of products. However, for sensitive 

components, such as integrated circuits and glass 

panels, in-line inspection is strictly enforced in the 

early stages of manufacturing to enable corrective 

actions, leading to the improvement of overall 

productivity. More than two decades ago, Park and 

Bien (1995) designed a machine vision system using 

programmable hardware for industrial inspection 

applications, such as the liquid-crystal display (LCD) 

panel inspection. 

Nowadays, the machine vision technology has been 

adopted as a non-destructive test protocol for reliable 

inspection and localization of surface defects in the 

manufacturing industry. The machine vision 

technology relies on image analysis to enable useful 

and effective functions, such as automated optical 

inspection, remote navigation, and dynamic visual 

recognition. In the past decade, numerous machine 

vision techniques have been proposed for surface 

defect inspection. 

Some recently reported methods and systems are 

summarized as follows. Ryu et al. (2014) designed a 

machine vision system with a line scan camera to 

detect texture differences and brightness differences 

between well-scarfed and poorly-scarfed steel slab 

surfaces. Busin et al. (2013) designed a line scan color 

vision system to detect printing flaws that appear on 

the color surfaces of drinking glasses decorated in a 

silk-screen process. Lin et al. (2013) proposed a laser 

reflection point inspection method, combining fuzzy 

rules with an artificial neural network, for chemical 

stain inspection on the surface of polysilicon solar 

wafers. Tsai et al. (2012) proposed a regularity 

measure as the only discrimination feature to detect 

ill-defined subtle defects on non-textured and 

homogeneously textured surfaces. Li et al. (2012) 

proposed a local annular contrast based image 

processing algorithm to find defects on steel bar 

surfaces. Tsai et al. (2012) proposed a dissimilarity 

measure based on the optical-flow technique for defect 

inspection on light-emitting diode (LED) wafer die 
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surfaces. Li and Tsai (2011) developed a machine 

vision based scheme to automatically detect saw-mark 

defects on solar wafer surfaces. Tsai and Tsai (2011) 

proposed an optical flow-based motion analysis 

scheme to detect low-contrast blemishes on LCD 

panels. Zhang et al. (2011) designed a multi-class 

support vector machine (SVM) based vision system 

for defect inspection of strongly reflective metal 

surfaces. Michaeli and Berdel (2011) proposed an in-

line inspection algorithm for textured plastic surfaces 

produced in a high speed continuous process. Tsai et 

al. (2011) developed a robot vision system for ill-

defined anomaly detection on surfaces of 3D objects. 

Tian et al. (2011) proposed a multiple classifier 

system, based on SVM and stacked generalization, for 

wheat disease diagnosis through pattern recognition 

on the surface of wheat leaves. Rosati et al. (2009) 

designed a real-time defect detection system for highly 

reflective curved surfaces of coated plastic 

components produced in the automotive industry. In 

addition, Chiou et al. (2011) and Tsai et al. (2010) 

proposed machine vision techniques to inspect micro-

crack defects in the solar wafer manufacturing process. 

In terms of screening products based on pre-

defined criteria, the above techniques generate 

satisfactory performance in different applications of 

surface defect detection. However, the above 

techniques have a compromise between the speed and 

resolution. In other words, the above techniques avoid 

a situation where hundreds of mega pixels have to be 

processed per second continuously. Such a 

compromise between the speed and resolution 

generates a bottleneck for the applications of in-line 

surface inspection. 

To this end, in our previous work (Chang et al., 

2014), we presented the first non-destructive optical 

inspection system equipped with a Compute Unified 

Device Architecture (CUDA) workstation to achieve 

satisfactory performance in both the speed and 

resolution for the extraction and labeling of micro-

sized surface defects. The performance of a single 

optical inspection system in the above work was tested 

using a back-coated mirror object with 43 mm in 

width and 70 mm in length. However, surface defect 

detection for a larger object, under the same speed and 

resolution requirements, was not addressed in our 

previous work. Therefore, this work aims to expand 

our previous work to deal with such a more 

challenging situation. 

Table 1 shows the comparisons between this work, 

our previous work, and the above cited works. As 

shown in Table 1, due to the resolution requirement 

and the test object size, the image sizes concerned in 

this work and our previous work are much larger than 

those in the cited works. When taking the time limits 

into consideration, the speed requirements in this work 

and our previous work are calculated as 289.13 

(=80,000×24,576×10-6/6.8) mega pixels/sec and 

144.56 (=20,000×12,288×10-6/1.7) mega pixels/sec, 

respectively. As shown in Table 1, the results in the 

cited works are all obtained through single central 

processing unit (CPU) based algorithms. Moreover, 

according to Table 1, the largest speed in the cited 

works is calculated as 40.33 (=512×1,024×10-6/0.013) 

mega pixels/sec. Thus, the single CPU-based methods 

in the cited works will not satisfy the time limits 

applied to this work and our previous work. 

As previously mentioned, this work aims to expand 

our previous work, in order to handle surface defect 

detection for a larger object under the same resolution 

and speed requirements as those in our previous work. 

As shown in Table 1, in terms of hardware, two 

graphics processing units (GPUs) and two CPUs are 

employed in this work. More precisely, two computers, 

each of which is equipped with a CPU and a CUDA 

GPU, are used to simultaneously perform surface 

defect detection on an object eight times as large as 

that in our previous work. Additionally, this work and 

our previous work are targeted toward a production 

line scenario, i.e. screening out defective surfaces in 

real-time. Hence, this work and our previous work 

focus on completing defect detection within the time 

limits and consider defect recognition as an off-line 

task. Defect recognition is equivalent to image pattern 

recognition. Moreover, edge detection is considered a 

fundamental step in image pattern recognition 

techniques (Umbaugh, 2016). To this end, the defect 

detection algorithms in this work and our previous 

work are developed to return the defect quantity 

indexes, the defect size, and the image data with 

identified defect edges. 

The line scan camera in our previous work is set up 

such that the camera captures and loads an image of 

20,000×12,288 pixels to a CPU in 1.7 seconds. 

Additionally, due to the maximum CUDA threads 

allowable on a CUDA GPU, an image that can be 

simultaneously processed by CUDA threads has a 

maximum size of 5,000×12,288 pixels. Hence, an 

image of 20,000×12,288 pixels is divided into four 

separate sub-images, each of which has 5,000×12,288 

pixels. The time, 0.487 second shown in Table 1, is 

the summation of the four time periods elapsed to 

complete only the defect detection process on the four 

sub-images. In other words, the time, 0.487 second, 

excludes the time used to store the four output sub-

images with extracted edges. 

The image acquisition time and the maximum 

number of CUDA threads applied to our previous 

work are also applied to this work. As mentioned 

earlier, the image size handled in this work is eight 

times as large as that in our previous work. Meanwhile, 

it is necessary to store the processed sub-images for 

further off-line operations such as defect recognition. 

Therefore, as shown in Table 1, this work is targeted 

at a situation where a time limit of 6.8 seconds is 

required to perform defect detection on 32 sub-images, 

each of which has 5,000×12,288 pixels, and to save 32 

processed sub-images as separate files. 
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Table 1.   Comparisons between this work and cited works 

 GPU CPU Image size (pixel) Time limit (sec) Time result (sec) 

This work 2  2 80,000×24,576 6.8 To be presented 

Chang et al. (2014) 1 1 20,000×12,288 1.7 0.487 

Ryu et al. (2014) n/a 1 4,096×1,000 n/a n/a 

Busin et al. (2013) n/a 1 1,320×1,947 n/a 1 

Lin et al. (2013) n/a 1 640×480 n/a n/a 

D. M. Tsai, Chen, et al. (2012) n/a 1 400×400 n/a 0.032 

W. B. Li et al. (2012) n/a 1 512×1,024 n/a 0.013 

D. M. Tsai, Chiang, et al. (2012) n/a 1 115×105 n/a 0.012 

W. C. Li & Tsai (2011) n/a 1 1,560×1,560 n/a 9.3 

D. M. Tsai & Tsai (2011) n/a 1 200×200 n/a 0.05 

Zhang et al. (2011) n/a 1 256×256 n/a n/a 

Michaeli & Berdel (2011) n/a 1 512×512 n/a 0.102 

Y. H. Tsai et al. (2011) n/a 1 1,600×1,200 n/a 3.55 

Tian et al. (2011) n/a 1 640×480 n/a n/a 

Rosati et al. (2009) n/a 1 782×582 n/a n/a 

Chiou et al. (2011) n/a 1 640×480 n/a 0.18 

D. M. Tsai et al. (2010) n/a 1 1,000×1,000 n/a 0.36 

To tackle the above situation, this work employs a 

distributed memory system consisting of two 

computers, each of which is equipped with a CPU and 

a CUDA GPU, as the hardware structure. When 

applying this distributed memory system to a real 

production line, each CUDA computer will control a 

line scan camera to capture images of different 

portions of the same object surface. Moreover, 

information of surface defects obtained at each CUDA 

computer has to be integrated to allow for decision 

making on whether or not the test object is a defective 

one. The Message Passing Interface (MPI) (Gropp et 

al., 1996) is a well-established industry standard for 

communication among processes that model a parallel 

program running on a distributed memory system. 

Therefore, as the best option, this work leverages the 

MPI standard to tackle the synchronization and data 

transmission among inspection tasks running on 

distributed CUDA computers. 

In our previous work, a surface inspection 

procedure is composed of the CPU and GPU 

operations executed on a single CUDA computer. 

Each CPU operation is executed by the CPU, and each 

GPU operation is executed by the CUDA GPU 

through a large number of parallel threads. Despite 

that each GPU operation is carried out by parallel 

threads, all the CPU and GPU operations are still 

executed one after another. In other words, our 

previous work adopts a sequential computing model.  

The objective of this work is to achieve in-line 

surface inspection on an object, which is eight times 

as large as that in our previous work, through a 

distributed system consisting of two CUDA computers. 

Thus, on each CUDA computer in this work, the 

image size to be processed is 80,000×12,288 pixels, 

which is four times as large as that in our previous 

work. Owing to the maximum number of CUDA 

threads allowable on the GPU, the image on each 

CUDA computer must be divided into 16 sub-images, 

each with 5,000×12,288 pixels, for GPU computing 

purposes. Moreover, on each CUDA computer, defect 

detection on the 16 sub-images and saving the 16 

processed sub-images as separate files must be 

completed within 6.8 seconds. The sequential 

computing model adopted in our previous work cannot 

satisfy such a speed requirement. Thus, in this work, 

the CPU and GPU operations on each CUDA 

computer should be managed to handle different parts 

of the image data during the same time period. Hence, 

this work employs a concurrent computing model to 

allow the CPU and GPU operations to run 

concurrently on each CUDA computer. 

The contributions of this work are summarized as 

follows: (1) based on the first non-destructive CUDA-

enabled optical inspection system established by the 

authors, this paper presents the first distributed version 

of the system to tackle in-line surface defect detection 

for a large object; (2) to utilize the presented multi-

CPU and multi-GPU distributed hardware structure 

for in-line surface inspection, this paper proposes a 

hybrid computing model as the software structure; the 

CPU and GPU operations running on a single CUDA 

computer are designed based on a concurrent 

computing model, and the CPU operations running on 

multiple CUDA computers are designed based on a 

distributed computing model; (3) to implement the 

proposed hybrid computing model, this paper 

integrates three different programming models: 

multithreaded programming with POSIX threads 

(Pthreads), parallel programming with CUDA, and 

parallel programming with MPI. 

2 HARDWARE AND SOFTWARE SYSTEMS 

2.1 Hardware System 
THE hardware system proposed in our previous 

work is shown in Figure 1. The hardware system 
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consists of a single CUDA workstation equipped with 

a line scan camera. The resolution requirement is that 

each pixel represents an area of 3.5×3.5μm2. The 

camera is a 12288-pixel line scan camera with a 12 

kHz acquisition rate. Based on the maximum image 

size affordable by the camera’s onboard memory, the 

size of the mirror object is chosen to be 70×43 mm2. 

Additionally, the image of the test object has 

20,000×12,288 pixels. It takes 1.7 seconds to capture 

the object image and load the image data to the 

computer’s main memory. As mentioned earlier, the 

image is divided and saved as four sub-images, each 

of which has 5,000×12,288 pixels. In our previous 

work, 1.7 seconds is chosen as the time limit to 

complete surface inspection on the mirror object, 

leading to a speed requirement of 144.56 mega 

pixels/sec. The experimental result shows that it takes 

0.487 second to complete defect detection on the four 

sub-images. However, 0.487 second does not include 

the time to save the four output sub-images with 

extracted edges. 

 
Figure 1.  Hardware system in our previous work. 

The hardware system of DHIS is expanded from 

the one proposed in our previous work. As shown in 

Figure 2, the hardware system of DHIS consists of 

two CUDA workstations. Each CUDA workstation is 

equipped with a line scan camera. A local area 

network (LAN) interconnects the two CUDA 

workstations through a high speed Ethernet switch. 

The size of a test object in this work is 280×86 mm2, 

which is eight times as large as that in our previous 

work. In addition, the resolution requirement in this 

work is 3.5×3.5μm2/pixel, the same as that in our 

previous work. As a result, the image size of a test 

object is 80,000×24,576 pixels. Each CUDA 

workstation of DHIS is configured to handle an area 

of 280×43 mm2, corresponding to an image of 

80,000×12,288 pixels. As previously mentioned, it 

takes 1.7 seconds to capture and load an image of 

20,000×12,288 pixels to the CUDA workstation’s 

main memory, and such an image has the maximum 

pixels that can be accommodated within the camera’s 

on-board memory. Therefore, in this work, an image 

of 20,000×12,288 pixels will be loaded to each CUDA 

workstation every 1.7 seconds, meaning that a time 

limit of 1.7 seconds must be guaranteed on each 

CUDA workstation to complete defect detection on 

such an image and storage of the processed image. 

Moreover, the two CUDA workstations of DHIS are 

managed to operate synchronously. Hence, from the 

perspective of DHIS, in order to achieve in-line defect 

detection on an object of 280×86 mm2, a total of 6.8 

seconds must be guaranteed to complete the following 

tasks: (1) defect detection on an image of 

80,000×12,288 pixels at each CUDA workstation; (2) 

integration of the defect information obtained at each 

CUDA workstation; (3) storage of the processed sub-

images at each CUDA workstation. As a result, the 

speed requirement in this work is calculated as 289.13 

mega pixels/sec. 

 
Figure 2.  Hardware system of DHIS. 

From the perspective of hardware, DHIS is a 

distributed system consisting of individual 

workstations, each of which contains two different 

processors, including the CPU and GPU. Therefore, 

DHIS has the distributed heterogeneous nature in the 

hardware. More importantly, the hardware system of 

DHIS is highly expandable to accommodate more 

computational resources to satisfy more rigorous 

requirements imposed on the speed and resolution. 

2.2 Software System 
TO utilize the presented multi-CPU and multi-GPU 

distributed hardware structure for in-line surface 

inspection, a hybrid computing model is proposed as 

the software structure. The hybrid computing model 

combines a concurrent computing model and a 

distributed computing model. The CPU and GPU 

operations running on each CUDA workstation are 

designed based on a concurrent computing model. On 

the other hand, the CPU operations running on the 

distributed CUDA workstations are designed based on 

a distributed computing model.  

 
Figure 3.  Software system of DHIS. 
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Figure 4.  Concurrent computing scheme on each CUDA workstation. 

To implement the proposed hybrid computing 

model, this paper integrates three different 

programming models: multithreaded programming 

with Pthreads, parallel programming with CUDA, and 

parallel programming with MPI. Therefore, as shown 

in Figure 3, the software system of DHIS comprises 

Pthreads, CUDA threads, and MPI processes. On each 

CUDA workstation, an MPI process and 17 Pthreads 

are executed by the CPU, and a total of 61,440,000 

CUDA threads are executed by the GPU. Moreover, 

as shown in Figure 4, a concurrent computing scheme 

is adopted on each CUDA workstation to manage the 

Pthreads and CUDA threads for image data processing. 

The operations of five Pthreads, including Pthread 

#0 to Pthread #4, within 3.4 seconds from the initial 

time point are shown in Figure 4. Each CUDA 

workstation is in charge of 1/2 of the object. Block 1 

to Block 4 are memory blocks allocated in the 

computer’s main memory to store the image data at 

runtime. Each block stores 1/8 of the entire object 

image. Additionally, each block consists of four sub-

blocks, such as Block 1-A to Block 1-D, and therefore 

each sub-block stores 1/32 of the entire object image.  

Block E and Block F, each with the same size as a 

sub-block in the computer’s main memory, are 

memory blocks allocated in the GPU’s global memory 

for multithreaded operations on the CUDA GPU. 

Block E stores the image data that are sent from the 

CPU and will be processed by the CUDA threads to 

obtain the defect quantity indexes, the defect size, and 

the image data with identified edges. Block F stores 

the image data with identified edges that will be sent 

back to the corresponding sub-block in the computer’s 

main memory. 

Block H and Block G, which are not drawn to scale 

in Figure 4, are memory blocks to accommodate three 

integers in the GPU’s global memory and 48 integers 

in the computer’s main memory, respectively. In this 

work, the defect quantity indexes include the number 

of defect initial pixels and the number of defect 

terminal pixels, and the defect size is equivalent to the 

number of defect pixels. When the above three 

integers for the image data in Block E are obtained, 

they will be stored in Block H and sent back to the 

corresponding locations in Block G. 

The concurrent computing scheme shown in Figure 

4 is illustrated as follows: 

(1) At 𝑡 = 0: Pthread #0 starts to capture the image of 

the first 1/8 of the object and prepares to load the 

image data into Block 1. Among Pthread #1 to Pthread 

#4, each Pthread waits for the signal from the Pthread 

with an ID one less than its own.  

(2) At 𝑡 = 1.7: Pthread #0 finishes loading the image 

data into Block 1 and thereby signals Pthread #1. 

Pthread #0 then starts to capture the image of the next 

1/8 of the object and prepares to load the image data 

into Block 2. Pthread #1 receives the signal from 

Pthread #0, and it then copies the image data from 

Block 1-A to Block E and launches CUDA threads to 

perform defect detection operations.  

(3) At 𝑡 = 1.7 + ∆𝑡1 : Pthread #1 obtains the defect 

information kept in Block G and the output image data 

· Starts to capture image data 
and prepares to load the 
image data into Block 1

· Finishes loading the image 
data into Block 1

· Signals Pthread #1
· Starts to capture image data 

and prepares to load the 
image data into Block 2

· Launches CUDA threads to 
process Block 1-A 

· Waits for the signal from 
Pthread #0

· Waits for the signal from 
Pthread #1

· Waits for the signal from 
Pthread #2

· Waits for the signal from 
Pthread #3

· Finishes processing Block 1-A
· Signals Pthread #2
· Starts to save Block 1-A as file

· Launches CUDA threads to 
process Block 1-B 

· Finishes processing Block 1-B
· Signals Pthread #3
· Starts to save Block 1-B as file

· Launches CUDA threads to 
process Block 1-C 

· Finishes processing Block 1-C
· Signals Pthread #4
· Starts to save Block 1-C as file

· Launches CUDA threads to 
process Block 1-D 

· Finishes processing Block 1-D
· Signals Pthread #5
· Starts to save Block 1-D as file

Pthread #0 Pthread #1 Pthread #2 Pthread #3 Pthread #4

· Finishes loading the image 
data into Block 2

· Signals Pthread #5
· Starts to capture image data 

and prepares to load the 
image data into Block 3

~
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~
~

t (sec)
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Computer’s main memory
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GPU’s global memory
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kept in Block 1-A, and thereby signals Pthread #2. 

Pthread #1 then starts to save the output image data as 

a file. Pthread #2 receives the signal from Pthread #1, 

and then it copies the image data from Block 1-B to 

Block E and launches CUDA threads to perform 

defect detection operations.  

(4) At 𝑡 = 1.7 + ∑ ∆2
𝑖=1 𝑡𝑖 : Pthread #2 obtains the 

defect information kept in Block G and the output 

image data kept in Block 1-B, and thereby signals 

Pthread #3. Pthread #2 then starts to save the output 

image data as a file. Pthread #3 receives the signal 

from Pthread #2, and then it copies the image data 

from Block 1-C to Block E and launches CUDA 

threads to perform defect detection operations. 

(5) At 𝑡 = 1.7 + ∑ ∆3
𝑖=1 𝑡𝑖 : Pthread #3 obtains the 

defect information kept in Block G and the output 

image data kept in Block 1-C, and thereby signals 

Pthread #4. Pthread #3 then starts to save the output 

image data as a file. Pthread #4 receives the signal 

from Pthread #3, and then it copies the image data 

from Block 1-D to Block E and launches CUDA 

threads to perform defect detection operations. 

(6) At 𝑡 = 1.7 + ∑ ∆4
𝑖=1 𝑡𝑖 : Pthread #4 obtains the 

defect information kept in Block G and the output 

image data kept in Block 1-D, and thereby signals 

Pthread #5. Pthread #4 then starts to save the output 

image data as a file. 

(7) At 𝑡 = 3.4  seconds: Pthread #0 finishes loading 

the image data into Block 2 and thereby signals 

Pthread #5. Pthread #0 then starts to capture the image 

of the next 1/8 of the object and prepares to load the 

image data into Block 3. 

The idea of the presented concurrent computing 

scheme is that the time used to obtain the defect 

quantity indexes and the defect sizes for 1/8 of the 

object, such as ∑ ∆4
𝑖=1 𝑡𝑖  in Figure 4, can be limited 

within 1.7 seconds by decoupling itself from the time 

used to save the output image data as four individual 

files. Moreover, once the last 1/8 of the object image, 

i.e. the image in Block 4, has been processed on each 

CUDA workstation, a total of 48 integers, comprising 

16 sets of the defect quantity indexes and the defect 

size, are stored in Block G. The 48 integers on CUDA 

workstation #2 must be sent to CUDA workstation #1 

for data integration. As shown in Fig. 3, such inter-

platform operations are designed through a distributed 

computing model based on the Message Passing 

Interface (MPI) standard. The operations will be 

performed by two distributed MPI processes: MPI 

process #1 sends the integer array to MPI process #0, 

whereas MPI process #0 receives the integer array and 

combines it with the local one. Such inter-platform 

operations also need to be completed within the same 

1.7 seconds allotted to the last 1/8 of the object image. 

Based on the maximum CUDA threads allowable 

on the CUDA GPU adopted in this work and our 

previous work, the image size suitable for CUDA 

multithreading is chosen to be 5,000×12,288 pixels. 

Therefore, as shown in Figure 3, on each CUDA 

workstation, a total of 61,440,000 (=5,000×12,288) 

CUDA threads, i.e. CUDA threads with ID #0 to ID 

#61,439,999, are launched to perform defect detection 

operations concurrently. The defect detection 

operations are pixel-wise operations, including the 

binarization, defect labeling, and defect edge detection. 

For each 1/32 of the object image, such as the image 

data in Block 1-A, a corresponding Pthread, such as 

Pthread #1, will activate 61,440,000 CUDA threads to 

perform these pixel-wise operations one after another. 

From the software aspect, DHIS contains a hybrid 

computing model: a concurrent computing model for 

the CPU and GPU operations running on a single 

computer, and a distributed computing model for the 

CPU operations running on multiple computers. 

Additionally, to implement the hybrid computing 

model, DHIS employs a hybrid programming model, 

which integrates Pthreads, MPI, and CUDA 

programming models. Therefore, DHIS has the 

heterogeneous nature in the software. 

3 CUDA-BASED DEFECT DETECTION 
ALGORITHMS 

IN this work, the purpose of performing surface 

defect detection on a mirror object is to obtain the 

defect quantity indexes, the defect size, and the image 

with defect edges. Moreover, in order to exploit the 

high performance feature of a CUDA GPU, the defect 

detection operations are developed to be pixel-wise 

operations, including the binarization, defect labeling 

process, and defect edge detection. The binarization 

aims to generate a binary image for the subsequent 

operations (defect labeling and defect edge detection), 

as well as to obtain the defect size, which is equivalent 

to the number of defect pixels. The defect labeling 

process aims to obtain the defect quantity indexes, 

which include the number of defect initial pixels and 

the number of defect terminal pixels. The defect edge 

detection aims to obtain an image with extracted 

defect edges. Each CUDA thread represents a pixel on 

a 5,000×12,288 pixel image (1/32 of the object image) 

and performs the above pixel-wise operations on the 

corresponding pixel.  

3.1  Binarization 
THE binarization algorithm is straightforward and 

based on a predefined threshold. In this work, a pixel 

with a value larger than the threshold is considered as 

a defect pixel. Therefore, as shown in Figure 5, if a 

pixel value is larger than the threshold, the pixel value 

is set to 255, and the first element of Block H is 

increased by 1. Otherwise, the pixel value is set to 

zero. Block H is a memory block allocated in the 

GPU’s global memory to store three integers including 

the defect quantity indexes and the defect size. The 

first element of Block H is used to store the number of 

defect pixels, which represents the defect size. To 

avoid the race condition among CUDA threads, 
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increasing the first element of Block H is implemented 

as an atomic operation. On each CUDA workstation, 

every time when the binarization is completed by all 

the CUDA threads, the number of defect pixels on a 

5,000×12,288 pixel image (1/32 of the object image) 

is acquired, and the resultant binary image is ready for 

the subsequent pixel-wise operations. 

BEGIN 
IF   pixel value > threshold   THEN
   pixel value  ←  255
   Block_H[0]  ←  Block_H[0] + 1 
ELSE
   pixel value  ←  0
END

 
Figure 5.  Pseudocode for the binarization. 

3.2 Defect Labeling 
THE defect labeling process aims to acquire two 

defect quantity indexes, including the number of 

defect initial pixels and the number of defect terminal 

pixels. Therefore, the defect labeling process contains 

two pixel-wise operations: the defect initial pixel 

labeling and the defect terminal pixel labeling. 

The defect initial pixel labeling algorithm is 

illustrated in Figure 6. A pixel is considered as a 

defect initial pixel, if it satisfies the following 

requirements: its value is 255, and the values of the 

upper-surrounding pixels (left, upper-left, upper, and 

upper-right pixels) are all zero. If a pixel is determined 

to be a defect initial pixel, the second element of 

Block H is increased by 1. To avoid the race condition 

among CUDA threads, increasing the second element 

of Block H is implemented as an atomic operation. On 

each CUDA workstation, every time when the defect 

initial labeling is completed by all the CUDA threads, 

the number of defect initial pixels on a 5,000×12,288 

pixel image (1/32 of the object image) is acquired. 

BEGIN
IF   pixel value = 255   THEN
   IF   left pixel value = 0   AND 
         upper-left pixel value = 0   AND
         upper pixel value = 0   AND
         upper-right pixel value = 0   THEN   
      Block_H[1]  ←  Block_H[1] + 1
END

 
Figure 6.  Pseudocode for the defect initial pixel labeling. 

The defect terminal pixel labeling algorithm is 

illustrated in Figure 7. A pixel is considered as a 

defect terminal pixel, if it satisfies the following 

requirements: its value is 255, and the values of the 

lower-surrounding pixels (right, lower-right, lower, 

and lower-left pixels) are all zero. If a pixel is 

determined to be a defect terminal pixel, the third 

element of Block H is increased by 1. To avoid the 

race condition among CUDA threads, increasing the 

third element of Block H is also implemented as an 

atomic operation. On each CUDA workstation, every 

time when the defect terminal labeling is completed 

by all the CUDA threads, the number of defect 

terminal pixels on a 5,000×12,288 pixel image (1/32 

of the object image) is acquired. 

BEGIN
IF   pixel value = 255   THEN
   IF   right pixel value = 0   AND 
         lower-right pixel value = 0   AND
         lower pixel value = 0   AND
         Lower-left pixel value = 0   THEN   
      Block_H[2]  ←  Block_H[2] + 1
END

 
Figure 7.  Pseudocode for the defect terminal pixel labeling. 

3.3 Defect Edge Detection 
THE defect edge detection aims to generate an 

image with defect edges that are composed of defect 

edge pixels.  

BEGIN
IF   pixel value = 255   THEN
   IF   left pixel value = 0   AND  
         right pixel value = 255   THEN
      Block_F[thread_id]  ←  255
   ELSE  IF   upper-left pixel value = 0   AND  
                   lower-right pixel value = 255   THEN
      Block_F[thread_id]  ←  255
   ELSE  IF   upper pixel value = 0   AND  
                   lower pixel value = 255   THEN
      Block_F[thread_id]  ←  255
   ELSE  IF   upper-right pixel value = 0   AND  
                   lower-left pixel value = 255   THEN
      Block_F[thread_id]  ←  255
   ELSE  IF   right pixel value = 0   AND  
                   left pixel value = 255   THEN
      Block_F[thread_id]  ←  255
   ELSE  IF   lower-right pixel value = 0   AND  
                   upper-left pixel value = 255   THEN
      Block_F[thread_id]  ←  255
   ELSE  IF   lower pixel value = 0   AND
                   upper pixel value = 255   THEN
      Block_F[thread_id]  ←  255
   ELSE  IF   lower-left pixel value = 0   AND
                   upper-right pixel value = 255   THEN
      Block_F[thread_id]  ←  255
END

 
Figure 8.  Pseudocode for the defect edge detection. 

As shown in Figure 8, if a pixel complies with one 

of the following eight conditions, it is considered as 

the corresponding defect edge pixel:  

(1) defect left edge pixel: its left and right pixel values 

are zero and 255, respectively;  

(2) defect upper-left edge pixel: its upper-left and 

lower-right pixel values are zero and 255, respectively;  

(3) defect upper edge pixel: its upper and lower pixel 

values are zero and 255, respectively;  

(4) defect upper-right edge pixel: its upper-right and 

lower-left pixel values are zero and 255, respectively;  

(5) defect right edge pixel: its right and left pixel 

values are zero and 255, respectively;  

(6) defect lower-right edge pixel: its lower-right and 

upper-left pixel values are zero and 255, respectively; 

(7) defect lower edge pixel: its lower and upper pixel 

values are zero and 255, respectively; 

(8) defect lower-left edge pixel: its lower-left and 

upper-right pixel values are zero and 255, respectively. 
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Block F is a memory block allocated in the GPU’s 

global memory to store the image with identified 

defect edges. Moreover, Block F is initialized as an 

array of zeros. As shown in Figure 8, if a pixel is 

determined to be a defect edge pixel, a value of 255 is 

assigned to the corresponding element of Block F, i.e. 

Block_F[thread_id], where thread_id is the ID of the 

CUDA thread in charge of the operations on that pixel. 

On each CUDA workstation, every time when the 

defect edge detection is completed by all the CUDA 

threads, a 5,000×12,288 pixel image (1/32 of the 

object image) with defect edges is acquired. 

4 EXPERIMENTAL RESULTS 
IN this work, the size of a test object is 280×86 

mm2 and the resolution requirement is 3.5×3.5μ

m2/pixel. As a result, the image of a test object has 

80,000×24,576 pixels. Each CUDA workstation of 

DHIS is configured to handle one-half of a test object, 

corresponding to an image of 80,000×12,288 pixels. 

Due to the maximum CUDA threads allowable on the 

CUDA GPU adopted in this work, the above image of 

80,000×12,288 pixels needs to be separated into 16 

sub-images (each with 5,000×12,288 pixels), which 

will be processed sequentially on each CUDA 

workstation. 

The objective of this work is to validate that the 

proposed DHIS can acquire the correct defect quantity 

indexes and defect sizes for all the 32 sub-images 

(each with 5,000×12,288 pixels) within the time limit 

of 6.8 seconds. Thus, for system validation purposes, a 

total of 32 grayscale JPEG images, each with 

5,000×12,288 pixels and simulated defect patterns, are 

created to represent the entire image of an object. The 

downscaled versions, defect quantity indexes, and 

defect sizes for the 32 grayscale images are shown in 

Figure 9 to Figure 12. 

 
Figure 9.  Defect information and downscaled versions for 
Block 1 images on each CUDA workstation. 

 
Figure 10.  Defect information and downscaled versions for 
Block 2 images on each CUDA workstation. 

 
Figure 11.  Defect information and downscaled versions for 
Block 3 images on each CUDA workstation. 

 
Figure 12.  Defect information and downscaled versions for 
Block 4 images on each CUDA workstation. 

Each image for CUDA workstation #1 is rotated by 

180o to create its counterpart for CUDA workstation 

#2. Therefore, such paired images have the same 

number of defect pixels. Due to an angle of 180o 

between each pair of images, the numbers of defect 

initial and defect terminal pixels for an image on 

CUDA workstation #1 are the numbers of defect 

terminal and defect initial pixels, respectively, for the 

corresponding image on CUDA workstation #2. For 
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example, as shown in Figure 13, Block2-C1.jpg on 

CUDA workstation #1 has two defect initial pixels 

and three defect initial pixels, whereas Block2-C2.jpg 

on CUDA workstation #2 has three defect initial 

pixels and two defect terminal pixels. 

 
Figure 13.  Defect initial and defect terminal pixels for Block 2-
C images on each CUDA workstation. 

In this work, the above 32 images are used to 

conduct the defect detection experiment on the 

following three hardware and software configurations:  

(1) Configuration #1: distributed system with two 

CUDA workstations; CPU distributed computing with 

MPI processes, CPU concurrent computing with 

Pthreads, and GPU concurrent computing with CUDA 

threads; (2) Configuration #2: distributed system with 

two CUDA workstations; CPU distributed computing 

with MPI processes and GPU concurrent computing 

with CUDA threads; (3) Configuration #3: standalone 

system with one CUDA workstation; GPU concurrent 

computing with CUDA threads.  

Configuration #1 is indeed the proposed DHIS, 

Configuration #2 is DHIS without CPU concurrent 

computing, and Configuration #3 is the system 

presented in our previous work. Each of the two 

CUDA workstations adopted in this work has an 

NVIDIA Tesla C2075 GPU, an Intel Xeon E5-2620 

CPU, and 32 gigabytes of RAM. Meanwhile, a 64-bit 

Windows 7 operating system runs on each CUDA 

workstation. 

Under Configuration #1, a total of 32 Pthreads will 

simultaneously load the 32 images on the two CUDA 

workstations. In addition, on each CUDA workstation, 

when Pthread #i starts to process its image through 

CUDA threads, the preceding Pthread, Pthread #(i-1), 

will begin to save its processed image as a file. 

Moreover, when the last Pthread, i.e. Pthread #16, 

begins to save its processed image as a file on each 

CUDA workstation, MPI process #1 on CUDA 

workstation #2 and MPI process #0 on CUDA 

workstation #1 will start to send and receive the defect 

data, respectively. The defect data include the defect 

quantity indexes and the defect sizes for the 16 images 

on CUDA workstation #2. 

Under Configuration #2, MPI process #0 and MPI 

process #1 will simultaneously start the defect 

detection operations on CUDA workstation #1 and 

CUDA workstation #2, respectively. Moreover, on 

each CUDA workstation, a total of 16 images will be 

processed one after another through CUDA threads. 

Due to such a sequential processing mode on each 

CUDA workstation, an image will not be loaded for 

processing until the preceding processed image has 

been saved as a file. After the last processed image has 

been saved as a file, MPI process #1 on CUDA 

workstation #2 and MPI process #0 on CUDA 

workstation #1 will start to send and receive the defect 

data, respectively. The defect data include the defect 

quantity indexes and the defect sizes for the 16 images 

on CUDA workstation #2. 

Under Configuration #3, all the 32 images will be 

processed one after another through CUDA threads on 

a single CUDA workstation. Thus, an image will not 

be loaded for processing until the preceding processed 

image has been saved as a file. Once the last processed 

image has been saved as a file, the defect quantity 

indexes and the defect sizes for all the 32 images are 

acquired. 

Moreover, for each configuration, in addition to the 

defect quantity indexes and the defect sizes for all the 

32 images, the defect detection experiment also aims 

to measure the turnaround time between two moments 

on CUDA workstation #1: (1) the moment when the 

first image, Block1-A1.jpg, starts to be loaded for 

processing; and (2) the moment when the defect 

quantity indexes and the defect sizes for all the 32 

images have been acquired. The defect detection 

experiment is conducted 30 times under each 

configuration to obtain the results. 

The experimental results show that, under each 

configuration, the defect quantity indexes and the 

defect sizes obtained for all the 32 images at each run 

of the experiment are the same as those shown in 

Figure 9 to Figure 12. However, the performances in 

terms of the turnaround times under the three 

configurations are significantly different.  

Figure 14 shows the turnaround times of 30 

experimental runs under each configuration, and Table 

2 lists the statistics of the turnaround time results. As 

shown in Table 2, the average turnaround time under 

Configuration #1 is 2.56 seconds, which is 37.65% of 

the time limit, 6.8 seconds. By contrast, the average 

turnaround times under Configurations #2 and #3 are 

39.09 and 79.59 seconds, respectively, which do not 

fall within the time limit. On the other hand, the 

average processing speed under Configuration #1 is 

15.27 (= 39.09/2.56) and 31.09 (=79.59/2.56) times of 

those under Configurations #2 and #3, respectively. 

Also, the numbers of independent instruction 

sequences used to process the 32 images under 

Configurations #1, #2, and #3 are 32, 2, and 1, 

respectively. Thus, the number of independent 

instruction sequences under Configuration #1 is 16 (= 

32/2) and 32 (=32/1) times of those under 

Configurations #2 and #3, respectively. Hence, the 

experimental results also indicate a good linear 

relationship between the processing speed ratio and 

the instruction sequence quantity ratio. 
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Figure 14.  Turnaround times of 30 experimental runs under each configuration. 

Table 2.   Statistics of the turnaround time results 

                             Configuration 
  
 
Turnaround time (sec) 

Configuration #1: 
 Distributed system 
 CPU distributed computing 
 CPU concurrent computing 
 GPU concurrent computing 

Configuration #2: 
 Distributed system 
 CPU distributed computing 
 GPU concurrent computing  

Configuration #3: 
 Standalone system 
 GPU concurrent computing  

Average 2.56 39.09 79.59 

Standard deviation 0.12 1.51 0.31 

Maximum 3.06 40.33 80.70 

Minimum 2.34 35.54 79.29 

 

5 CONCLUSION 
AN in-line surface defect detection task, with high 

resolution and high speed requirements, essentially 

demands that the underlying processing infrastructure 

handle a large volume of image data within a short 

image acquisition cycle. To this end, the Distributed 

Heterogeneous Inspection System (DHIS) was 

proposed in this study. DHIS has a distributed multi-

CPU and multi-GPU hardware architecture and is 

equipped with functions for CPU distributed 

computing, CPU concurrent computing, and GPU 

concurrent computing. The resolution and speed 

requirements in this study were 3.5×3.5μm2/pixel and 

289.13 mega pixels/sec, respectively. A total of 32 

grayscale JPEG images, each with 5,000×12,288 

pixels and simulated defect patterns, were created to 

conduct the performance experiment under three 

different system configurations, including: (1) DHIS; 

(2) DHIS without CPU concurrent computing function; 

(3) a non-distributed, standalone system with only 

GPU concurrent computing function. The 

experimental results showed that: (1) the defect 

quantity indexes and the defect sizes obtained under 

the above three system configurations were all correct; 

(2) only DHIS completed the required tasks within the 

time limit of 6.8 seconds; (3) the average turnaround 

time of DHIS was 2.56 seconds, which is 37.65% of 

the time limit; (4) a good linear relationship was found 

to exist between the processing speed ratio and the 

instruction sequence quantity ratio. Therefore, the 

proposed DHIS can satisfy the high resolution and 

high speed requirements specified in this study. 

Furthermore, due to its distributed and expandable 

hardware structure and software algorithm, DHIS has 

the potential to handle in-line surface defect detection 

tasks with even more challenging resolution and speed 

requirements.  
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