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Abstract: In this paper, the observation matrix and reconstruction algorithm of 
compressed sensing sampling theorem are studied. The advantages and 
disadvantages of greedy reconstruction algorithm are analyzed. The 
disadvantages of signal sparsely are preset in this algorithm. The sparsely 
adaptive estimation algorithm is proposed. The compressed sampling matching 
tracking algorithm supports the set selection and culling atomic standards to 
improve. The sparse step size adaptive compressed sampling matching tracking 
algorithm is proposed. The improved algorithm selects the sparsely as the step 
size to select the support set atom, and the maximum correlation value. Half of 
the threshold culling algorithm supports the concentration of excess atoms. The 
experimental results show that the improved algorithm has better power and 
lower image reconstruction error under the same sparsely criterion, and has 
higher image reconstruction quality and visual effects. 
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1 Introduction 
Since the traditional Nyquist sampling theorem is discarded in the data transmission process, some 

scholars have proposed that since some data is to be discarded, whether the compressed data information 
of the signal can be directly obtained when the sampled data is compressible, this not only avoids the 
waste of storage resources, but also improves the sampling efficiency. After many scholars continue to 
explore, a new sampling theorem based on data sparsely is proposed, namely Compressed Sampling or 
compressed sensing. The theorem theory states that as long as the sampled signal is sparse the signal itself 
is sparse or sparse in a certain transform domain; the signal can be sampled by a standard far below the 
Nyquist sampling theorem. The signal is mapped to a measurement matrix that is uncorrelated with the 
sparse transformation matrix, and the measured value can be recovered from the original signal under the 
under sampling frame. The compressed sensing method directly combines sampling and data compression 
in the signal sampling stage, avoiding the redundant information acquisition of the Nyquist theorem 
sampling, and then using the optimization method to process the compressed samples in the digital signal 
processing. The theorem is an underdetermined linear inverse problem for signal reconstruction. The 
sampled data is usually recovered by an optimal iterative algorithm. The theorem has attracted the interest 
and research of many scholars, and is widely used in face recognition, speech recognition; military 
imaging radar imaging, remote sensing imaging; nuclear magnetic resonance in the medical field; deep 
space exploration in the field of astronomy. The compressed sensing theorem was named the top ten 
technology progress award in the United States in 2007. 
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2 Compressed Sensing Theory Mathematical Model 
Compressed sensing also known as compression sensing or compressed sampling, is a technique for 

signal reconstruction using sparse or compressible signals [1]. Or it can be said that the signal is 
compressed while sampling, which greatly reduces the sampling rate. Compressed sensing skips the step 
of acquiring samples and directly obtains a representation of the compressed signal. The CS theory 
utilizes many natural signals with a compact representation on a particular basis. That is, these signals are 
sparse or compressible [2–3]. Due to this characteristic, the signal encoding and decoding framework of 
the compressed sensing theory is quite different from the traditional compression process, which mainly 
includes three aspects: signal sparse representation, coding measurement and reconstruction algorithm. 

Signal sparsely is the premise of the CS theorem, and signal sparsely is the core step of CS sampling 
[4]. It is often necessary to sparsely convert non-sparse signals. Suppose the original signal is the vector 
in the N-dimensional space. If the vector X has only a few non-zero coefficients, it can be seen that the 
vector itself is sparse [5]. For non-sparse signals, if X maps a transform coefficient within a transform 
domain can be expressed as Eq. (1). 

∑==
N

iix θψψθ                                                                                   (1) 

where },,{ 21 Nψψψψ =  is also called sparse basis, },,{ 21 Nθθθθ = is called the sparse 
representation vector of X,  the sparse representation vector θ contains K ( N>>K ) non-zero coefficients, 
then θ is K sparse or vector X has K sparsely, as shown in Fig. 1 as a 3-sparse signal [6]. 

 
Figure 1: Signal sparse representation 

From the process of compressed sensing, it can be seen that its process includes two main aspects. 
One is the measurement matrix, whose main function is to compress the N dimensional signal X to the M 
dimensional signal Y, the amount of data collected is far less than the traditional sampling method, but the 
measurement matrix must meet certain constraints to ensure that most of the information of the signal is 
not lost [7-8]. The second is the reconstruction algorithm. The main function is to obtain the original N 
dimensional signal X from the M dimensional signal Y through nonlinear projection. In the reconstruction 
process, the signal sparsely is used to obtain a reconstructed signal by solving a nonlinear optimization 
problem [9]. The choice of measurement matrix and reconstruction algorithm affects the error between 
the reconstructed signal and the original signal, and the measurement matrix in turn affects the acquisition 
of measured values and the performance of the reconstruction algorithm. Therefore, the core problem in 
compressed sensing is the design and construction of the measurement matrix [10]. The measurement 
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matrix must meet the compression characteristics to break through the Nyquist sampling rate and also 
meet the requirements of the reconstruction algorithm. This paper mainly studies the content of 
measurement matrix in compressed sensing, and focuses on the optimization method and construction 
method of measurement matrix [11]. Due to the close relationship between the measurement matrix and 
the reconstruction algorithm, we first introduce the reconstruction algorithm and analyze which properties 
of the measurement matrix affect the performance of the reconstruction algorithm. 

2.1 Reconstruction Algorithm 
The compressed sensing reconstruction algorithm is based on the measurement matrix Φ  to obtain 

x̂  from the M dimensional measurement signal Y through a nonlinear optimization method. Since N>M, 
there is no array solution of xy Φ= , which is ill-conditioned equation [12]. When ψΦ=Θ  satisfies 
certain conditions, the solution with the most sparse characteristics is the desired solution. The 
mathematical model of the compressed sensing reconstruction algorithm can be described as Eq. (2). 

ssysts Θ=Φ= ψ.min
0

                                                                                               (2) 

Where 
0

s represents the number of non-zero elements in the vector. Due to N>M and K sparsely, 

solving all possible sparse situations can find the most sparse form of solution, but this is an NP-hard 
problem, so it cannot be directly Solution [13]. Therefore, how to use the conversion algorithm to solve 
the problem becomes the main research work of the reconstruction algorithm. The following are the main 
types of commonly used reconstruction algorithms. 
(1) Minimum 1-norm method 

At present, it has been theoretically proved that the solution of the norm 0l  in compressed sensing is 

equivalent to the solution of the norm 1l , and the same solution can be obtained, and the norm 1l  is a 
convex function to facilitate the solution. Equation (1-4) can be transformed into the following Eq. (3). 

ssysts Θ=ΦΨ=⋅
1

min                                                                         (3) 

The Eq. (3) is mathematically a convex programming problem, which can be transformed into a 
linear programming optimization problem and solved by the optimization method [14]. The basis pursuit 
method often adopts the interior point method and the gradient projection method. The reconstruction 

algorithm based on the minimum norm 1l  has high reconstruction accuracy and requires few 
measurements, but the speed is slow and the algorithm complexity is high [15]. The incoherence of the 
column vectors of the sensing matrix Θ directly affects the search direction, the local optimal solution, 
and the accuracy and reconstruction time of the reconstruction algorithm. 
(2) Matching pursuit algorithm 

Based on the 1l  norm minimum problem, the speed of the algorithm is slow, and an approximately 

minimized 0l  norm model is proposed. With a certain reconstruction error, the solution model is as 
shown in Eq. (4). 

ε<ΦΨ−⋅ systs
0

min                             (4) 

This kind of algorithm is a greedy iterative algorithm. According to the sparsity of the signal, the 
signal can be represented linearly by the column vector of the matrix by selecting the most matching atom 
from the measurement matrix and approximating the signal with the least square method. Its main feature 
is that the reconstruction speed is fast, but it can not guarantee the convergence to the global optimal 
solution, so the reconstruction accuracy is low, that is to say, when the reconstruction accuracy is high, it 
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needs more measurement values [16]. Its rapidity makes it one of the most commonly used reconstruction 
algorithms in experiments and engineering. Therefore, there are more researches on these algorithms, 
including matching pursuit algorithm, orthogonal matching pursuit algorithm, regularized orthogonal 
matching pursuit algorithm, subspace tracking algorithm, adaptive matching pursuit algorithm in case of 
unknown sparsity and regularized adaptive matching pursuit algorithm. The performance of various 
matching pursuit algorithms has been improved in turn. This paper only studies the performance of 
different measurement matrices. The reconstruction algorithms used in the experiment are all algorithms. 
Although the reconstruction accuracy is general, the reconstruction speed is fast, which facilitates the 
simulation and observation of measurement matrix in the laboratory. 

The common feature of greedy algorithms is that they are approximately expressed by the column 
vectors of the sensing matrix. The orthogonality of column vectors is related to the selectivity of atoms. 
Therefore, the non correlation of the sensor matrix column vector has an important impact on the 
accuracy and speed of the reconstruction algorithm [17]. The stronger the nonlinear correlation is, the less 
the number of iterations and the shorter the reconstruction time, the better the reconstruction effect. 
Through the above analysis, it can be seen that the properties of the measurement matrix not only have an 
important impact on the signal compression and sampling process, but also indirectly affect the 
reconstruction effect and the speed of reconstruction. Therefore, it is very meaningful to study the 
constraint conditions of measurement matrix and construct a measurement matrix with good performance. 
The research of measurement matrix has always been the focus and difficulty in the theoretical research 
and application research of compressed sensing, and is the core part and application foundation of the 
whole compressed sensing. 
(3) Optimization of measurement matrix 

Measurement matrix is the core part of compressed sensing, but its structure is not arbitrary and must 

meet certain constraints. Restricted isometry property, for any vector ][TRs ∈ and constant 
)1,0(∈δ with K sparse properties, the sensor matrix ψΦ=Θ has a scale constraint isometric, If the 

formula conditions are met. 
2

2

2

2

2

2
)1()1( sss T δδ +≤Θ≤−                             (5) 

The measurement matrix must meet certain conditions, which can be achieved by designing a 
measurement matrix with good properties. Although the principle gives the condition that the 
measurement matrix should satisfy in theory, but in practice, the condition is difficult to be used to guide 
the design of measurement matrix [18]. At the same time, the principle is a sufficient condition rather 
than a necessary condition, which has limitations in the design of measurement matrix. In order to guide 
the design of measurement matrix, some scholars give the correlation discriminant method, which uses 
the correlation number to measure the condition of compression reconstruction. The theoretical 
measurement matrix can not be implemented in hardware very smoothly in practice, and the measurement 
matrix that can be applied in practice must meet more constraints. The fast and effective measurement 
matrix constructed in practical applications has the following characteristic properties. The measurement 
matrix is irrelevant to the sparse matrix, which guarantees a high reconstruction accuracy the number of 
measured values should be as close as possible to the theoretical value, reducing the acquisition of 
measured values The cost of the matrix has a certain structure, can be quickly sampled and quickly 
reconstructed less storage space, simple elements, easy to implement in hardware. These characteristics 
become the basis for constructing a measurement matrix that is easy to implement in hardware in this 
paper. According to the above measurement matrix in theory and application Some of the measurement 
matrices have been studied in succession. The measurement matrices can be divided into two categories 
from the randomness and certainty of matrix elements. 
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3 An optimization Method of Measurement Matrix Based on Eigenvalue Decomposition 
Some optimization methods of measurement matrix have their own shortcomings, such as too many 

iterations and high computational complexity. This paper presents an optimization method of 
measurement matrix based on matrix eigenvalue decomposition. The matrix is constructed by measuring 
matrix and sparse transformation matrix, and a global mutual coherence coefficient based on non-
diagonal elements of matrix is defined. On the basis of studying the mathematical relationship between 
the eigenvalues of the matrix and the mutual interference coefficient, the measurement matrix is gradually 
optimized by averaging the eigenvalues greater than zero in the matrix. This method has fast 
approximation speed and little iteration, which greatly reduces the computational complexity.  

3.1 Global Mutual Interference Coefficient Based on Matrix 
The mutual coherence coefficient is defined as the maximum value of the non-diagonal elements of a 

matrix. The disadvantage of this definition is that it can only describe local coherence. It is possible that 
the inner product of two columns in a matrix is relatively large, but the inner product between other 
columns is very small, This leads to the result that the local mutual correlation coefficient is relatively 
large, but the performance of the matrix is not too bad; it is also possible that the inner product of any two 
columns in the matrix is relatively close and not very large, but their overall correlation coefficient is 
relatively large, and the performance of the measurement matrix is not very good.Due to the shortcomings 
of the mutual coherence coefficients defined, this paper proposes a global mutual coherence coefficient 
based on all non-diagonal elements of the matrix. The definition formula is as Eq. (5). 

∑
≠

=
ji

ijall g 2)(µ                               (5) 

This definition method describes the global coherence of a matrix. The criterion requires that any 
particular column of the matrix is approximately orthogonal. In this paper, the global coherence is more 
stable with the criterion. In addition, there is a close relationship between the global mutual coherence 
coefficient defined in this paper and the eigenvalue of the matrix, and the related mathematical formula 
can be deduced. This method can reduce the overall mutual coherence of matrix, and achieve the purpose 
of optimizing the measurement matrix. 

3.2 Eigenvalue Decomposition Method for Reducing Mutual Interference Coefficient 

Set the measurement matrix
1NMR ×∈Φ ,  rank of matrix is M,

NMR ×∈Ψ  is a sparse transformation 

matrix. ΦΨ=D , Gram matrix DDG T~~= , D~ represents the matrix D after column unitization of pair. If 

the semi definite matrix G has M eigenvalues 0>kλ , it is shown in Eq. (6) and (7). 
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After averaging the eigenvalues of each matrix, the matrix Ĝ  with changed eigenvalues is obtained. 

Then Ĝ  is decomposed into DDG T~~= , then D̂ is unitized to get D~̂ , and then the eigenvalue of 
DDG T

new
~~=  is calculated. Every time the eigenvalue is modified, the eigenvalue of the new matrix will 

approach. The sum of squares of all the non-diagonal elements in the new matrix gradually decreases, so 
the eigenvalues of the optimized matrix are fast approaching to the limit value. Because the real 
symmetric matrix is orthogonal after eigenvalue decomposition, the orthogonally will become stronger 
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and the non-diagonal elements of the matrix will be reduced after averaging the eigenvalues in each 
optimization iteration. Finally, after several iterations and optimizations, the measurement moment is 
obtained. Firstly, the global mutual coherence coefficient between the measurement matrix and the sparse 
transformation matrix is defined. Then, the global mutual interference coefficient is gradually reduced by 
the eigenvalue decomposition of the matrix and averaging the eigenvalues greater than zero, and then the 
optimized measurement matrix is obtained. The experimental results show that the performance and 
reconstruction quality of compressed sensing can be improved by using the optimized measurement 
matrix based on reducing the overall cross-correlation coefficient.  

4 Experiment Simulations and Result Analysis 
When processing images, we need to transform the image, such as FFT, DCT, wavelet transform, 

etc., transform the image into sparse coefficients under the corresponding basis, then process the 
coefficient matrix in columns, and finally reverse the processed coefficients. After transforming back, you 
can get a sparsely reconstructed image. Next, it simulated the Lena 256 × 256 image, respectively. The 
restored image is shown in Figs. 2 and 3. 

 
Figure 2: CoSaMP recovery image 

 
Figure 3:  CS_IHT recovery image 
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As can be seen from the above Figs. 2 and Figs. 3, as the same sampling rate, the CaSaMP’S value is 
much larger than CS_IHT. 

5 Conclusions 
In this paper, we focus on the reconstruction algorithm used for image reconstruction based on CS. 

Considering that the inner product of two vectors cannot reflect the degree of their similarity to the full 
extent, we replace the inner product of two vectors with their correlation coefficients to propose an 
improved CoSaMP algorithm based on correlation coefficient. Experimental results show that this improved 
algorithm can improve the quality of the reconstructed image. Since the computational complexity of the 
correlation coefficient of two vectors is greater than the inner product of two vectors, the improved CoSaMP 
algorithm reduces the reconstruction efficiency. This will be the next problem to research. 
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