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Abstract: Nonlocal property is an important feature of natural images, which 
means that the patch matrix formed by similar image patches is low-rank. 
Meanwhile, learning good image priors is of great importance for image 
denoising. In this paper, we combine the image self-similarity with EPLL 
(Expected patch log likelihood) method, and propose an EPLL denoising model 
based on internal and external image similarity to improve the preservation of 
image details. The experiment results show that the validity of our method is 
proved from two aspects of visual and numerical results. 
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1 Introduction 
Image is one of the most important ways for people to pick up information from the surroundings. 

Unfortunately, due to various factors such as noise, the final image degradation phenomenon occurs, so 
image denoising has been a hot issue until today. 

Up to now, many good denoising methods have been proposed. The proposition of a non-local 
filtering method [1] has landmark significance. After that, nonlocal features began to be the 
most extensive methods in image restoration task [2–4]. And sparse representation [5–9] is also a famous 
one among them. Its basic idea is to consider the image as a linear combination of atoms based on an 
over-complete dictionary. Then, the low-rank approximation methods [10–12] and the priori learning 
based methods [13–14] have attracted more and more attention. Inspired by these methods, more novel 
denoising methods have been proposed [15–16]. 

The internal similarity of image in this paper is what we call the self-similarity of image [17], which 
is a vital attribute of natural images. It means that there will be many similar pixels in natural images. The 
spatial position of similar pixels is not necessarily adjacent, but their gray value and neighborhood 
structure are usually similar. For the sake of self-similarity of images, we decompose the image into 
several small overlapping image patches. Taking Euclidean distance of image patches as the standard to 
measure the similarity, a group of similar image patches are extracted, and then they are vectorized one 
by one to form a similar image patch matrix. Because similar patches can be overlapped, this matrix 
usually has the property of low-rank. 

The existence of external relevance of the image is due to the repetition or correlation of image 
information. EPLL (Expected patch log likelihood) method [18–19] is a very good example of application 
of the external similarity, and the basic idea of this method is to maximum the expected patch log 
likelihood and being close to the corrupted image at the same time. This method has shown promising 
experimental results. 

In this paper, we propose an improved algorithm model based on EPLL, which makes full use of the 



 
14                                                                                                                                                 JIOT, 2020, vol.2, no.1 

internal and external similarity of the image. This paper is organized as follows: Section 2 reviews the normal 
GMM model and the original EPLL algorithm. Section 3 introduces the principle of the low-rank method. 
Section 4 introduces the proposed method. In Section 5, we show experiment results to prove the effectiveness 
of our method. Section 6 makes the conclusion and put forward the directions for further research. 

2 The EPLL Model 
This part introduces the basic theory of EPLL model. 

2.1 Gaussian Mixture Model 
Because a single Gauss distribution has only one peak value, and in practical applications, many data are 

difficult to describe with a single peak, so people propose a Gauss mixture model to fit more complex data. 
Assuming that the Gaussian mixture model consists of 𝐾𝐾Gaussian distributions, that is to say, 

𝐾𝐾clusters, and then we define the GMM distribution as Eq. (1): 

𝑝𝑝(𝑥𝑥) = � 𝜋𝜋𝑘𝑘𝑁𝑁(𝑥𝑥|𝜇𝜇𝑘𝑘 ,𝛴𝛴𝑘𝑘)
𝐾𝐾

𝑘𝑘=1
 

  (1) 

where 

𝑁𝑁(𝑥𝑥|𝜇𝜇𝑘𝑘 ,𝛴𝛴𝑘𝑘) = (2𝜋𝜋)−
𝐷𝐷
2 |𝛴𝛴𝑘𝑘|−

1
2exp (−

1
2

(𝑥𝑥 − 𝜇𝜇𝑘𝑘)𝑇𝑇𝛴𝛴−1(𝑥𝑥 − 𝜇𝜇𝑘𝑘)) (2) 

where 𝐾𝐾 is the number of mixing components, 𝜋𝜋𝑘𝑘are mixing weights for each of the mixture and 𝜇𝜇𝑘𝑘 and 
𝛴𝛴𝑘𝑘 are the corresponding mean and covariance matrix. Moreover, 𝜋𝜋𝑘𝑘 denotes the priori probability and 
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 = 1. Then, through a set of clean natural image patches 𝐷𝐷 = {𝑎𝑎1,𝑎𝑎2,∙∙∙,𝑎𝑎𝑁𝑁}, all these parameters 

are learned by Expectation Maximization algorithm and detailed algorithms can be seen in Tab. 1. 

Table 1: EM algorithm for GMM 

Input: Training set 𝐷𝐷, the number of Guassian components 
𝐾𝐾; 
Initialization: GMM parameters {𝜋𝜋𝑘𝑘,𝜇𝜇𝑘𝑘 ,𝛴𝛴𝑘𝑘}; 
Repeat 
for 𝑗𝑗 = 1,2,∙∙∙,𝑛𝑛 do 
calculate posterior probability:  

𝛾𝛾𝑗𝑗𝑘𝑘 = 𝜋𝜋𝑘𝑘𝑁𝑁(𝑎𝑎𝑗𝑗|𝜇𝜇𝑘𝑘,𝛴𝛴𝑘𝑘)
∑ 𝜋𝜋𝑘𝑘𝑁𝑁(𝑎𝑎𝑗𝑗|𝜇𝜇𝑘𝑘,𝛴𝛴𝑘𝑘)𝐾𝐾
𝑘𝑘=1

     (1 ≤ 𝑘𝑘 ≤ 𝐾𝐾); 

end for 
for 𝑘𝑘 = 1,2,∙∙∙,𝐾𝐾 do 

calculate new mean vectors: 𝜇𝜇𝑘𝑘′ =
∑ 𝛾𝛾𝑗𝑗𝑘𝑘𝑎𝑎𝑗𝑗𝑛𝑛
𝑗𝑗=1
∑ 𝛾𝛾𝑗𝑗𝑘𝑘𝑛𝑛
𝑗𝑗=1

; 

calculate new covariance matrices:  

𝛴𝛴𝑘𝑘′ =
∑ 𝛾𝛾𝑗𝑗𝑘𝑘𝑛𝑛
𝑗𝑗=1 (𝑎𝑎𝑗𝑗−𝜇𝜇𝑘𝑘

′ )(𝑎𝑎𝑗𝑗−𝜇𝜇𝑘𝑘
′ )𝑇𝑇

∑ 𝛾𝛾𝑗𝑗𝑘𝑘𝑛𝑛
𝑗𝑗=1

; 

calculate new mixing weights: 𝜋𝜋𝑘𝑘′ = 1
𝑛𝑛
∑ 𝛾𝛾𝑗𝑗𝑘𝑘𝑛𝑛
𝑗𝑗=1 ; 

end for 
update parameters {𝜋𝜋𝑘𝑘,𝜇𝜇𝑘𝑘 ,𝛴𝛴𝑘𝑘} as{𝜋𝜋𝑘𝑘′ ,𝜇𝜇𝑘𝑘′ ,𝛴𝛴𝑘𝑘′ }; 
Until the stop condition is satisfied; 
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2.2 Expected Patch Log Likelihood 
The external similarity of image is a very good property. By decomposing the image into multiple 

overlapping images, we can learn a good priori. Under the trained prior distribution, we need to make the 
image patches approach a certain kind of the prior distribution. The noisy image 𝑢𝑢and certain prior lead to 
the following expression: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑢𝑢) = � 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝(𝑅𝑅𝑖𝑖𝑢𝑢)
𝑖𝑖

 (3) 

where the function of 𝑅𝑅𝑖𝑖 is to extract 𝑖𝑖-centered patch, and 𝑅𝑅𝑖𝑖𝑢𝑢refers to the target patch. 𝑙𝑙𝑙𝑙𝑙𝑙 means 
the likelihood of a patch. 

Our purpose is to obtain a pure image by minimizing the cost function as the following: 

𝑓𝑓(𝑢𝑢|𝑢𝑢0) =
𝜆𝜆
2
‖𝑢𝑢 − 𝑢𝑢0‖2 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑢𝑢) (4) 

where the left is the data fidelity term, and right of the model is the regularization term. Eq. (4) can be 
optimized easily according to the method of “Half Quadratic Splitting” [20]. 

3 Low-rank Image Denoising Based on Minimum Variance Estimator 
The low-rank denoising method makes full use of the self-similarity of image. It can be regarded as a 

structured sparseness, and has achieved good performance in the field of image denoising in recent years. 
As is shown in Fig. 1, we can see that when we take a group of similar images from the image and 

vectorize them one by one, then these vectors are combined into a matrix. This similarity leads to the high 
correlation of each column of the matrix, so the matrix is low-rank. After being affected by noise, the 
correlation is destroyed, and the rank of matrix becomes higher, so the denoising task essentially becomes 
how to reduce the rank of matrix containing noise. We all know that the rank of the matrix is determined 
by the non-zero singular values, and the change of the smaller singular values have less influence on the 
information contained in the matrix. Therefore, we choose to shrink the singular values of the matrix to 
realize the low-rank of the matrix, so as to achieve the purpose of denoising. Here, we make use of the 
internal similarity of image. 

 
Figure 1: A simple illustration of the low-rank denoising method in this paper 

Now we have noisy image 𝑢𝑢, let us define for each patch 𝑢𝑢𝑖𝑖 the set 𝑍𝑍𝑖𝑖 of similar patches as: 

𝑍𝑍𝑖𝑖 ≜ �𝑗𝑗 = 1,⋯ ,𝑁𝑁   𝑠𝑠. 𝑡𝑡.  �𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗�2
2 ≤ 𝜀𝜀� (5) 

where 𝜀𝜀 is some threshold.
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Then we group a set of image vector 𝑢𝑢1,⋯ ,𝑢𝑢𝑁𝑁 in to a matrix: 
𝐴𝐴 = [𝑢𝑢1,⋯ ,𝑢𝑢𝑁𝑁] (6) 

Thus, the denoising task is converted to the estimation of similar patch matrices. We choose to use 
SVD to achieve property of low-rank: 
𝐴𝐴 = 𝑈𝑈𝑢𝑢Σ𝑢𝑢𝑉𝑉𝑢𝑢𝑇𝑇 (7) 

The optimal estimate of 𝐴𝐴can be obtained by shrinking the singular values: 
�̂�𝐴 = 𝑈𝑈𝑢𝑢(Σ𝑢𝑢 − 𝑆𝑆𝑆𝑆)𝑉𝑉𝑢𝑢𝑇𝑇 (8) 
where 𝑆𝑆  is a contraction operator that is inversely proportional to the singular value, and  
�̂�𝐴 = [𝑢𝑢�1,⋯ ,𝑢𝑢�𝑁𝑁]. 

4 Expected Patch Log Likelihood Denoising Method Based on Internal and External Image 
Similarity 

As is known to all, EPLL exploits the external similarity of image. And the self-similarity of image 
is also a good priori knowledge, so we consider combining the two properties here. 

Coupling low-rank priori, the new EPLL model can be expressed as: 

𝑓𝑓(𝑢𝑢|𝑢𝑢0) =
𝜆𝜆
2
‖𝑢𝑢 − 𝑢𝑢0‖2 −� 𝑙𝑙𝑙𝑙𝑙𝑙𝐸𝐸(𝑅𝑅𝑖𝑖𝑢𝑢)

𝑖𝑖
 (9) 

where 𝑙𝑙𝑙𝑙𝑙𝑙𝐸𝐸(𝑅𝑅𝑖𝑖𝑢𝑢) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝1(𝑅𝑅𝑖𝑖𝑢𝑢) ∙ 𝑝𝑝2(𝑅𝑅𝑖𝑖𝑢𝑢)), they represent the low-rank prior and the original prior of 
the EPLL algorithm, respectively. 

A set of patches {𝑥𝑥𝑖𝑖}are introduced, we can solve the new model in the same way as in Eq. (4). 
Then, another key point is that the maximum a posteriori probability (MAP) is needed, so we have to 

get 𝑚𝑚𝑎𝑎𝑥𝑥 (𝑝𝑝1(𝑥𝑥𝑖𝑖) ∙ 𝑝𝑝2(𝑥𝑥𝑖𝑖)).   
In fact, prior knowledge 𝑝𝑝1and𝑝𝑝2 can both well describe the feature of the image patch 𝑅𝑅𝑖𝑖𝑢𝑢, that is to 

say, the values of the maximum posterior estimate 𝑥𝑥𝑖𝑖,1 and 𝑥𝑥𝑖𝑖,2 are very accurate. So we hold the point 
that𝑝𝑝1(𝑅𝑅𝑖𝑖𝑢𝑢) and 𝑝𝑝2(𝑅𝑅𝑖𝑖𝑢𝑢) can be maximized at the same time. 

Under this assumption, 𝑥𝑥𝑖𝑖,1can obtain an approximate Wiener filtering solution under the EPLL 
model: 

𝑥𝑥𝑖𝑖,1 = �𝑅𝑅𝑖𝑖𝑢𝑢𝑛𝑛𝛴𝛴𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 +
𝜇𝜇𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆
𝛽𝛽

� / �𝛴𝛴𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 +
I
𝛽𝛽
� (10) 

Through the minimum variance estimation of the similar patch matrix, we can finally obtain: 

𝑥𝑥𝑖𝑖,2 =
1
𝑛𝑛

(𝑢𝑢�1 + ⋯+ 𝑢𝑢�𝑁𝑁)𝑖𝑖𝑛𝑛+1 (11) 

where 𝑥𝑥𝑖𝑖,1 and𝑥𝑥𝑖𝑖,2 are basically similar. However, a single prior knowledge has some limitations in 
describing the target data. So that we weighted sum 𝑥𝑥𝑖𝑖,1and𝑥𝑥𝑖𝑖,2as the real value of 𝑥𝑥𝑖𝑖 . Then, we can 
restore the image by alternating iterations: 
𝑥𝑥𝑖𝑖𝑛𝑛+1 = 𝑎𝑎𝑥𝑥𝑖𝑖,1 + 𝑏𝑏𝑥𝑥𝑖𝑖,2 (12) 
𝑢𝑢𝑛𝑛+1 = (𝜆𝜆𝐻𝐻𝑇𝑇𝑢𝑢 + 𝛽𝛽𝛴𝛴𝑗𝑗𝑅𝑅𝑗𝑗𝑇𝑇𝑥𝑥𝑗𝑗𝑛𝑛+1)/�𝜆𝜆𝐻𝐻𝑇𝑇𝐻𝐻 + 𝛽𝛽𝛴𝛴𝑗𝑗𝑅𝑅𝑗𝑗𝑇𝑇𝑅𝑅𝑗𝑗� (13) 
where 𝑢𝑢 = 𝐻𝐻𝐻𝐻, 𝐻𝐻 is a degradation factor and 𝐻𝐻 is a pure image. 

EPLL algorithm makes the distribution of noisy image patches approach to a kind of GMM that has 
been trained. The more similar the distribution is, the less noise there is. This is because different images 
also contain repeated or similar information, which is what we call external similarity of images. At the 
same time, we put the low-rank information mentioned in Section 3 as a priori knowledge into the regular 
term of EPLL model, so that the internal and external similarity of images complement each other, which 
can achieve better denoising effect. 
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The proposed method can be implemented as the following Tab. 2. 

Table 2: The proposed method 

Input: Corrupted image 𝑢𝑢, penalty parameter 𝛽𝛽; 

choose the most likely Gaussian mixing weights 𝑗𝑗𝑚𝑚𝑎𝑎𝑚𝑚 for 
each patch 𝑅𝑅𝑖𝑖𝑢𝑢; 
calculate𝑥𝑥𝑖𝑖𝑛𝑛+1 using Eq. (12); 
pre-estimate image 𝑢𝑢𝑛𝑛+1by Eq. (13); 
Repeat above steps for 4 to 6 times; 

5 Experiment 
In this section, we show the experimental results and make some discussion. In our experiments, the 

number of patches for training is 2 × 106. Then, we compare our method with the original EPLL method 
and also some other classical algorithms. Adding all the patches with Gaussian noise of zero mean and 
standard deviation𝜎𝜎 = 15 or 𝜎𝜎 = 30 . The parameters are arranged as: patch size 𝐸𝐸 = 8 × 8 , search 
window 𝑊𝑊 = 40,the threshold ε = (32𝜎𝜎)2/𝐸𝐸 for images scaled between 0 and 255, 𝛽𝛽usually takes the 
value4/𝜎𝜎2 or 8/𝜎𝜎2, the contraction operator𝑆𝑆 = 𝜏𝜏2/𝜎𝜎, Guassian components 𝐾𝐾 = 200, the weights 𝑎𝑎 =
𝑏𝑏 = 1/2. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 2: Denoising results on ‘Lena’ image with a noise standard deviation 𝜎𝜎 = 30. (a) Original image, 
(b) Noisy image, (c) NNM result, (d) K-SVD result, (e) EPLL result, (f)Proposed method 
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 3: Denoising results on ‘Man’ image with a noise standard deviation 𝜎𝜎 = 30. (a) Original image, 
(b) Noisy image, (c) NNM result, (d) K-SVD result, (e) EPLL result, (f)Proposed method 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 4: Denoising results on ‘Barbara’ image with a noise standard deviation 𝜎𝜎 = 30. (a) Original 
image, (b) Noisy image, (c) NNM result, (d) K-SVD result, (e) EPLL result, (f)Proposed method
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 5: Denoising results on ‘Boat’ image with a noise standard deviation 𝜎𝜎 = 30. (a) Original image, 
(b) Noisy image, (c) NNM result, (d) K-SVD result, (e) EPLL result, (f)Proposed method 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 6: Denoising results on ‘Couple’ image with a noise standard deviation 𝜎𝜎 = 15. (a) Original 
image, (b) Noisy image, (c) NNM result, (d) K-SVD result, (e) EPLL result, (f)Proposed method 
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Table 3: Comparison of image denoising PSNR values 

Image Noise 
level Index KSVD NNM EPLL EPLL-

SGMM 
Our 

method 

Boat 𝜎𝜎 = 15 PSNR 31.94 31.83 31.88 31.92 32.03 
𝜎𝜎 = 30 PSNR 28.12 27.76 28.13 28.07 28.24 

Hill 𝜎𝜎 = 15 PSNR 31.42 30.97 31.58 31.42 31.56 
𝜎𝜎 = 30 PSNR 28.33 28.04 28.65 28.51 28.73 

Couple 𝜎𝜎 = 15 PSNR 31.57 31.26 31.70 31.59 31.78 
𝜎𝜎 = 30 PSNR 28.63 28.09 28.76 28.79 28.81 

Peppers 𝜎𝜎 = 15 PSNR 31.28 31.19 31.33 31.35 31.54 
𝜎𝜎 = 30 PSNR 29.01 28.87 29.12 29.26 29.49 

House 𝜎𝜎 = 15 PSNR 33.77 33.06 33.94 33.87 34.15 
𝜎𝜎 = 30 PSNR 31.16 30.85 31.19 31.23 31.42 

Lena 𝜎𝜎 = 15 PSNR 33.63 33.69 33.87 33.96 34.02 
𝜎𝜎 = 30 PSNR 30.41 30.44 30.69 30.51 30.78 

Babara 𝜎𝜎 = 15 PSNR 31.07 29.91 31.13 31.28 31.41 
𝜎𝜎 = 30 PSNR 27.24 27.18 27.41 27.59 27.62 

Man 𝜎𝜎 = 15 PSNR 31.39 30.98 31.52 31.44 31.67 
𝜎𝜎 = 30 PSNR 28.26 28.07 28.43 28.29 28.82 

Averag
e 

𝜎𝜎 = 15 PSNR 31.67 31.41 32.12 31.68 32.27 
𝜎𝜎 = 30 PSNR 28.19 27.92 29.05 28.18 29.24 

As is shown in Figs. 2 to 6, compared with other methods, they still have some problems such as 
blurred edges and loss of regional details while our method performs well. Not only do we save the 
details better, the texture transition is also very natural. In Tab. 3, we use KSVD, NNM (Nuclear Norm 
Minimization), EPLL, EPLL-SGMM [21] and the proposed method in this paper to make a comparison. 
The average denoising PSNR values are calculated over all images and all noise levels for all these 
methods. Obviously, our method has certain advantages, and the numerical results in Tab. 3 also prove 
this point. This is because we combine multiple prior knowledge into one model, rather than just using a 
single one. 

6 Conclusion 
EPLL image denoising algorithm starts from the external similarity of the image, trains the Gaussian 

mixture model through a large number of image patches, and then makes the distribution of the noisy 
image patches approach to a certain type of distribution of the Gaussian mixture model. It has a certain 
effect, but the maintenance of the image detail texture area still needs to be improved. To solve this 
problem, we add a low-rank prior term to the regular term of EPLL image restoration model. The low-
rank method makes use of the self-similarity of the image, through which we can know that the image 
also contains a lot of repeated detail texture. The matrix of similar image is approximated by SVD, and 
then the threshold value of the matrix is shrunk. The smaller the threshold value is, the smaller the rank is. 
Therefore, the preservation of the texture region by low-rank approximation promotes the restoration 
effect of the whole algorithm. From this point of view, coupling other prior knowledge is also worth our 
further study in the future. 
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