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1 INTRODUCTION  
ALL-electric ships are being developed rapidly for 

marine applications in the commercial and the military 

sectors (Apsley et al., 2009). Electric propulsion for 

ships not only enables marine generators to work under 

optimum conditions to reduce fuel consumption but 

also enhances the dynamic performance of the power 

system. With the development of power capacity for 

electric ships, the capacity of equipment, especially the 

propulsion motor, is increasing to the point where it is 

larger than that of the generator. This changes the 

working conditions of the shipboard power system, 

which could lead to severe faults in the equipment. 

Such faults could affect the stability of the entire 

shipboard power system (Rosado et al., 2009). Thus, an 

effective control method to improve stability and 

performance of marine generators under dynamic 

operating conditions is urgently required. 

Excitation control, which is one of the most 

effective and economical techniques, has attracted 

considerable attention for improving the dynamic 

performance of power systems (Cheng, Malik, & Hope, 

1988). Many types of power system control approaches 

have been reported in the literature, including feedback 

linearization control (Arif, Ray, & Chaudhuri, 2013), 

fuzzy logic control (Laghari et al., 2014; Jemai, 

Trabelsi, & Ouederni, 2014; Hosseini, Tousi, & 

Razmjooy, 2014), robust control (Zhang, Wang, & 

Xiao, 2011), nonlinear predictive control (Yao et al., 

2014), artificial intelligence (Mehraeen, Jagannathan, 

& Crow, 2011; Ganesan, Vasant, & Elamvazuthi, 

2014), and adaptive control (Fusco & Russo, 2008). To 

improve the dynamic stability of power systems, the 

particle swarm optimization (PSO) algorithm and the 

Takagi-Sugeno fuzzy algorithm have been studied for 

optimizing power system stabilizer (PSS) parameters 

(Soleymani, Yoosofi, & Kandi-D, 2015) and reducing 

the fuel consumption of a conventional medium-sized 

ship (Keumarsi, Simab, & Shahgholian, 2014). 

Recently, an increasing number of researchers have 

been focusing on the multi-agent method, which is a 

typical distributed control method, especially for the 

belief-desire-intention (BDI) agent with logical 

reasoning characters and learning ability. Application 

of the abovementioned centralized control methods to 

shipboard power system control, which has an 

inherently distributed character, is difficult. For 

decentralized control, multi agent systems (MASs) 

have been applied to power engineering applications 

(McArthur et al., 2007), credit management (Jiang et 

al., 2016), and the BDI agent has been employed for 
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integrated hybrid energy system management and 

control (Dou et al., 2016). MASs have outstanding 

characteristics, such as intelligence, flexibility, 

extensibility, and fault tolerance, rendering them 

suitable for application to excitation control for 

shipboard generators. The BDI agent, one of the typical 

deliberation agents, has been adopted in power 

restoration (Ren et al., 2014). Fuzzy cognitive mapping 

and PSO have been employed in a MAS deliberation 

study (Karavas et al., 2015). However, although the 

PSO algorithm converges fast, it is prone to become 

trapped in local optima (Cao, Zhu, & Yang, 2015). 

Many improved PSO method has been studied (Wang 

et al, 2016), inspired by trajectory analysis of the PSO 

and quantum mechanics, Sun, Liu, and Xu (2007) 

developed and proposed the quantum-behaved particle 

swarm optimization (QPSO) algorithm. The QPSO can 

not only find the optimal solution in a given search 

space but also has the advantages of fewer control 

parameters, simpler software programming, and 

relatively fast convergence. Experimental results 

obtained using prominent benchmark functions 

revealed that the QPSO performs better than the 

standard PSO and is therefore a promising algorithm. 

Fuzzy logic (Shen, O’Hare, & Collier, 2004; Casali, 

Godo, & Sierra, 2011) and even quantum cognition 

(Bisconti et al., 2015) have been used in BDI agent 

decision-making. 

The present study was inspired by previous studies 

on QPSO, specifically its application to cognitive 

sciences (Bisconti et al., 2015), and BDI modelling of 

decision-making processes (Zhao X, & Son Y J., 2015). 

In this study, we merge the two aforementioned 

approaches into a single structure to improve the 

dynamic performance of an electric ship power system. 

To this end, we employ the proposed BDI agent and the 

QPSO combined algorithm to optimize the parameters 

of a marine generator excitation controller. A 

simulation is performed to determine the control 

performance of the proposed method for electrical 

propulsion in a shipboard power system and in a 

shipboard zonal power system under load change 

disturbance and severe fault conditions, respectively. 

The remainder of this paper is organized as follows. 

In section 2, the basic excitation control system for 

electric ships is described. In section 3, the PSS 

parameter optimization strategy based on the BDI agent 

and QPSO is presented. To illustrate the effectiveness 

and efficiency of the proposed method, simulation 

examples of the electrical propulsion shipboard power 

system and the shipboard zonal power system under 

load change disturbance and severe fault are given in 

section 4. Finally, concluding remarks are provided in 

section 5. 

2 EXCITATION CONTROL FOR ELECTRIC SHIPS 

2.1 Diesel engine generator set 
A marine generator consists of three main 

components, namely a diesel engine, a synchronous 

generator, and an excitation system. The diesel engine 

supplies mechanical power mP  to the synchronous 

generator and converts fossil fuel into electrical power 

eP . A schematic diagram of the proposed marine 

generator system and its detailed description are shown 

in Figure 1. 
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Figure 1. Schematic diagram of proposed marine generator 
system 

As shown in Figure 1, the generator controls the 

diesel engine power mP  and the exciter 
fdE . In this 

paper, changes in the diesel engine power have been 

ignored, which means that constantmP  . The 

generator exciter control includes an automation 

voltage regulator (AVR) and the PSS; the PSS consists 

of a gain, a washout, and a lead-lag compensator. The 

input signal to the PSS is the deviation in rotor speed 

 , and the output of the PSS is the control signal to 

the exciter 
pssu . The transfer function of the AVR is 

   AVR 1A AG s K sT  , where AK  and AT  are the 

gain and time constants, respectively. 

2.2 Excitation design for the marine generator 
set 

According to the schematic diagram of the proposed 

marine generator system shown in Figure 1, among the 

various characteristics of the electric shipboard power 

system, the reactance of the transmission line and the 

transformer is considered, whereas the resistance of the 

stator winding is ignored. Thus, the pragmatic model of 

the i th marine generator can be described by the 

following equation (Zhao et al., 2015): 
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  (1) 

where i  and i  are the rotor angle and rotor speed of 

the i th generator, respectively; s  is the generator 

synchronous speed; miP  is the mechanical power 

output of the diesel engine; eiP  is the electric power of 

the i th generator, '

ei qi qiP E I ; '

qiE is q axis transient 

potential, in p.u. (per unit); iD  and iH  are the 

coefficient and inertia time constant, respectively; tiU  

is the terminal voltage of the i th generator; and RiU  

and 
pssiu  are the AVR and PSS output singles, 

respectively. 

The transfer function of the PSS of the i th 

generator is expressed as follows: 

 

1 3

2 4

1 1

1 1 1

W i i
pssi i i

W

sT sT sT
u K

sT sT sT


 
 

  
 (2) 

where i is the angular velocity deviation of i th 

generator, in rad/s; =10WT  is the washout time constant; 

2 0.02T   and 4 0.54T   are the time constants (Shen et 

al., 2004); and 1iT , 3iT , and iK are the parameters of 

the i th generator to be optimized. 

The aim of PSS optimization is to reduce power 

oscillations and improve the dynamic performance of 

shipboard power system, which is associated with the 

generator active power, rotor speed, and frequency. To 

improve the generator power system stability, we select 

the rotor speed and the active power as the optimization 

goals. Then, the objective function can be expressed as 

follows: 
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where 1k and 2k  are the weight factors;  t  and 

 eP t  are rotor speed and active power at moment t , 

respectively; and ref  and refP are reference rotor 

speed and reference active power, respectively. 

3 BDI AGENT AND QPSO-BASED PARAMETER 
OPTIMIZATION FOR THE MARINE 
GENERATOR EXCITATION CONTROLLER 

3.1 BDI agent 
The BDI agent model refers to the deliberative agent 

developed by Bratman (1987). The BDI agent model is 

a software model for intelligent agents that enables 

them to select plans through deliberation. Each BDI 

contains four main components (Lorini & Piunti, 

2010): beliefs, desires, intentions, and plans, as shown 

in Figure 2. The abstract model of a BDI agent can be 

defined as  (Sardina & 

Padgham, 2011), which denote constructs obtained by 

perceptions, static causal knowledge, volatile beliefs, 

desires, intentions, desire-generating and planning 

rules, and a repertoire of basic actions, respectively.  

Its process reasoning and logical formalism can be 

described as follows: 

(1) If a given analysis task  can be solved, then 

create the process-solving objection based on the BDI 

agent. 

 

Figure 2. Typical BDI agent architecture 

(2)  denotes the creation of belief 

by belief generator  according to knowledge  

and shipboard power system working condition 

message , which are obtained through transfers after 

feature extraction. The belief reflects an understanding 

of the shipboard power system operation condition. 

(3)
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and knowledge  created by the intention generator 

and stored in the strategy library. 

3.2 Quantum-behaved particle swarm 
optimization 

The QPSO is a swarm intelligence algorithm 

developed by Sun et al. (2017). In the quantum model 

of QPSO, the state of a particle is depicted by a wave 

function  rather than a position and velocity. The 

dynamic behaviour of the particle diverges from that of 

particle in traditional PSO systems because the exact 

values of  and  cannot be determined 

simultaneously. We can only obtain their probability 

density function , the form of which depends on 

the potential field in which the particle lies. The 

particles move according to the following iterative 

equation (Sun, Zhu, & Yang, 2017): 
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where 
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1
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N
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N
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  1j jP pbest gbest       (6) 

  (7) 

 is defined as the mean value of best positions 

of the particles, and , , and  are random 

numbers distributed uniformly on [0,1]. Because the 

number of iterations and population size are common 

requirements in every evolutionary algorithm, , also 

called the contraction-expansion coefficient, is the only 

parameter in the QPSO algorithm. 

3.3 BDI agent and QPSO-based parameter 
optimization for the power system 
stabilizer  

PSS parameter optimization is one of the effective 

methods for improving PSS performance and 

enhancing the dynamic stability of the shipboard power 

system. The main steps in application of the proposed 

BDI agent and QPSO-based parameter optimization to 

the marine generator controller are shown in Figure 3. 

As shown in Figure 3, the optimization mechanism 

includes the following process: 

(1) Definition of BDI agent environment. Let 

 1 2, , , nA a a a
 stand for the BDI agent states; n  

stands for the marine generator number; and 

 1, , nX XX
 stands for the variables of the 

marine generator excitation controller parameters. 

(2) Constraint variables of BDI agent state. Such as, 

define 1 4, ,i ix x
 as parameters for 1 4, ,i iT T

 and  

4ix
 for iK

, as given by equation (2).  

(3) Beliefs of optimization. From the definition of 

the BDI agent environment, the BDI agents acquire 

information about electrical parameters by using 

sensors to establish the belief formulated using X , 

which reflects the running states of the shipboard power 

system. 

 

Figure 3. Marine generator excitation controller parameter optimization mechanism 
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(4) Optimization desires. The desires of the optimal 

marine generator controller are the same as those of the 

optimization object, that is, equation (3). 

(5) Behavioral strategies of BDI agents. To achieve 

the optimal optimization strategy quickly and 

accurately, each BDI agent combined with QPSO 

optimization diffuses its best strategies across the entire 

environment. Then, the evolution mechanism of QPSO 

and its knowledge are used to generate the optimal 

strategy for the marine generator excitation controller. 

Based on such behaviors, three operators are designed 

for the agents.  

The following main steps are involved in applying 

the proposed BDI agent and QPSO algorithm (QPBDI)-

based parameter optimization to the marine generator 

controller: 

(1) Beliefs that reflect the power system working 

condition are generated by information extraction unit. 

The input message for information extraction is the 

parameters that are received through the measurement 

and sensor units. 

(2) According to the shipboard power system’s 

beliefs and knowledge, the QPSO parameters are 

initialized as max 100Iter 
,

 1 0.1,0.5ix 
,

 2 0,0.5ix 
, 

 3 1,5ix 
,

 4 0,10ix 
, and

 5 5,30ix 
. 

(3) For simultaneous optimization of the shipboard 

PSS parameters by using the QPSO, the BDI agent 

generates beliefs used for parameter optimization on 

the basis of its knowledge and the objective function. 

(4) The optimization of the shipboard PSS 

parameters is initiated by the reasoning process 

according to beliefs and the QPSO-optimized 

parameters. 

4 SIMULATION RESULTS 
In this section, the proposed BDI agent and QPSO 

algorithm are implemented to optimize the parameters 

of the PSS used in a shipboard zonal power system. To 

verify the effectiveness of the proposed PSS 

optimization design method, simulation results for the 

excitation controllers of the marine generator with PSS, 

without PSS (only including AVR), and with the 

proposed BDI agent and QPSO algorithm-optimized 

(QPBDI) PSS are compared. The controller 

performance is simulated for the shipboard power 

system under load changes disturbance or severe fault. 

To further demonstrate the effectiveness of the 

proposed optimization algorithm for the optimization 

of an excitation controller in a marine generator 

excitation controller, another simulation of the 

shipboard zonal power system was conducted. Figure 4 

shows the shipboard zonal distributed power system for 

an all-electric ship. 

 

Figure 4. Architecture of the shipboard zonal power system 

As shown in Figure 4, the shipboard zonal power 

system comprises four synchronous diesel engine 

generators (G1–G4) connected in parallel in a ring bus 

configuration to the 2400V medium voltage buses. 

Because the four generator buses form a square-shaped 

ring with four bus ties, the shipboard power system 

does not require an emergency generator. The loads in 

the shipboard zonal power system are classified into 

three levels: vital, semi-vital, and nonvital. The vital 

loads connect to power panels or switchboards directly 

via automatic or manual bus transfers. For vital loads, 

such as prolusion machine (M1, M2) and zonal loads 

(ZL1, ZL2), which get power from the boosting 

transformers (TF1–TF4), the lines have two paths 

(normal and alternate) to enhance the reliability of the 

power system, but only one of the paths is closed at any 

time to ensure the shipboard power system operates in 

a radial configuration. For semi-vital loads, such as L2, 

L3, and L4, the power is obtained from the main bus 

panels directly. L1, which stands for the nonvital loads, 

is supplied power only from the distribution bus panel. 

Finally, the load parameters and the generator 

parameters and bus types of the shipboard zonal power 

system are summarized in Tables 1 and 2, respectively. 

All the parameters for marine generator can be seen in 

the paper (Yeager, K. E., & Willis, J. R, 1993). 
 
Table 1. Load Parameters 

Component Power/MW Component Power/MW 
L1 0.5 L4 0.5 

L2 0.3 ZL1 0.3 

L3 0.5 ZL2 0.5 

 
Table 2. Generator Parameters and the bus type 

Generator 
Active 

Power/MW 

Reactive 

Power/MVar 
Node 

Type 

G1 5 -24.84 PQ 

G2 5 -41.20 PQ 

G3 2.5 1.7 PV 

G4 2.5 0 swing 
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Bus 

Tie
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~

~
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To verify the proposed method, numerous 

simulations are performed for three-phase short-

circuits with load change disturbance near bus 1 (F1) 

and the zonal distribution ZL1 near bus 6 (F2). The 

simulation results are shown in Figures 5 and 6, 

respectively. 

(1) The fault occurs near bus 1 (F1). Two types of 

faults occur at  s near bus 1, as shown in Figure 

8. One is an active load changes of 10% and the other 

is a short-circuit fault between buses 1 and 2 for a 

duration of 200 ms. The generator responses of rotor 

speed deviation and generator terminal voltage in the 

aforementioned cases are shown in Figures 5(a) and 

5(b), respectively. 
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(a) Generator response to load changes 
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(b) Generator response to short-circuit  

Figure 5. G1 response to the fault near bus 1 

Figure 5 shows the simulation results of the different 

marine generator excitation controllers. The red lines 

indicate the QPBDI-optimized PSS, blue dashed lines 

denote the conventional PSS, and the dark dashed lines 

denote the generator with AVR only. Figure 5(a) 

indicates that as the shipboard zonal power system 

undergoes 10% active load changes, the marine 

generator voltage  drops to 0.838p.u., and the 

maximum amplitude of rotor speed deviation  

changes to 0.28%, 0.28%, and 0.35% with the PSS, 

QPBDI, and AVR controller, respectively. From the 

simulation result shown in Figure 5(b), as the short-

circuit fault occurs, the generator terminal voltage  

and rotor speed deviation  decrease to 0.058p.u. and 

1.3%, respectively. After the fault is cleared, the rotor 

speed oscillates severely twice, after which it attains a 

steady state. For these two fault conditions, the QPBDI-

optimized PSS shows better control performance than 

the PSS and the AVR do. The QPBDI-optimized PSS 

gets better control performance than the PSS does, 

especially in terms of generator terminal voltage 

control. 

(2) The fault occurs at the zonal distribution ZL1 

near bus 6 (F2). Two types of the aforementioned fault 

occur at s near bus 6, as shown in Figure 4. One 

is an active load changes of 10% and the other is a 

short-circuit fault between buses 3 and 6 for 200 ms. 

The generator responses in terms of rotor speed 

deviation and generator terminal voltage for these two 

cases are shown in Figures 6(a) and 6(b), respectively. 
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(b) Generator response to short-circuit 

Figure 6. G1 response to fault occurring in zonal distribution 
ZL1 near bus 6 

Figure 6 indicates that the fault in distribution zone 

ZL1 near bus 6 (F2) has a weaker influence on the 

generator than that occurring near the main bus 1 (F1). 

With the 10% active load change at F2, the generator 

terminal voltage  falls to 0.848p.u., which implies 

better stability than the value of 0.838p.u. at F1. 

Moreover, the maximum amplitude of the rotor speed 

at F2 is 0.28%, which is lower than amplitude at F1 

(0.35%). The red lines in Figure 6 reveal that the 

QPBDI-optimized PSS shows better control 

performance in terms of rotor speed control and 

generator terminal voltage control than does the PSS, 

which is denoted by blue dashed lines. However, the 

QPBDI-optimized PSS show worse control 

performance at the moment at which the fault is 

cleared. 

5 CONCLUSION 
To improve the dynamic performance of shipboard 

power systems, a BDI agent-based QPSO algorithm is 

proposed to optimize the marine generator excitation 

controller parameters. To verify the proposed method, 

simulations of the electrical propulsion shipboard 

power system and the shipboard zone were performed. 

The simulation results reveal that the proposed BDI 

agent and QPSO-based marine generator PSS 

optimization method could eliminate substantial 

disturbances in the shipboard power system under load 

change disturbance and severe short-circuit faults. The 

proposed method improved the stability of the marine 

generator terminal voltage and the rotor speed 

performance. Moreover, it demonstrably guaranteed 

the reliability of the shipboard power system. 
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