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1 INTRODUCTION 
MOST practical systems are of nonlinear and time-

varying nature, and the output tracking control for 

them has found wide application in engineering fields. 

However, little work has been focused directly on the 

nonlinear time-varying discrete-time system described 

by the input-output model covering a wide class of 

non-linear systems. Therefore, researches on this topic 

are of great significance. 

In recent years, control design of nonlinear time-

varying systems has attracted much attention, and 

various control methods have also been proposed and 

practiced (Chen et al., 2010; Xu and Yan, 2004; Zhu 

et al., 2014). PID control strategy is the most 

commonly used method for industrial process control. 

Over 90% of industrial controllers implemented are 

still based on PID (Ang et al., 2005; Åström and 

Hägglund, 2001; Hušek, 2014; Papadopoulos et al., 

2013), mainly due to its advantages such as sensitive 

intuition, simple implementation, good robustness and 

so on. However, as the adjustment of controller 

parameters is done by trial and error method (Tseng, 

2001; Ziegler and Nichols, 1942), the controller has 

no desirable self-adaptive ability to the plants with 

complex nonlinear time-varying characteristics. Some 

scholars have been committed to the improvement of 

PID control (Cameron and Seborg, 1983; Fu and Chai, 

2012; Rad et al., 1997), hoping to optimize the PID 

controller parameters online. Meanwhile, several 

intelligent algorithms (Nagarag and Vijayakumar, 

2012; Zhang and Yang, 2016) have been developed 
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for PID control to enhance its adaptive ability. State 

feedback, which takes system states as feedback 

variables, is one of the popular means of control 

system design (Theodoridis et al., 2012), whereby the 

system states are required to be completely 

measurable. However, with the limitations of 

measuring equipment, nonlinear system states are hard 

to be measured directly and different results may be 

produced from the true and estimated states of the 

system in the process of control. Therefore, in 

engineering applications, output feedback control is 

necessary. Theoretically, neural network can be used 

for any nonlinear system for its strong nonlinear 

approximation ability and has been adopted in the 

design of adaptive controller for nonlinear systems 

with good control performance (Narendra and 

Parthasarathy, 1990; Zargarzadeh et al., 2014). 

However, its structure is mainly chosen by means of 

the trial and error method, its connection weights 

update needs dynamic learning algorithm in the 

process of control, and a complex network structure 

may lead it into complex computation, difficult 

parameters real-time update process and slow 

convergence speed in network training, all of which 

limit its practical application. There also turn up a 

variety of neural networks and learning algorithms 

applied to practical problems (Jin et al., 1995; Lu et al., 

2007; Mon et al., 2008; Sanner and Slotine, 1992; 

Seshagiri and Khalil, 2000; Shu, 1999; Shu and Pi, 

2000; Tseng, 2001; Wang et al., 2009). However, 

most of the literatures concerned just focus on the 

adaptive control problems without considering the 

initial values of the weight parameters for neural 

networks (Bezzaoucha et al., 2015; Shojaei, 2015). As 

divergence, oscillation or even instability may be 

caused by the time-delayed signals upon 

implementing artificial NNs in real application, the 

research on the stability problems of time-delayed 

NNs is in dire need (Saravanakumar and Ali, 2016; 

Saravanakumar et al., 2017a, 2017b). 

The existing methods for tracking control of time-

varying nonlinear systems mostly focus on the 

systems with special structures or the control based on 

neural networks which are unsuitable for real-time 

control due to their computation complexity. It is thus 

necessary to explore a new approach to the tracking 

control of time-varying nonlinear systems in real time. 

For this end, the MTN optimal control scheme of 

SISO nonlinear time-varying discrete-time systems 

based on multi-dimensional Taylor network (MTN, 

whose idea was proposed by Hong-Sen Yan in 2010 

and its realization was completed by Bo Zhou, Yan's 

PhD student) is proposed here to achieve the optimal 

real-time output tracking control of the systems for the 

given reference signal. MTN, good at representing or 

approximating the general nonlinear dynamic system, 

reflects the dynamic characteristics of the system more 

directly with no need to know the order or other prior 

information of the system, and proves to be capable of 

approximating any nonlinear function by learning the 

weight coefficients in a bounded closed region (Lin, 

2015). It has been applied to the stock and nonlinear 

time series prediction problems successfully (Lin, 

2015; Lin et al., 2014a, 2014b, 2014c; Zhou, 2014; 

Zhou and Yan, 2013a, 2013b, 2014a, 2014b), more 

suitable to dynamic system control problem than feed-

forward neural networks. However, the MTN 

mentioned in each of them is void of the control input 

item. For that sake, the idea of MTN optimal control 

was proposed by Yan (2010; 2019), and the control 

input item was introduced into the MTN for the 

optimal adjustment control of SISO nonlinear time-

invariant systems with satisfactory control effects 

achieved (Sun and Yan, 2014). Asymptotic tracking 

and dynamic regulation of SISO nonlinear system 

based on discrete multi-dimensional Taylor network is 

considered in (Yan and Kang, 2017). Moreover, the 

studies and simulations of the simple MTNC (i.e., PID 

plus the sum of their second order monomials plus 

P.I.D, each item of which is multiplied by its 

corresponding parameter) for the cruise missile flight 

trajectory control (Zhang, 2015), the tank firing 

control in high speed motion (Jin, 2016), the ship roll 

stabilization (Yang, 2016), the flight of the plane 

(Zhou, 2016) and the axisymmetric cruise missile 

flight for attacking static targets (Xia, 2016) have been 

completed by the graduate students supervised by the 

first author. All of them are MIMO non-linear 

constant systems with strong disturbance. The 

simulation results show that far better dynamic 

performance, stronger anti-disturbance capability and 

larger region of attraction have been obtained by the 

simple MTNC than by PID (Jin, 2016; Xia, 2016; 

Yang, 2016; Zhang, 2015; Zhou, 2016), PID neural 

network (Xia, 2016; Zhou, 2016), neural network 

(Zhou, 2016), sliding mode control (Yang, 2016; 

Zhang, 2015; Zhou, 2016), and active disturbance 

rejection controller (Xia, 2016). However, the plants 

considered in the studies mentioned above are time-

invariant. MTN contains polynomial (Yan, 2014). In 

fact, a kind of polynomial network has been applied 

for identification and control of nonlinear system 

(Patrikar and Provence, 1996). However, Patrikar and 

Provence just considered the constant system, and the 

algorithm they used for the identifier and controller is 

based on the gradient descent method which is slow 

and may converge to local minima. In addition, 

polynomial network cannot approximate any nonlinear 

function arbitrarily for the fact that there exist 

correlations between the high and low order aberration 

coefficients though fewer weight coefficients need 

adjusting. The uncertain systems with output feedback 

control were studied, and with robust stability results 

obtained in (Wei et al., 2014; Ali and Saravanakumar, 

2014; Wei et al., 2017a, 2017b). 

Due to the uncertainty (Tseng, 2008) of external 

environment and time-varying characteristics of the 

controlled plants, the controller parameters require 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  489 

 

online self-tuning in the process of control, which 

affects not merely the convergence speed but the 

convergence performance of the controller. That is, 

designing a good real-time self-tuning rule for 

controller parameters is a key problem. BP algorithm 

is the most widely used learning algorithm for training 

multilayer neural network (McClelland et al., 1986), 

but it has such drawbacks as slow convergence speed, 

easy falling into local optimal point and so on. Some 

researchers have been committed to the improvement 

of BP algorithm (Jacobs, 1988; Minai and Williams, 

1990), but their improved BP algorithms are just based 

on the heuristics, most of them applicable only for 

specific problems. BP algorithm with a momentum 

term was analysed (Phansalkar and Sastry, 1994; Qian, 

1999) and the necessary and sufficient conditions for 

the convergence of the algorithm were determined and 

proved. In (Pearlmutter, 1992), a second-order 

momentum term was introduced to the BP algorithm 

with a momentum term that improves the learning 

speed of the network. An extra term proportional to 

the error was added to the BP algorithm with a 

momentum term (Zweiri et al., 2003, 2005). The 

necessary and sufficient conditions for the 

convergence of the algorithm is determined and 

proved. The results show that the third term plays an 

important role in improving the learning speed of the 

network. 

In this paper, MTN optimal control scheme is 

proposed for SISO nonlinear time-varying discrete-

time systems, by which the output tracking control of 

the system relative to the given reference signal can be 

achieved. An ideal output signal is set as the given 

reference signal. Pontryagin minimum principle is 

applied to obtain the numerical solution of the optimal 

control law for the system relative to the ideal output 

signal, and the resulting optimal output is termed as 

the desired output signal. MTN optimal controller 

(MTNC) is generated automatically to fit the optimal 

control law, CG method is employed to train the 

weight parameters of MTNC offline as the initial 

values for online training. In view of the uncertainty 

of external environment and time-varying 

characteristics of the systems, a four-term BP 

algorithm with the second order momentum term and 

error term is developed to adjust the parameters 

adaptively for real-time output tracking control of the 

system, followed by analysis and verification of the 

convergence condition for the four-term BP algorithm. 

The rest of the paper is organized as follows: 

Section 2 gives the problem statement. The procedure 

of MTN optimal controller design is presented in 

Section 3. In Section 4, selection of the initial values 

of MTN optimal controller parameters for online 

learning is discussed. Section 5 focuses on a scheme 

for MTN optimal controller parameters real-time self-

tuning. Section 6 lists the algorithmic steps for MTN 

optimal control scheme. Stability of the four-term BP 

algorithm is confirmed in Section 7. Section 8 

provides a simulation example. And concluding 

remarks are given in the last section. 

2 PROBLEM STATEMENT 
CONSIDER the SISO nonlinear time-varying 

discrete-time system described by the following input-

output difference equation: 
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where )(f  is a nonlinear scalar function, Rky )(  is 

the system output, Rku )(  is the system input, and 

yn  and un  are the corresponding maximum delays, 

,2,1,0k . 

Our target is to automatically generate a controller 

which ensures that the output )(ky  of the system (1) 

tracks the given reference signal )(kr  in real time. 

The control block diagram of the system (1) is 

shown in Figure 1. 

3 AUTOMATIC GENERATION OF MTN 
OPTIMAL CONTROLLER 

MTN optimal controller (MTNC) can be generated 

automatically as follows: 
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Figure 1. Control block diagram of system (1). 
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where )(h  is a nonlinear scalar function, Rku )(  is 

the output of MTNC, Rke )(  is the tracking error, 

i.e., the input of MTNC, un  and en  are the 

corresponding maximum delays, and il  and 
jk  are 

positive constants for eni ,,2,1  , unj ,,2,1  . 

For convenience and with no loss of generality, let 

eu nnt  , and we have 
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As proved by Zhou and Yan (2013a), there exists a 

parameter vector 
T

),(21 )](,),(),([)( kwkwkwk mtNw , 

whereby the output of MTNC, i.e., the input )(ku  of 

the system (1), can be expressed as 
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where ),( mtN  denotes the total number of the 

product items for the t -ary function )(h  expanded 

into the approximate polynomial with m  powers, 

)(kwp
 is the weight coefficient of the p th product 

item in formula (3), ),( qp  represents the power of 

the variable )(kzq
 in the p th product item, and 

mqp
t

q
 1

),( . 

The structure diagram of MTNC is demonstrated in 

Figure 2 (Zhou and Yan, 2013a). 

To obtain the mathematical expression of ),( mtN  

and ),( qp , the product items in (3) are rearranged in 

a new way as shown in Figure 3 (Zhou and Yan, 

2013a), i.e., the product items of the expansion are 

stored according to their powers respectively. Let 

),( ji  denote the i th rectangle, which is used to store 

the product items with the j th power obtained by 

adding one power to the i th variable )(kzi  from the i

th to the t th rectangle of the ( 1)j  th power, so on 

and so forth, until the product items with the m th 

power obtained by adding one power to the t th 

variable )(kzt  in )1,( mt  have been stored in ),( mt

, where ti ,,2,1   and mj ,,3,2  . 

Listed below are the calculation process for 

),( mtN  and ),( qp . 

Let ),( jiP  ),,1;,,2,1( mjti    denote 

the number of the product items in ),( ji . From Figure 

3 we derive 

 ,1),(),(
1 1


 

m

j

t

i

jiPmtN  (4) 

)(1 kz

)(2 kz

)(kzt

)(1 kz

)(2 kz

)(kzt

)(2

1 kz

)()( 21 kzkz

)(2 kzt

)(1 kzm

1

)(kzm

t











)
(1 k

w

)(2 kw

)(
)

,(

k

w
mt

N



)(ku

)(ku

term

constant

term

power

1st

term

quadratic

term

power

thm

 

Figure 2. Structure diagram of MTNC. 
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Figure 3. New arrangement of product items. 
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It is supposed that in Equation (3), from the second 

item, the p th )),(,,2( mtNp   product item 

corresponds to the r th product item in ),( ji  

),,1;,,2,1( mjti    in Figure 3. The power of the 

variable )(kzq
 ),,2,1( tq   is denoted by ),(, qrji . 

Let ),( ebQ j
 ),,2,1;,,2,1,( mjteb    be the 

number of the product items from the b th to the e th 

rectangle with the j th power. From Figure 3, we have 
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The initial values are 
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4 SELECTION OF INITIAL MTNC WEIGHT 
PARAMETER VALUES FOR ONLINE 
LEARNING 

IT is crucial to choose proper initial values for 

network parameters that influence convergence speed 

as well as convergence performance of the network. 

One common practice in network training is to select 

the initial values randomly (Rubio and Yu, 2003; 

Savran, 2007; Yang et al., 2014). In order to raise the 

convergence speed and avoid falling into a local 

minimum, PSO algorithm is often adopted to identify 

the initial weight parameters (Fu and Chai, 2012). In 

the present study, selection of the initial weight 

parameters of MTNC for online learning is introduced 

in the two steps: 1) transform the input-output 

description form of the system (1) into its extended 

state space description form by variable substitution, 

select an ideal output signal )(kyid  relative to the 

given reference signal )(kr , and employ Pontryagin 

minimum principle to obtain the numerical solution of 

the optimal control law )(* ku  of the system (1) 

relative to the ideal output signal )(kyid ; the 
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corresponding optimal output is termed as the desired 

output signal )(kyop
; 2) choose a group of weight 

parameter values randomly at the interval ( 1,1) , and 

employ the CG method to train MTNC to approximate 

the optimal control law )(* ku , and then a group of 

weight parameter values can be obtained as the initial 

values used to train MTNC online. The specific 

practices go as described below. 

4.1 Optimal Control Law 
Let 1 uy nnt , and 
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Then, the input-output description form of the 

system (1) can be transformed into its extended state 

space description form via variable substitution, i.e., 
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Consider the following optimal control problem 

(Kirk, 2004): 
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where )(ky  is determined by (8) and (9). 

Introduce the Hamilton function 
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for convenience, suppose ( ) ( ( ), ( ),H k H k u k x

( 1), )k kλ , and )(kx , )(kλ  satisfy the following 

difference equations: 
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If the control law is constrained, an extreme value 

of Hamilton function is taken on the optimal control 

sequence )(* ku  and the corresponding optimal state 

series )(* kx  by Pontryagin minimum principle, i.e., 
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where Ω  is a bounded closed set. If not, the value of 

)(ku  can be taken from the whole control space R ; 

then, the extreme condition is 
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Here, we consider the second case, i.e., Rku )( . 

For any given series of the control sequence )(ku , 

improve it by repeated iteration in the direction 

lowering the gradient of Hamilton function )(kH , 

until the necessary condition (15) is met and the 

numerical solution of the optimal control law )(* ku  

)1N,,1,0(  k  is obtained. For convenience and 

without loss of generality, let ( (0), (1), ,u uu

T(N 1))u  , and the calculation steps go as below: 

Algorithm 1. Step 1. Select an initial value of the 

state vector )0(x  and a nominal control history 0u . 

Set the iteration index M =0. 

Step 2. Calculate the state trajectory )(kMx  by (8) 

based on )0(x  and Mu , where N,,2,1 k . 

Step 3. Calculate the partial derivative of )(kH  

with respect to )(ku  at )(kuM , and set it as 

)()(
)(

)(
)(

kuku

M

M

ku

kH
kg





 , where 1N,,1,0  k . Let 

T))1N(,),1(),0((  MMMM ggg g . 

Step 4. Calculate Mg . If Mg , where   is a 

given positive constant, and then stop; or else, revise 

the control history: MMM guu 1 , i.e., 

)()()(1 kgkuku MMM  , where   is a 

fixed step size and 1N,,1,0  k , let 1MM , 

and go to Step 2. 

4.2 Selection of Initial MTNC Weight 
Parameter Values for Online Learning 

Generate the MTN optimal controller (MTNC) 

automatically to approximate the numerical solution 

of the optimal control law )(* ku  for the system (1) 

relative to the ideal output signal )(kyid . The initial 

weight parameters *

0w  for online learning can be 

obtained through offline learning. The following 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
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describe how to choose these parameters for online 

training by the CG method. Let )(ku  denote the 

output of MTNC at time k . 

The fitting error is defined as 

 ),()()( * kukuke   (16) 

and the corresponding mean square error is 

 .)(
2

1 1N

0

2





k

keE  (17) 

Substituting Equations (3) and (16) into (17) yields 

 .)()(
2

1 1N

0

2
),(

1 1

),(*  


  















k

mtN

p

t

q

qp

qp kzwkuE 
 (18) 

Let 

 ,)(,,)(),()(

T

1

)),,((

1 1

),2(),1(














  

 

t

q

qmtN

q

t

q

t

q

q

q

q

q kzkzkzk  α  

  ,)1N(,),1(),0(  αααA   

 .),,,( T

),(21 mtNwww w  

Then, Equation (18) can be rewritten as 

 

.)(
2

1
))()((

))()((
2

1

))()((
2

1

1N

0

2*T
1N

0

*

1N

0

TT

1N

0

2T*





























kk

k

k

kukku

kk

kkuE

wα

wααw

αw

 (19) 

Calculating the partial derivative of E  with 

respect to the weight parameter vector w , we get 

   .)()()()(
1N

0

*
1N

0

T 













kk

kkukk
E

αwαα
w

 

Assuming 
w

g





E
,  






1N

0

T )()(
k

kk ααQ , 







1N

0

* )()(
k

kku αb , the partial derivative can be 

rewritten as 

 .bQwg   (20) 

Let T**** ))1N(,),1(),0((  uuu u , and Q , b  

and g  can be obtained by 

 TAAQ  , *
Aub  , )( *T uwAAg  . 

For the given numerical solution of the optimal 

control law )(* ku , the value of the weight parameter 

vector w  for MTNC can be updated in the negative 

gradient direction of E . Let w  denote the weight 

parameter vector after the  th training, and we have 

  gww 1 , where   is step size, and 






Qgg

gg
T

T

 . Using the gradient method, the search 

direction, as always vertical to the last, takes a zigzag 

course; however, the problem can be solved 

effectively by the CG method. By the latter, the 

weight can be updated as   pww 1 , where 

11   pgp a , 





Qpp

gg
T

T

 , and 

11

1

T

1




 






Qpp

Qpg
T

a , )1(  . The initial value is 

11 gp  . 

5 REAL-TIME SELF-TUNING OF MTNC 
PARAMETERS 

AS the adaptive controller is required to adjust its 

parameters automatically in real time, BP algorithm is 

the most widely used training algorithm for the 

networks, but it has such drawbacks as slow 

convergence speed, easy falling into local optimal 

point, etc. To raise the convergence speed, a 

momentum term is often added to the BP algorithm 

for accelerating and stabilizing the learning procedure 

(Phansalkar and Sastry, 1994; Rummelhart et al., 

1986), followed by the introduction of a second-order 

momentum term (Pearlmutter, 1992) and an extra term 

proportional to the error (Zweiri et al., 2003, 2005). 

Good results have been attained by the improvement 

of BP algorithms. For further enhancement of the 

learning speed, a four-term BP algorithm developed 

by introducing the second-order momentum term into 

the three-term BP algorithm is proposed here for 

MTNC online training as follows: 

 
)),(()2(

)1())(()(

2

1

kk

kkk

wew

wwEw








 (21) 

where 
)(

))((
))((

k

kE
k

w

w
wE




  denotes the partial 

derivative of the performance indicator ))(( kE w  with 

respect to the weight parameter vector )(kw  at time 

1k , )1(  kw  is the first-order momentum term, 

)2(  kw  is the second-order momentum term, 

))(( ke w  is the tracking error with )(kw , 

T)))((,)),(()),((())(( kekekek wwwwe  ,   is the 

learning factor, 1  is the first-order momentum factor, 

2  is the second-order momentum factor, and   is 

the proportional factor. The performance indicator is 

javascript:void(0);
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))((
2

1
))(( 2 kekE ww  , and the tracking error is 

)1()1())(()1(  kykrkweke . 

From Equation (21), we acquire 

 ),()1()( kkk www   (22) 

 ,
)(

)1(
))(())((

kd

kdy
kek

w
wwE


  (23) 

where 

 .
)(

)(

)(

)1(

)(

)1(

kd

kdu

ku

ky

kd

kdy

ww 





 (24) 

With the system model not precisely known, the 

first term on the right side of Equation (24) can be 

replaced by 

 ,
)1()(

)()1(

)(

)1(


















kuku

kyky
sign

ku

ky
 (25) 

and the influence due to computational inaccuracy can 

be compensated by adjusting the learning rate. 

Meanwhile, the second term on the right side of 

Equation (24) can be calculated as 

 ),(
)(

)(
k

kd

kdu
α

w
  (26) 

where )(kα  refers to the same as mentioned before. 

6 ALGORITHMIC STEPS FOR MTN OPTIMAL 
CONTROL SCHEME 

ALGORITHM steps for MTN optimal control 

scheme are summarized as below: 

Algorithm 2. Step 1. Select an ideal output signal 

)(kyid  to replace the given reference signal )(kr . 

Step 2. Call Algorithm 1 to calculate the optimal 

control law )(* ku  of the system (1) relative to the 

ideal output signal )(kyid , and the corresponding 

optimal output signal )(* ky  is taken as the desired 

output signal. 

Step 3. Generate MTNC automatically to fit the 

optimal control law )(* ku , select a group of initial 

weight parameter vector 0w  at the interval ( 1,1)  in a 

random way for offline training, and train MTNC by 

CG method to acquire the initial weight parameter 

vector *

0w  for online training. 

Step 4. Obtain )(kr , ( )u k  and )(ky , and take the 

real-time tracking error )(ke  as )()()( kykrke  , 

where ,1,0k . 

Step 5. Obtain the input signal )(ku  of the system 

(1) by putting )(kz  into MTNC controller (2), and 

)(ku  into (1). 

Step 6. Employ Equations (21)-(26) to adjust the 

weight parameter vector for MTNC online to track the 

given reference signal )(kr , and then go to Step 1. 

Step 7. Go to Step 4 and continue the process. 

7 STABILITY ANALYSIS FOR LEARNING 
ALGORITHM 

SIMILAR to Zweiri et al. (2005), let )()(1 kk wρ 

, )1()(2  kk wρ  and )2()(3  kk wρ , changing 

Equations (21) into 

 
)),(()(

)())(()()1(

132

21111

kk

kkkk

ρeρ

ρρEρρ








 (27) 

 
)),(()(

)())(()1(

132

2112

kk

kkk

ρeρ

ρρEρ








 (28) 

 ).()1( 23 kk ρρ   (29) 

Lemma 1. If ),,( 321 cccc   is an equilibrium point 

of the system shown in Equations (27)-(29), then 

0c 2 , 0c 3  and ))(())(( 11 kk ρeρE   . 

Proof. If ),,( 321 cccc   is an equilibrium point, there 

exist 11 )( cρ k , 22 )( cρ k , 33 )( cρ k  and 

 ,)()1( 11 0ρρ  kk  (30) 

 ,)()1( 22 0ρρ  kk  (31) 

 .)()1( 33 0ρρ  kk  (32) 

Substituting Equations (30)-(32) into Equations 

(27)-(29) gives 

 
,))(()(

)())((

132

211

0ρeρ

ρρE





kk

kk




 (33) 

 
)),(()(

)())(()(

132

2112

kk

kkk

ρeρ

ρρEρ








 (34) 

 ).()( 23 kk ρρ   (35) 

By summarization, we get 

 )),(())(( 11 kk ρeρE    (36) 

 ,0)(2 kρ  (37) 

 ,0)(3 kρ  (38) 

that is, 

 )),(())(( 11 kk ρeρE    (39) 
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 ,2 0c   (40) 

 .3 0c   (41) 

That completes the proof of Lemma 1. 

Let 111 )()( cρφ  kk , 222 )()( cρφ  kk  and 

333 )()( cρφ  kk ; then Equations (42)-(44) hold: 

 

)),((

))(())((

))(()()1(

11

332221

1111

k

kk

kkk

φce

φcφc

φcEφφ













 (42) 

 
)),(())((

))(())(()1(

11332

221112

kk

kkk

φceφc

φcφcEφ








 (43) 

 ).()1( 23 kk φφ   (44) 

At the equilibrium point ),,( 321 cccc  , expanding 

Equations (42) and (43) by Taylor expansion, we 

obtain 

 
),()()(

)()()()()1(

1132

2111

2

11

kk

kkkk

φceφ

φφcEφφ








 (45) 
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)()())1(

1132
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2

2

kk

kkck

φceφ

φφE(φ








 (46) 

 ).()1( 23 kk φφ   (47) 

Let ),(),(

1

2 )( mtNmtNR  cEB  and  

),(),(

1)( mtNmtNR  ceD , and then we have 

.
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3

2

1
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3

2

1
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
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














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



k

k

k

k

k

k

φ

φ

φ

0I0
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IIDBI

φ

φ

φ
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 (48) 

Let 























0I0

IIDB

IIDBI

Θ 21
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



 and 



















)(

)(

)(

)(

3

2

1

k

k

k

k

φ

φ

φ

φ , and then Equation (48) can be 

simplified into 

 ).()1( kk Θφφ   (49) 

Let i  be an eigenvalue of Θ , known from Leigh 

(1985), the system (49) is stable if and only if 1i  

for all i , where ),(2,,2,1 mtNi  . 

Lemma 2. Let  DBF  . If i  is an 

arbitrary eigenvalue of F , the corresponding 

eigenvalue i  of Θ  can be determined by the 

following cubic equation: 

 ,0)()1( 221

2

1

3   iiii  (50) 

Proof. For any B  and D , Θ  is reversible if 02  . 

Let i  be an eigenvalue of Θ ; then we have 0i  

if Θ  is reversible. Let TT

3

T

2

T

1 ),,( ηηηη   be an 

eigenvector corresponding to the eigenvalue i  of Θ , 

and we get 

 ,ηΘη i  (51) 

which leads to 

 ,13221111 ηηηDηBηη i   (52) 

 ,2322111 ηηηDηBη i   (53) 

 .32 ηη i  (54) 

As revealed by Equations (52)-(54), the following 

equations hold. 

 ,
1

12 ηη
i

i



 
  (55) 

 .
1

123 ηη
i

i



 
  (56) 

Substituting Equations (55) and (56) into Equation 

(52) yields 

 ,1)1()( 12

21
1 ηηDB 













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ii

i







  (57) 

Substituting  DBF   into Equation (57) 

gives 

 ,1)1(
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21
1 ηFη 
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











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i
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





 (58) 

Known from Equation (58), 1  is an eigenvector 

corresponding to the eigenvalue 
















 2

211)1(
1

ii

i










 of F . Without loss of 

generality, let 

 ,1)1(
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2
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


ii

ii










  (59) 

Summarizing Equation (59) confirms that the 

equation 0)()1( 221

2

1

3   iiii
 

holds, that is, i  can be determined by Equation (50). 

That completes the proof of Lemma 2. 

Theorem 1. The necessary and sufficient conditions 

for the stability of the system (49) are  



496  YAN, ZHANG, and SUN 

 

,
1

1
1

1,2)(2min

1
1

1
1,0max

2

2

2

2

121

2

2

2

2

1




































































































 i

 

01   and 10 2   . 

Proof. 01   and 02   are known to be the 

momentum factors. Let 
01

2

2

3

3)( azazazaz  , 

the roots of the cubic equation 0)( z  lie in the unit 

circle if and only if 0)1(  , 0)1()1( 3   , 30 aa   

and 20 bb   are satisfied (Phillips & Habor, 1996), 

where 13 a , 112   ia , 211  a , 20 a  

and 
j

j

j aa

aa
b

3

30 
 , )2,1,0( j . 

Then, the necessary and sufficient conditions for 

the stability of the system (49) are as follows: 

 ,0)()1(1 2211  i  

 ,0)()1(1 2211  i  

 ,12   

 .)()1(1 2112

2

2   i  

Summarizing the above confirms that the following 

formulas hold: 

 ,0i  

 ,2)(2 21   i  

 ,11 2    

 

1 2 2

2 2

1 2 2

2 2

1 1
1 1

1 1
1 1 .

i  
 

 
 

  
     

   

  
     

   

 

Therefore, Theorem 1 holds. 

That completes the proof of Theorem 1. 

8 SIMULATION EXAMPLE 
IN this section, an example is provided to 

demonstrate the effectiveness of MTN optimal control 

scheme. The example is a modification of example 2 

in (Li et al., 2011). Consider the following SISO 

nonlinear time-varying discrete system: 
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The given reference signal is 1)( kr . 

Set 
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We obtain the corresponding extended state space 

description as follows: 
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 ).()( 1 kxky   (62) 

a) Step response experiments 

Here, MTN optimal controller is chosen as 3-10-1 

with the structure of 3 input nodes, 1 output node and 

2 powers. Its input vector is 
T

211 )]2(),1(),1([)(  kelkelkukkz , and 211 llk 

=0.001. Firstly, an ideal output signal )(id ky  was 

selected relative to the given reference signal )(kr , 

and Pontryagin minimum principle employed to 

obtain the numerical solution of the optimal control 

law )(* ku  of the formulas (61) and (62) relative to the 

ideal output signal )(id ky , with the corresponding 

optimal output taken as the desired output signal 

)(op ky . A set of weight parameter values were 

determined in a random way at the interval ( 1,1)

, and the CG method was used to train MTNC offline 

to approximate the optimal control law )(* ku  already 

obtained. Then a set of parameter values were secured 

and taken as the initial parameters for online MTNC 

training. In the off-line training process, the iterations 

of fitting were set as ite =100; finally, a four-term BP 

algorithm was adopted to adjust the weight parameters 

of MTNC for the real-time output tracking control of 

the system relative to the given reference signal )(kr . 

In the online training process, the learning rate was set 

as M =0.2, the first-order momentum factor 
1M

=0.15, the second-order momentum factor 
2M =0.15, 

and the proportional factor M =0.015. In the 

traditional NN adaptive control scheme, an NN 

controller (NNAC) is established by a three-layer NN 

with the 3-50-1 structure of 3 input neurons, 50 hidden 

neurons and 1 output neuron. Repeated experiments 

showed that a better control result can be obtained 

when 50 hidden neurons were chosen for NNAC. The 

activation functions for the hidden layer and output 

layer were set as 
xh

e
xa




1

1
)(  and 

x

x

o
e

e
xa










1

1
)( . 

javascript:void(0);
javascript:void(0);


INTELLIGENT AUTOMATION AND SOFT COMPUTING  497 

 

The initial values of the weight parameters were 

chosen in a random way at the interval ( 1,1) , and BP 

algorithm was employed to train NNAC. For the 

training, the learning rate was set as N =0.2. The PID 

neural networks (PIDNN) control scheme was 

introduced to demonstrate the effectiveness of MTN 

optimal control scheme. In the PIDNN scheme, a 

PIDNN controller (PIDNNAC) was established by a 

three-layer network with the 2-3-1 structure of 2 input 

PID neurons, 3 hidden PID neurons and 1 output PID 

neuron (Shu (1999); Shu and Pi (2000)). The initial 

values of the weight parameters were set as 
jw1
=1 and 

2 j
w = 1  for the weights between the input and hidden 

layers, and 
jv =0 for the weights between the hidden 

and output layers with 3,2,1j . BP algorithm was 

implemented to train PIDNNAC. For the training, the 

learning factor was set as P =0.3. Simulation results 

are presented in Figures 4-6. 

Remark 1: In the following figures, r represents 

the given reference signal; yMC, yNAC and yPNAC 

are the actual output responses of the MTN optimal 

control scheme, the traditional NN adaptive control 

scheme and the PIDNN control scheme respectively; 

eMC, eNAC and ePNAC denote the corresponding 

tracking errors. 

As shown in Figures 4-6, the overshoots are 

28.83%, 52.74% and 42.74%; the performance index 

goes as E<10-3 after the iterations 13, 17 and 21; the 

steady state error obtained by taking the average of the 

absolute errors from the iterations 13 to 1000 is 

0.0025 with the MTN optimal control scheme, that 

obtained from 17 to 1000 with the traditional NN 

adaptive control scheme is 8.4625× 10-4, and that 

from 21 to 1000 with the PIDNN control scheme is 

5.8137 × 10-4. Simulation results do confirm the 

feasibility and validity of the proposed control 

scheme. 

b) Noise interference experiments 

At the time instant 200, a Gaussian white noise 

with the mean of 0 and the standard deviation of 0.2 is 

added to the system (60), and the simulation results 

are illustrated by Figures 7-9. 

As indicated by Figures 7-9, all of the three control 

schemes are of good robustness for noise interference. 

For better illustration of the robustness of the 

proposed control scheme, noise interference is 

expanded 30 times based on the above discussion, and 

the simulation results are given in Figures 10-12, 

which further verify its superior robustness to the 

other two upon noise interference expansion. 

c) Input superposition experiments. 

Figures 13-15 give the results from the simulation 

of adding an external input disturbance 

)004.0sin(1.0)( kkd   to the given reference signal 

)(kr . 

As shown in Figures 13-15, the overshoots are 

28.06%, 51.92% and 42.14%; the performance index 

E<10-3 after the iterations 13, 17 and 19; the steady 

state error obtained by taking the average of the 

absolute errors from the iterations 13 to 1000 is 

0.0037 with the MTN optimal control scheme, that 

from 17 to 1000 is 0.0022 with the traditional NN 

adaptive control scheme, and that from 19 to 1000 is 

0.0019 with the PIDNN control scheme. Simulation 

results do confirm the feasibility and validity of the 

control scheme proposed here. 

Remark 2: For each control period, 19-time 

multiplication and 9-time addition operations are 

needed for the MTN optimal control scheme. 

However, with the exponential function expanded into 

finite terms with 2 powers, double addition operations 

are needed for the input layer, 8-time addition and 7-

time multiplication operations are required for each 

hidden node; for the output layer node, there need 61-

time addition and 57-time multiplication operations. 

For each control period, 463-time addition and 407-

time multiplication operations are required with the 

traditional neural network adaptive control scheme. 

With the PIDNN control scheme, 9-time 

multiplication and 7-time addition operations are 

demanded. Compared with the other two, there are 

fewer operations needed by the MTN and PIDNN 

control schemes for each control period; compared 

with the TMS320F28335 DSP with the dominant 

frequency of 150MHz, for each control period the 

computation takes 186.7ns and 106.7ns with the MTN 

optimal control scheme and the PIDNN control 

scheme respectively, whereas 5800ns is required by 

the traditional neural network adaptive control  

scheme. To conclude, seen from the simulations, real-

time control is better ensured by the MTN optimal and 

PIDNN control schemes than by the traditional neural 

network adaptive control scheme. 

9 CONCLUSIONS 
FOR SISO nonlinear time-varying discrete 

systems, an optimal control scheme based on MTN 

has been proposed to achieve the real-time output 

tracking control for the system relative to a given 

reference signal. Simulation results show that the 

MTN optimal control scheme is feasible and effective, 

and the system’s actual output response can track the 

given reference signal well in real time. 

The main contributions of this paper are as follows:  

(1) A feasible real-time self-tuning control scheme 

is proposed for the control design of nonlinear time-

varying discrete systems; in this scheme, all the 

parameters of MTNC are adjusted automatically and 

simultaneously.  
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Figure 4. Tracking performance of output feedback. 

 

Figure 5. Tracking errors. 
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Figure 6. Control inputs. 

 

Figure 7. Tracking performance of output feedbacks with noise interference. 
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Figure 8. Tracking errors with noise interference. 

 

Figure 9. Control inputs with noise interference. 
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Figure 10. Tracking performance of output feedbacks with expanded noise interference. 

 

Figure 11. Tracking errors with expanded noise interference. 
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Figure 12. Control inputs with expanded noise Interference. 

 

Figure 13. Tracking performance of output feedbacks with signal superposition. 
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Figure 14. Tracking errors with signal superposition. 

 

Figure 15. Control inputs with signal superposition. 
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(2) Unlike neural networks, MTNC can be 

generated automatically, which simplifies the network 

structure and raises the convergence speed by a great 

deal. 

(3) A good network initial weight parameter 

identification scheme is developed by fitting the 

optimal control law, and the desirable control effects 

can be attained by the selection of initial weight 

parameter values of the controller. 

(4) Apparently superior to the traditional BP 

algorithm with the momentum term, a four-term BP 

algorithm is adopted to adjust the weight parameters 

in real time, promising a faster convergence speed. 

(5) The convergence conditions for the four-term 

BP algorithm are identified, and the ideal control 

effect can be achieved by proper selection of the 

learning, momentum and proportional factors. 
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