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1 INTRODUCTION  
IMAGE enhancement is usually required for better 

visualization of dark images to improve feature 

identification, visual perception, and interpretability. 

Traditionally, noise is considered as an unwanted 

signal, which degrades the performance of a system. 

Stochastic resonance is a phenomenon, in which noise 

can be utilized to enhance rather than degrading the 

system performance. The first experiment on 

stochastic resonance for image visualization is 

reported in Simonotto, et al. (1997). Some of the 

recent work on the applications of stochastic 

resonance for grayscale images or edge enhancement 

has been published in Ye, et al. (2003); Hongler, et al. 

(2003); Ye, et al. (2004); Peng, et al. (2007); 

Rallabandi (2008); Rallabandi and Roy (2010); Ryu, 

et al. (2011). 

Many of the existing contrast enhancement 

techniques in spatial domain are explained in Lim 

(1990); Gonzales and Woods (1992); Jobson, et al. 

(1997); Wolf, et al. (1998). Generally, the 

performance of a non-dynamic stochastic resonance 

based system can be improved by addition of external 

noise. The work proposed in this paper is completely 

different from these approaches. The technique in 

Peng, et al. (2007) and Ryu, et al. (2011) use the 

concept of non-dynamic stochastic resonance that 

adds N parallel frames of independent and identically 

distributed (i.i.d.) Gaussian noise and addition of 

external noise. The technique dealing with edge 

detection using vibrating noise is reported in Hongler, 

et al. (2003). The scheme developed for sonar image 

enhancement suggests the addition of external noise 

on bi-leveled images Ye, et al. (2004). The techniques 

on suprathreshold stochastic resonance Jha, et al. 

(2012);  Jha, et al. (2012) deal with noise induced 

contrast enhancement of dark images. In a word, all 

these approaches work in spatial domain. Numerous 

applications of Stochastic Resonance (SR) for contrast 

enhancement are explored by addition of external 

noise, and the performance metrics are chosen based 

on experimentation. However, in the proposed 

technique, the intrinsic noise (darkness) present in an 

image due to low illumination has been utilized to 

enhance the contrast of the image. 

Although many algorithms available in literature 

have been designed in block DCT domain for both 

colored and grayscale images Bockstein (1986); 

Mukherjee and Mitra (2008); Strickland, et al. (1987);  

Tang, et al. (2003), there are some drawbacks in 
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processing images using block DCT. As a matter of 

fact, using these algorithms processing the blocks 

independently is difficult due to the presence of 

blocking artifacts in the processed data. Sometimes, 

superfluous edges may appear at the image boundaries 

due to the sharp discontinuities of the intensity 

distribution. Therefore, the DWT based image 

enhancement using DSR has been proposed in 

Rajlaxmi Chouhan, et al (2012). In this paper, the 

Multi Wavelet Transform (MWT) based contrast 

enhancement technique has been proposed so as to 

avoid blocking artifacts. The low and the high 

frequency informations are processed simultaneously 

by means of the Dynamic Stochastic Resonance 

(DSR) model. The proper preservation of color is 

achieved by processing on the intensity vector of 

saturation model. In the proposed technique, an 

analogy to Benzi’s double well model for recurrence 

of ice ages Benzi, et al (1981) is presented in the Multi 

Wavelet transform (MWT) domain. The proposed 

technique selects the double well parameters by the 

maximization of the SNR, and also relates the DSR 

parameters with the statistical properties of the poorly 

illuminated image itself. 

Color image filtering methods for variable spray 

systems were discussed in Huihui, et al (2012). Four 

color image filtering algorithms were tested in the 

color images according to the noise characteristics. 

The test results revealed the fact that the filter based 

on RGB scalar had poor effect because of the 

appearance of some new colors, and it was the 

slowest; the rest filters nearly had no difference, and 

the filter based on RGB vector was the fastest. For 

efficient gray scale and RGB image denoising, smart 

real time adaptive gaussian filter supervised neural 

network is presented in Hassene Seddik, et al (2014). 

To target and eliminate different kinds and densities of 

noise in the image, neural networks are used for 

transforming static Gaussian low-pass filter to 

dynamic smart filter. Simulation results shows that the 

proposed method is able to filter efficiently corrupted 

data and reduce noise as well as preserve edges and 

forms. 

The rest of this paper is organized as follows. 

Section 2 and 3 review the undecimated multiwavelet 

and complex daubechies wavelet transforms. Section 4 

briefs the concept of DSR and its mathematical 

formulation. Section 5 further presents the proposed 

enhancement algorithm. The experimental results are 

discussed in Section 6. Section 7 finally draws the 

conclusions of the paper, and provides a few remarks. 

2 MULTI WAVELET TRANSFORM (MWT) 
THE scalar wavelets have a single scaling function 

ϕ(t) and wavelet function ѱ(t), whereas multiwavelets 

may have two or more wavelet and scaling functions 

Strela, et al (1999); Vasily Strela  (1996). There are 

two types of multiwavelets. They are balanced multi 

wavelets and unbalanced multi wavelets. In the 

unbalanced multiwavelets, due to the application of 

the filter coefficients on the images, the boundaries are 

not treated properly, as they have dissimilar spectral 

characteristics of sub bands. Therefore, the pre-

processing step is required to treat the image 

boundaries effectively before applying the filter 

coefficients Lahouari Ghouti, et al. (2006). 

Unfortunately, this pre filter (pre-processing filter) 

phase may destroy the properties that a multiwavelet 

basis is designed to have Selesnick (2000). The 

balanced multiwavelet eliminates the use of pre-

filtering, and they are computationally more efficient 

than the unbalanced multiwavelet. The multiwavelet 

decomposition iterates on the low-frequency 

components generated by the previous decomposition 

level. After the first level scalar wavelet 

decomposition, the single low frequency sub band is 

present, whereas in the multiwavelet decomposition, r2 

low frequency components are present. The next 

iteration continues to decompose the low frequency 

sub bands (LoL0, L0L1, LlLo, L1L1). In this situation, 

when r=2, a structure of 4(3*J+1) sub bands can be 

generated after the Jth decomposition. When for J=1, 

the decomposition is shown in Figure 1. 

The ‘r’ scaling functions can be written using the 

following vector notation. 

 ϕ(t)=[ϕ1(t)  ϕ2(t)  ϕ3(t)……..ϕr(t)]
T  (1) 

where ϕ(t) is called the multi scaling function. 

In the same way, the ’r’ wavelet functions can be 

represented as follows: 

 ѱ(t)=[ ѱ1(t)  ѱ2(t)  ѱ3(t)….. ѱr(t)]
T    (2)  

In general, a scalar wavelet is represented with r=1. 

Most of the developed multiwavelet transforms use 

two scaling and wavelet functions, but theoretically r 

can take any value. Similar to the scalar wavelets, for 

r=2, the multi scaling function satisfies the following 

two scale equations 

 




 )2(2)( ktkHt 

 (3)  

 




 )2(2)( ktkGt 

 (4)  

where Hk and Gk are 2x2 matrix filters defined as: 

𝐻𝑘 = (ℎ𝑜(2𝑘) 

ℎ1(2𝑘) 

    ℎ𝑜(2𝑘+1)
  ℎ1(2𝑘+1)

)      𝐺𝑘 = (𝑔𝑜(2𝑘) 

𝑔1(2𝑘) 

    𝑔𝑜(2𝑘+1)
  𝑔1(2𝑘+1)

)  

  (5)  

The matrix elements actually provide more degrees 

of freedom than a traditional scalar wavelet. These 

extra degrees of freedom are employed to incorporate 

useful properties into the multiwavelet filters, e.g., 

symmetry, orthogonality and high order of 

approximation. The multiwavelet transform is 

implemented through a filter bank structure as shown 

in Figure 2. L0(z) and L1(z) are the transforms of the 
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two low pass branch filters L0 and L1. Similarly, H0(z) 

and H1(z) are the transforms of the two high pass 

branch filters H0 and H1. In the time varying filter 

bank implementation, the coefficients of the two low 

pass branch filters L0 and L1. Similarly, H0(z) and 

H1(z) are the transforms of the two high pass branch 

filters H0 and H1. In the time varying filter bank 

implementation, the coefficients of the two low pass 

and high pass filters are simply interleaved at the 

output. However, in the 2-D transform case with r=2, 

a total 16 sub bands are obtained instead of the usual 

four sub bands with scalar wavelet transforms. 

 

L0L0 L0L1 L0H0 L0H1 

L1L0 L1L1 L1H0 L1H1 

HoLo HoL1 HoHo HoH1 

H1Lo H1L1 H1Ho H1H1 

 
Figure 1.  Sub band distribution structure for first level MWT 
decomposition. 

 

Figure 2.  MWT decomposition. 

For the second level decomposition, one should 

apply the MWT over four low frequency sub bands, 

which can be obtained after the first level 

decomposition. The scaling and wavelet coefficients 

for the GHM balanced multi wavelet are tabulated in 

Table 1. 

3 COMPLEX DAUBECHIES WAVELET 
TRANSFORM (CDWT)  

AS we know that the wavelets form bases, in 

which a signal can be decomposed using multi 

resolution analysis into a wide range of scales. It 

allows the detection of short lived time components, 

which need high time resolution as compared with the 

low-frequency components, where a detailed 

frequency analysis is often desired. The Discrete 

Wavelet Transform (DWT) can decompose a signal in 

its time domain into time frequency domain with the 

expression of a set of translated and scaled version of 

a basis mother wavelet Rao and Bopardikar (2000) 

using a set of functions, such as wavelet scaling 

function )(t  and wavelet function )(t in the time 

domain with real-valued coefficients associated with 

high pass and low pass filters respectively. The 

wavelet decomposition enables the signal to pass 

through a series of complementary high pass filters as 

well as low pass filters separately, and can be down 

sampled by two for generating the higher frequency 

(details components) and lower frequency coefficients 

(approximation component). 

On the other hand, the real-valued DWT have some 

disadvantages, such as lack of phase information and 

symmetry. It has been proved that complex solutions 

do exist leading to the Complex Daubechies Wavelet 

Transform (CDWT), which is a natural extension of 

the concepts of the Daubechies real-valued wavelet 

transform. In the CDWT, the complex valued filters 

are used instead of real filters, which can provide high 

degree of shift invariance and phase information Lina 

and Mayrand (2002). The construction of the CDWT 

can be achieved through the use of multi resolution 

analysis Lina (1997). 

For Daubechies wavelet, let z)(1
2

1
h(z)  for 

the following polynomial: 
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which satisfies 𝑷𝑵(𝒁) − 𝑷𝑵(−𝒁) = 𝒁 , when 𝒁𝒎 m= 

1, 2, 3, ….J. The set of roots of  𝑷𝑱(𝒛) inside the unit 

circle (|𝒁𝒎|<1), and any selection of R among the 

roots  𝑷𝑱(𝒛)  defines an admissible trigonometric 

polynomial that satisfies the constraints of multi 

resolution analysis: 
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The solutions of Eqs. (6) and (7) give us the 

Daubechies scaling functions with real as well as 

complex valued coefficients. Any function f(x) can be 

decomposed into a complex scaling function and a 

mother wavelet as   
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Table 1.  Scaling and Wavelet Filter Coefficients 

L0 L1 H0 H1 

0.01513026672650 

-0.10232198801947 

0.10232198801947 

0.69197651446004 

0.69197651446004 

0.10232198801947 

-0.10232198801947 

0.01513026672650 

0 

0 

0 

0 

0.00044873488326 

0.01089896516162 

-0.00303467520953 

-0.07370681580507 

0.07415555068833 

0.69924249123446 

0.69924249123446 

0.07415555068833 

-0.07370681580507 

-0.00303467520953 

0.01089896516162 

-0.00044873488326 

0.00666766359674 

0.10321945778598 

0.04509164359067 

-0.069804586487911 

0.069804586487911 

-0.04509164359067 

-0.10321945778598 

-0.00666766359674 

0 

0 

0 

0 

-0.00044873488326 

-0.01089896516162 

0.00303467520953 

0.07370681580507 

0.13138589511713 

-0.69077988810469 

0.69077988810469 

-0.13138589511713 

-0.07370681580507 

-0.00303467520953 

0.01089896516162 

-0.00044873488326 

 

 

 

 

 

 

Figure 3.  (a) SNR vs noise standard deviation curve. The SNR is observed to follow a resonant nature.  
(b) Bistable double potential well with two stable states. 
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where j0 is a given resolution level and 

 
  f|

kj,
j
k

c 
  

and  

 
 f|kj,ψ

j
kd 

 

are approximation and detail coefficients, respectively. 

Equation (8) can be generalized to two dimensional 

signal f(x, y) as 

 


nm,

),(,max
max
, yxnmj

j
nmcy)f(x, 

 (9) 

which can be expanded: 
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where the first term in equation is an approximate 

component of the input image signal, and the 

remaining three terms are detail components, i.e., 

horizontal, vertical, and diagonal components, 

respectively. The CDWT’s low pass and high pass 

filter coefficients h0(n) and h1(n) are given in Table 2. 

4 DYNAMIC STOCHASTIC RESONANCE AND 
ITS MATHEMATICAL FORMULATION 

GENERALLY, noise is considered as an unwanted 

signal, which degrades the performance of a given 

system. However, recent studies have shown that in 

nonlinear systems, noise can be used to cause the 

amplification of weak signals, and can result in 

increase of signal to noise ratio. The SR occurs when 

SNR and input/output correlation have the maximum 

value at certain noise level. This concept is well 

explained in Rao and Bopardikar (2000). Any system 

to exhibit stochastic resonance should possess the 

following three properties like non-linearity in terms 

of threshold, sub threshold signals like signals with 

small amplitude, and a source of additive noise. This 

phenomenon occurs frequently in the bi stable systems 

Lina and Mayrand (2002). For the lower noise 

intensities, weak signal cannot cross threshold results 

in low SNR, and for the higher noise intensities, the 

output is dominated by noise, which again results in 

low SNR. At the moderate noise intensities, the signal 

to cross threshold results in the maximum SNR at the 

optimum noise level, as shown in Figure 3(a). We also 

have 

 

)(
)()(

tD
dx

xdU

dt

tdx


 (11) 

U(x) in equation (11) is bi stable potential as 

shown in Figure 3(b), and is given in the following 

equation.  (t) is the additive zero mean stochastic 

fluctuation, and D is the noise variance.  

 4

4

2

2

)(
bxax

xU 

 (12) 

From the above equation, a and b are double well 

parameters. The double well system is stable at 

b

a
x   separated by barrier of height 

b

a
U

4

2



, where  (t) =0. 

Addition of periodic input signal )sin( tB   makes 

the bi stable system time dependent so that its 

dynamics are governed by the following equation: 

 )()sin(
)()(

tDtB
dx

xdU

dt

tdx
   (13) 

where ω and B are the frequency and amplitude of the 

input signal, respectively. It is assumed that the small 

amplitude of signal is not enough, and in the absence 

of noise, it is insufficient to move the particle from 

one well to other. By substituting equation (12) into 

equation (13), we have 

 )()sin(]
3

[
)(

tDtBbxax
dt

tdx
   (14) 

In the absence of the periodic force, the particle 

fluctuates around its local stable states. The rate of 

transition of particle (rk) between potential well under 

noise driven switching is given by Kramer’s rate Lina 

(1997), as in the following equation. 

 
Table 2.  CDWT Filter Coefficients 

h0(n) h1(n) 

0.0105 + 0.0206i 
-0.0171 + 0.0087i 

   -0.0806 - 0.1179i 
    0.1514 - 0.0942i 

 0.6430 + 0.1829i 
 0.6430 + 0.1829i 
0.1514 - 0.0942i 

   -0.0806 - 0.1179i 
-0.0171 + 0.0087i 
 0.0105 + 0.0206i 

  

 0.0105 + 0.0206i 
 0.0171 - 0.0087i 
-0.0806 - 0.1179i 
-0.1514 + 0.0942i 
 0.6430 + 0.1829i 
-0.6430 - 0.1829i 
 0.1514 - 0.0942i 
0.0806 + 0.1179i 

-0.0171 + 0.0087i 
-0.0105 - 0.0206i 
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Noise driven switching between potential well 

takes place when weak periodic force is applied to unit 

mass particle in potential well and is synchronized 

with the average waiting time 















kr
DkT

1
)(  

between two noise driven inter well transitions 

satisfying the time scale matching between the 

residence times of the particle in each well and signal 

frequency ω Gammaitoni, et al (1998). 

 
TDkT )(2

  (16) 

T  is the period of periodic force. The most 

important factor in stochastic resonance is SNR. The 

expression for the SNR in the DSR as derived from 

[33] is given as 
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aa
SNR  (17) 

where σ0 is the standard deviation of the internal noise 

of the original bi stable system, and σ1 is the standard 

deviation of added noise in the SR based system. The 

maximum SNR is acquired when the intrinsic 

parameter of dynamic double well system
2
02a . 

The other parameters can be obtained from the 

parameter a , and for a weak signal, the sub threshold 

condition required is 
27

3
4a

b  . Solving equation (14) 

using Euler Maruyama’s iterative discretized method 

Risken (1984), we can obtain 

 )]()(
3

)([)()1( ninputnbxnaxtnxnx   (18) 

where )()sin()( tDtBninput    denotes se-

quence of signal and noise, and t  is the sampling 

time based on experimentation and initially .0)( nx  

5 THE PROPOSED ENHANCEMENT 
ALGORITHM USING DSR AND MWT 

THE major steps involved in the proposed method 

are given as follows.  

Step 1. The low contrast colour input image is 

projected into the HSV color space to ensure inherent 

colour preservation of the image and to minimize the 

computation complexity. 

Step 2. The Value vector (V) is decomposed into 16 

sub bands (approximation and detail) using the 

analysis filter coefficients of the balanced multi 

wavelet transform as given in Table 1. 

Step 3.  The SR parameters are computed from all the 

16 sub bands by assuming initial values for m, n and 

∆t. That is, x(0)=0, ∆t=0.15 for gray images and 1≤ ∆t 

≤ 5 for color images, as=k×2σ0
2, bs=m×4(as

3)/27, 

where s ϵ L0L0, L0L1, L0H0, L0H1, L1L0, L1L1, L1H0, 

L1H1, HoLo, HoL1, HoHo, HoH1, H1Lo, H1L1, H1Ho, 

H1H1. The bistable parameters as and bs are computed 

for each of the 16 sub bands using its local variance 

(σ0s
2). Here, m is a factor much less than 1 to ensure 

the sub threshold condition of the signal. k is a factor 

denoting the image region dullness, and is given as the 

inverse of (variance×dynamic range). 

Step 4. Using the dynamic stochastic resonance 

parameters, the tuned multi wavelet transform sub 

band coefficients are found for all the 16 sub bands 

iteratively with the equation given in (19).  

 ])()([)()1( 3 MWTcoeffnbxnaxtnxnx   (19) 

Step 5. Inverse MWT is found for every iterated tuned 

set of the MWT coefficients using the synthesis filter 

coefficients. 

Step 6. The conversion of the HSV color space to 

RGB is performed on the synthesized image to obtain 

the contrast enhanced image. 

Step 7. Calculate F, PQM, and CEF for the contrast 

enhanced image. 

For the second level MWT decomposition, the low 

frequency sub bands (LoL0, L0L1, LlLo, L1L1) obtained 

by the first level MWT decomposition is used. The 

second level MWT decomposition results 64 sub 

bands, in which a total of 16 sub bands are 

approximation sub bands, and the remaining 48 sub 

bands are detail sub bands. For the second level MWT 

based DSR, the above mentioned steps from 1 to 7 are 

performed on all the 64 sub bands. Similarly, the 

above steps are followed to analyse the performance 

of the DSR in complex daubechies wavelet domain by 

making use of filter coefficients given in Table 2. To 

enable the tuning step adaptive, iteration is continued 

until the sum of F(n)+CEF(n) becomes the maximum 

in the nearest possible vicinity of PQM = 10, e.g., 10 ± 

2.  For enhancing the low contrast gray scale images, 

the above steps are repeated except for Step 1 and 6, 

and, therefore, the MWT is directly applied on it. The 

block diagram representation of the above proposed 

algorithm is also shown in Figure 4. As the noise free 

image is required for measuring the metrics Mean 

Square Error (MSE) and Peak Signal to Noise Ratio 

(PSNR), and such images are not available here, the 

performance of the proposed enhancement technique 

cannot be analysed using the MSE and PSNR. Thus, 

to analyse the performance of the proposed technique, 

relative contrast enhancement factor (F), Perceptual 

Quality Metric (PQM) and Color Enhancement Factor 

(CEF) are applied in our simulations. 
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Figure 4.   Block diagram of the proposed algorithm.  
 
 

 

Figure 5.  Comparison of proposed method result with existing enhancement technique results for different dark gray images. (a), 
(i) -Input images, (b), (j) second level MWT based DSR method (c), (k) first level MWT based DSR method (d),(l)CDWT-DSR 
technique, (e), (m) DWT based DSR method (f),(n) DSR technique (g), (o) HEQ technique (h), (p) Gamma correction.  
 

5.1 Contrast enhancement factor (F) 
The contrast enhancement (F) is based on global 

variance and mean of the original and enhanced 

images Rallabandi and Roy (2010). The no-reference 

Relative contrast enhancement factor, F, is calculated 

as the ratio of the values of the post enhancement 

Quality index (QB) and the pre-enhancement Quality 

index (QA). The Quality index Q =



2

, where   is 

the standard deviation, and  is the mean of an 

image.  

5.2 Color Enhancement Factor (CEF) 
The Color Enhancement Factor (CEF) is defined as 

the ratio of the colorfulness of the enhanced and input 

images. The metric in terms of colors called 

colorfulness metric (CM) Mukherjee and Mitra (2008) 

is given as 

 
22

3.0
22

)(  ICM  (20)  

where   is the standard deviation, and  is the mean 

of an image. We have α= R-G and β= (R+ (G/2))-B. 

R, G and B represent the red, green, and blue 

components of an image, respectively. Similarly, μα 

and μβ are their means. The color enhancement factor 

(CEF) is defined as the ratio of colorfulness of the 

enhanced image (CME) to that of the original image 

(CMI): 

 𝐶𝐸𝐹 =
𝐶𝑀𝐸

𝐶𝑀𝐼
    (21) 

For the low contrast grayscale images, only F and 

PQM are measured after enhancement.  

5.3 Perceptual quality metric (PQM)  
Perceptual quality is a no reference metric used for 

judging the image quality taking into account the 

visible blocking and blurring artifacts Wang, et al. 
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(2002). The test image signal is denoted as x (m, n) for 

m∈ [1, M] and n∈ [1, 𝑁], and the difference across 

each horizontal line is given as 

 𝑑ℎ(𝑚, 𝑛) = 𝑥(𝑚, 𝑛 + 1) − 𝑥(𝑚, 𝑛), 𝑛 ∈ [1, 𝑁 − 1] 
  (22)  

The blockiness is estimated as the average 

difference across the block boundaries: 
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 (23) 

By combining the blockiness and activity, we can 

find the blurriness of an image. The activity is 

measured using two factors. The first is the average 

absolute difference between in-block image samples: 
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The second activity measure is the zero crossing 

(ZC) rate.  

We here define for n ∈ [1, 𝑁 − 2], 𝑍ℎ(𝑚, 𝑛) =

{
  1    ℎ𝑜𝑟𝑖𝑧𝑎𝑛𝑡𝑎𝑙 𝑍𝐶 𝑎𝑡 𝑑ℎ(𝑚, 𝑛) 

0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (25) 

The horizontal ZC rate can be estimated as 

 








M

i

N

j
jihZ

NM
hZ

1

2

1
),(

)2(

1
 (26) 

  𝐴 =
𝐴ℎ+𝐴𝑣

2
   , B =

𝐵ℎ+𝐵𝑣

2
  ,  Z =

𝑍ℎ+𝑍𝑣

2
   (27)  

The good prediction performance called Perceptual 

Quality measure (PQM) is 
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 ZABPQM   (28) 

where α, β, 𝛾1, 𝛾2 and 𝛾3 are the model parameters 

that are estimated with the subjective test data as 

described by (α = − 245.9, β = 261.9, 𝛾1 = − 0.0240, 

𝛾2 = 0.0160 and 𝛾3= 0.0064) 

6 EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

THE proposed method is implemented as an 

algorithm and tested on the very dark gray level and 

colored images. The results obtained using the 

proposed MWT based DSR technique (MWT-DSR) 

on colored and very dark grayscale images have been 

compared with the results obtained for various 

enhancement techniques, such as CDWT based DSR 

technique (CDWT-DSR), DWT based DSR technique 

(DWT-DSR) Rajlaxmi Chouhan, et al (2012), DSR 

Jha, et al. (2012), Histogram equalization (HEQ), 

Gamma correction Gonzales Woods (1992), 

Multiscale retinex (MSR) Jobson, (1997) and Retinex  

Jobson, et al. (1997). For the implementation of DWT-

DSR method, in this work, the db1 wavelet is used. 

Figures 5 and 6 show the results obtained using the 

proposed first level and second level MWT based 

DSR techniques and the existing enhancement 

methods for different dark gray images and colored 

images. Table 3 gives the values of performance 

metrics obtained by proposed technique and by 

existing techniques for different colored and dark gray 

images. Although the F, PQM and CEF values for 

histogram equalization, gamma correction, multi scale 

retinex and single scale retinex methods are higher, 

the visual qualities of the obtained enhanced images 

are not good. Figure 7 illustrates the bar graph 

representation of the performance metrics F, PQM, 

CEF and time taken for execution. The results imply 

that the use of the first level multi wavelet transform 

can give the same results as the one obtained with 

complex daubechies wavelet transform based DSR, 

which are better than other existing methods. The time 

and number of iterations required for obtaining the 

optimal enhanced results are less, compared to the 

CDWT-DSR and other solutions. The reason behind 

the reduction in computational complexity in MWT 

based DSR is due to the usage of more low frequency 

information, i.e., the availability of four low frequency 

sub bands in case of first level MWT decomposition 

and sixteen sub bands in case of second level MWT 

decomposition. The performance metrics acquired and 

computational complexity involved in the second level 

MWT based DSR are better compared with the first 

level MWT based DSR and others. The reason is 

again that more information is available in the 

approximation sub bands, and with less number of 

iteration F, the PQM converges. 

In Fig. 7, metrics are compared for four more DSR 

based techniques, such as HEQ, Gamma Correction, 

MSR and Retinex. In addition, the comparison results 

for the benchmark gray level Lena and Peppers 

images are also given in Fig. 7. In Fig. 7(a), although 

the Contrast enhancement factor (F) values of House 

Image for Histogram Equalization Technique (HEQ), 

MSR and Retinex methods are high, compared to the 

proposed method, the PQM (only 4.9) is very low 

while the CEF is high for the HEQ method. Note that 

the CEF value for the MSR and Retinex is very low 

for the House image. 

In Fig. 7(c), although the Color Enhancement 

Factor (CEF) value of House Image for the Histogram 

Equalization Technique (HEQ) is high, compared to 

other methods, the PQM is very low. This implies 

poor visual quality as obtained in our enhanced 

images. For the Sea settle and Foot-ball images, the 

proposed second level MWT-DSR generates superior 

results over other methods. From Fig. 7, it is apparent 

that although a few existing methods can attain greater 

values of F or CEF, they do so by compromising the 

visual quality. In this context, the results given in  
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Figure 6.  Comparison of proposed method result with existing enhancement technique results for different color images. (a), (k), 
(u)- Input images, (b), (l), (v)- Second level MWT method, (c), (m), (w)- First level MWT technique, (d), (n), (x)- CDWT- DSR 
technique, (e), (o), (y)- DWT- DSR technique, (f), (p), (z)- DSR technique,  (g), (q), (a1)- HEQ technique, (h), (r), (a2)- Gamma 
correction, (i), (s), (a3)- MSR, (j), (t), (a4)- SSR. 
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Table 3.  Performance comparison for different methods 

Name of the 
method 

Performance Metrics House Sea settle 
Foot 
ball 

Lena Peppers 

Second level 
MWT - DSR 

F 2.14 1.85 3.601 12.2 5.72 

PQM 9.07 8.89 9.49 8.00 7.93 

CEF 3.23 2.67 6.87   

No. of iterations 8 5 18 42 21 

Time taken for execution in Seconds 9.3 5.4 
 

17.42 11.4 4.17 

First level 
MWT- DSR 

F 2.09 1.8 3.51 11.9 5.31 

PQM 8.43 8.2 9.18 8.8 9.18 

CEF 2.65 2.0 6.14   

No. of iterations 27 16 63 50 69 

Time taken for execution in Seconds 27 14 53 15.5 11.48 

CDWT-DSR F 2.0 1.84 3.4 11.8 4.20 

PQM 9.7 8.93 9.8 8.9 8.17 

CEF 2.6 2.21 6.02   

No. of iterations 61 35 150 68 100 

Time taken for execution in Seconds 94 44 225 18.7 38.08 

DWT-DSR F 1.36 1.34 2.8 8.9 3.72 

PQM 9.01 8.44 9.7 9 10.13 

CEF 1.42 1.40 4.0   

No. of iterations 42 29 117 45 17 

Time taken for execution in Seconds 46.3 28 122 8.7 4.28 

DSR F 1.36 1.14 2.2 10.02 3.18 

PQM 9.9 9.78 10.9 9 10.48 

CEF 1.3 1.40 2.2   

No. of iterations 42 29 117 45 14 

Time taken for execution in Seconds 60 35 93 5.91 1.48 

HEQ F 2.5 1.8 2.9 9.0 2.74 

PQM 4.9 8.2 9.0 8.5 9.72 

CEF 3.4 1.2 4.5   

Time taken for execution in Seconds 3.16 1.92 1.82 1.18 1.29 

Gamma 
Correction 

F 0.99 0.93 1.1 
 

3.6 2.22 

PQM 7.78 9.01 10.54 10.7 10.89 

CEF` 1.58 1.3 
 

1.5 
 

  

Time taken for execution in Seconds 2.0489 4.5017 2.086 2.086 4.3597 

MSR F 2.7 1.7 1.6 2.8 
 

3.75 

PQM 8.1 9.6 11.3 8.7 
 

10.59 

CEF 0.8 0.87 1.1   
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Name of the 
method 

Performance Metrics House Sea settle 
Foot 
ball 

Lena Peppers 

Time taken for execution in Seconds 4.9402 3.6421 2.774 1.506 1.9047 

Retinex F 2.79 1.74 1.69 9.8 
 

3.33 

PQM 8.1865 9.2 
 

10.9 
 

8.9 
 

11.25 

CEF 1.29 0.872 1.151   

Time taken for execution in Seconds 4.4123 3.6050 3.763 1.312 1.6013 

 
 
 

 

Figure 7.  Bar graph representation of performance metrics for different methods. 

 
 
Table 4.  Computations required for second level MWT-DSR, MWT-DSR and CDWT-DSR 

 

 

 

 

 

 

Name of the method No. of multiplications No. of  additions 

MWT DSR_SEC LEV [M/4*N/4*5*64]*n [M/4*N/4*3*64]*n 

MWT DSR [M/2*N/2*5*16]*n [M/2*N/2*3*16]*n 

CDWT DSR [M/2*N/2*14*4]*n [M/2*N/2*10*4]*n 
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Mukherjee and Mitra (2008), Wang, et al (2002) 

justify the effectiveness of our method. 

The time taken for execution of the MWT based 

DSR is less compared with the first level MWT based 

DSR and CDWT based DSR. The number of iterations 

required for image enhancement is also less in the 

second level MWT based DSR, which results in 

reduction of number of multiplications and additions. 

If we consider an image of size M×N, the number of 

multiplications and additions for the second level 

MWT- DSR and the first level MWT- DSR and 

CDWT- DSR are given in Table 4 for the following 

system configuration: Processor: Intel (R) Core (TM) 

i3-4005U CPU @ 1.70GHz, Installed Memory 

(RAM): 4.00GB, System type: 64-bit Operating 

System, x64- based processor. The term ‘n’ in Table 4 

represents the number of iterations. Although the time 

taken for execution of HEQ, Gamma correction, MSR 

and Retinex are less, and the visual quality provided 

by those techniques is very poor. 

7 CONCLUSIONS 
FROM the conducted exhaustive experiments, the 

results show that the Second level Multiwavelet 

transform based DSR  gives better results in terms of 

performance metrics, when compared with the first 

level MWT-DSR and other existing techniques. The 

computational complexity and time required for 

execution in obtaining the results for the second level 

MWT-DSR are less, when compared with the first 

level MWT-DSR and CDWT-DSR. The reason is that 

for the second level MWT-DSR, the proposed method 

operates over more number of low frequency sub 

bands compared to the first level MWT-DSR, CDWT-

DSR and DWT- DSR techniques. The GHM balanced 

MWT preserves the edges visually better, because the 

multiwavelet is simultaneously symmetrical and 

orthogonal and thereby reduces the Cartesian artifacts 

compared to the scalar wavelets. 
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