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1 0B0BINTRODUCTION  
LOCATION-Based Social Networks (LBSNs) like, 

Foursquare, are progressively becoming an important 
part of a social-user’s life, from connecting with 
friends and sharing images, to discovering new 
geographical areas and locations. These applications 
help us to comprehend, investigate, explore, and 
geographically record the spots we live in. LBSNs 
permit us to spatially check-in to famous places of a 
city, updating rich databases that hold computerized 
engravings of our associations at the same time. The 
LBSNs Application Programming Interfaces (API's) 
help to figure out the places where the users are 
present at any instant of time. This geographic 
information analysis can uncover the psycho-
topography and financial territory of social-users of a 
city.  

LBSN users update and share what they do, where 
they are and how they feel at a particular time or 
place. In addition, users uncover when and where they 
are experiencing a passionate emergency, 
encountering their very own paradise or damnation, 
having a good time or a prophetically calamitous 
occasion. This information, with more conventional 
government informational indexes, reveals the manner 
in which the money-related occurrences are linked 
with these applications. It is a common fact that, more 
the business importance of an area, more are the 
number of check-ins from that place. LBSNs can 
notify a user about the check-in status of their friends 

to nearby geographical locations with the help of the 
network itself or by a third-party service provider. 
User preferences can be explored to enable 
personalized location-based systems by analyzing the 
data entered into the LBSNs. 

User behavior in LBSNs is highly affected by 
issues like social relationships and spatio-temporal 
constraints (Du, Yu, Mei, Wang, Wang & Guo, 2014). 
(Zhao, He, Zhang, Liu, Zhai, Huang & Liu, 2016; 
Xiao, Lu & Liu, 2016) analyzed dynamic social-user 
behavior metrics using trust model and distributed 
parallel clustering grid respectively in different 
networks. User preference for various activities is 
based on the content and context (spatial and 
temporal) along with the common social interests that 
help in creation of social communities. The challenge 
is to comprehensively combine this heterogeneous 
information in a systematic way, to predict location-
based activities of a user. Presence of a user at a 
certain venue depends on his/her social relationships 
with the host and other nearby users. The host has a 
greater role to play in user’s preference at a particular 
venue due to the location and time constraints of 
activities. So, the host can give better recommendation 
options for a particular visitor at a place. A privacy 
mechanism in which user’s location data is altered and 
thus important profits for users are held back, should 
not be adopted by LBSNs. Users may not like their 
location information to be hidden from their friends 
who may be in their vicinity and can join them at an 
event. The information shared by users through 
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LBSNs can be used by security agencies to track a 
particular user on a given day at some place with the 
help of a prediction model. 

For location-prediction, Hidden Markov Model 
(HMM), a generative probabilistic model, can be used 
in which a sequence of observations is generated by a 
sequence of internal hidden states and cannot be 
observed directly (Sutton & McCallum, 2006). The 
inter-state (hidden) transitions resemble first-order 
Markov chains that are specified by the start 
probability vector π and a transition probability matrix 
A. An observation’s emission probability on a hidden 
state gives different distributions with parameter B. 
This observation sequence can be useful for 
probabilistic models in case of predicting the hidden 
state sequences and obtaining the Steady-State 
probabilities. 

In this paper, we analyze LBSN user check-ins and 
predict the location of LBSN users accurately using 
multinomial-Hidden Markov Model (mHMM). The 
digital traces of user check-ins are analyzed to build a 
user-preference model based on the social 
relationships and spatio-temporal limits on LBSN 
users. In addition to user preferences, location of 
social users is predicted using historical user-venue 
state sequences. We formulate and parameterize the 
above elements with the help of user check-ins, into a 
statistical model using mHMM. It estimates the 
hidden information in the system by leveraging the 
known data. In our system, the hidden information 
which we are calculating, is the location-prediction of 
LBSN users with the help of previous check-ins. It can 
be really useful for security agencies in tracking 
suspects at a particular time based on the LBSN 
check-in data. At the same time, our model helps the 
restaurant owners to keep track of their customers’ 
arrivals on particular days and times and also know 
their food choice pattern well in advance, that can 
save time and resources. Also, Steady-State 
probabilities are calculated for all the venues in the 
city, to formulate the chance of survival for a 
particular venue in the long-run. We obtain a high 
accuracy for location-prediction as compared to the 
other state-of-the-art-methods that formulate the 
category prediction of venues.  

The rest of the paper is organized as follows: the 
next section includes the description of background 
and related work in the areas of Foursquare-LBSN and 
HMM. In section 3, the proposed work for the location 
prediction after a detailed analysis of LBSNs, is 
presented. Next, in section 4, the experimental 
evaluation and thorough result analysis is provided. 
The complete simulation process is depicted along 
with an example. Finally, we conclude our paper, 
along with some future directions, in section 5. 

2 1B1BBACKGROUND AND RELATED WORK  
WE briefly introduce some important existing 

works done on LBSNs; analysis, categorization and 

working with a quick grasp of the associated 
limitations. The focus is on related research involving 
Foursquare LBSNs and use of HMMs for information 
prediction, along with a brief look at the Steady-State 
probabilities using Markov chains. 

2.1 10B8BFoursquare LBSN 
Foursquare, a well-known LBSN, with the main 

motive of enabling its users to share their 
geographical-locations (Venues) with friends, has 
nearly 55 million monthly active users and 8 million 
average number of daily check-ins on the Swarm app 
(Foursquare stats, 2017). It has the potential to a 
review application along with being a social 
networking service. Check-in is manual and can be 
done even from a remote location around a city, 
raising some eye-balls regarding the security of the 
application. Checking-in at a new place gives rise to a 
new Foursquare Venue and this information is shared 
in the user-network. Foursquare categorizes its venues 
with a three-level hierarchical category classification 
with 9 main groups which are further classified into 
291 categories at the second level with incomplete 
classifications at the third level (Aggarwal, Almeida, 
& Kumaraguru, 2013; Yang, Zhang, Qu & Cudré-
Mauroux, 2016; Noulas, Scellato, Mascolo & Pontil, 
2011). Some of the primary venues categorically 
recognized in Foursquare include Food, Travel-Spots, 
Great-Outdoors, etc. Users can earn different badges 
as per the number of check-ins at a particular venue. 
Mayor is a special badge given to the user with the 
most number of check-ins at a restaurant for a period 
of 2 months. Restaurant owners and other companies 
offer rewards to Foursquare members and special ones 
like a free appetizer to its Foursquare mayor. But this 
can sometimes lead to people cheating to get rewards 
also. Users can leave positive or negative feedback for 
a venue visited in the form of publicly visible Tips. 
For putting a tip, however, a user may or may not have 
to check-in to any place. These tips can help other 
visitors who plan to check-in to the same place.  

Generic and personalized location recommendation 
have been studied. (Mao, Jiang, Min, Leng, Jin & 
Yang, 2017) summarized characteristics, design 
requirements, architecture and surveyed state-of-the-
art technologies in mobile SNs. Similarly, (Gasparetti, 
2017) studied the existing and future research 
challenges for location search in LBSNs, which 
mainly focus on the accurate user preference 
recommendations, and privacy and serendipity issues. 
Public opinions for famous venues are used in generic 
location recommendation, where-in users receive 
identical suggestions as individual preference is 
lacking (Cao, Cong & Jensen, 2010). On the other 
hand, user preference is considered individually in 
personalized location recommendation systems like 
matrix factorization (Cheng, Yang, King & Lyu, 2012; 
Ye, Yin, & Lee, 2010; Ye, Yin, Lee & Lee, 2011) and 
collaborative filtering (Bao, Zheng & Mokbel, 2012; 
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Zheng, Zhang, Ma, Xie & Ma, 2011). (Thilakarathna, 
Seneviratne, Gupta, Kaafar & Seneviratne, 2017) have 
studied characteristics and evolution of location-based 
communities based on a social discovery network and 
geographic proximity. 

The venue-location influences users’ check-in 
behaviors (geographical influence), which in-turn 
helps in making location predictions with new trials to 
infer users’ preferences. The geographical influence 
can be modelled as a two-dimensional check-in 
probability density because the probability of a 
location visited depends on both the location’s 
distance and the intrinsic characteristics (Ye, Yin, Lee 
& Lee, 2011; Yang, Zhang, Yu & Wang, 2013). 
(Yang, Zhang, Yu & Wang, 2013) focused on 
associating location with users and content and 
scrutinize the potential attacks and protection 
techniques in GeoSNs for various privacy features 
including location and identity privacy. The pros and 
cons of information-disclosure and Privacy in LBSNs 
have been studied in detail by (Farrelly, 2014); 
Coppens, Veeckman & Claeys, 2015; Zhao, Lu & 
Gupta, 2012; Sun, Xie, Liao, Yu & Chang, 2017). 
Their findings indicate that Foursquare users sought, 
appreciated and made creative use of the application’s 
geographically relevant place information, enable 
them to dynamically engage with the place and to 
create their own meanings. (Litou, Boutsis & 
Kalogeraki, 2017) have proposed LATITuDE system 
for efficient dissemination of emergency information, 
by selecting an appropriate subset of social-users, so 
that the spread of information is maximized, time 
constraints are satisfied and costs are considered. 

2.2 11B9BHidden Markov Model (HMM) 
Hidden Markov Models (HMMs) have been the 

most effective statistical models in computations and 
are used to model a lot more complex stochastic 
processes, as compared to a customary Markov model 
(Sutton & McCallum, 2006). (Baum, & Eagon, 1967; 
Baum, Petrie, Soules & Weiss, 1970) have published 
the fundamental theory related to HMM. HMM is “a 
doubly stochastic process with an underlying 
stochastic process that is not directly observable (it is 
“hidden”) but can be observed only through another 
stochastic process that produces the sequence of 
observations” (Cappé, Moulines & Rydén, 2007). 
HMM has a set of countable states directed by a set of 
transition probabilities and an observation sequence 
can be generated as per an associated probability 
distribution for every state where only the final result 
is obtained with the state being invisible to the 
external observer (Rabiner, 1989).  

(Gambs, Killijian & del Prado Cortez, 2012) have 
extended a mobility model called Mobility Markov 
Chain (MMC) in order to incorporate the n previous 
visited locations for next place prediction. They have 
used the Phonetic, GeoLife and Synthetic datasets 
with 6, 175 and 1 users, respectively. They 

incorporated the traces per user, duration of capture, 
frequency and POI per user as attributes. (Mathew, 
Raposo & Martins, 2012) present a hybrid method for 
predicting human mobility as per their characteristics 
by training HMMs for each cluster and obtained a 
prediction accuracy of 13.85%, based on the 
geographical distance between regions over the 
GeoLife project. (Raghavan, Ver Steeg, Galstyan & 
Tartakovsky, 2014) developed probabilistic models 
for temporal activity of social users by incorporating 
the social network influence as perceived by users 
based on coupled-HMM. 

Continuous Hidden Markov Model (CHMM) was 
used for developing different recognition models in 
Intelligent Transportation System that could 
distinguish regular lane keeping aim from the right 
and left lane change intentions (Hou, Jin, Niu, Sun & 
Lu, 2011). (Lane, 1999) studied the deviation from an 
expected human behavior to detect a malicious social-
user by user profiling, based on the posterior 
likelihood of the model parameters in the HMM. (Li 
& Li, 2014) introduce a new check-in-based HMM 
which analyses temporal check-in intervals of users 
before suggesting locations. To predict the most 
probable time period, the user will check in next time 
and also recommend a specific user group for the new 
entrant. Thus, it can be used to predict the user’s 
check-in location trends with a small but valuable 
accuracy of 32.54%, 26.39%, and 26.74% for different 
variations of Gowalla dataset and similar accuracy to 
some degree for Brightkite datasets. (Ye, Zhu & 
Cheng, 2013) have used the mixed-HMM to predict 
the most likely location category, based on user 
activity at the next step in considerably condensed 
prediction space. They obtained the best accuracy of 
44.35% for category prediction using mixed-HMM. 
(Gao, Tang & Liu, 2012) have proposed a social-
historical model that assesses the role of social 
correlation in user’s check-in behavior in forms of 
power-law distribution and short-term effect on 
LBSNs.  They have obtained a location-prediction 
accuracy of 15% - 35% using various models on 
Foursquare LBSN. 

Some basic types of problems that can be solved 
with HMM (Rabiner, 1989) include: calculating 
sequence state explaining the observation; probability 
calculation of the observation sequence for a model; 
and optimizing the system parameters for obtaining 
observations. We are trying to solve the latter type of 
problem in our system using mHMM. For accurate 
location-prediction, we have implemented mHMM 
that incorporates the known data of the system and 
uses it, to estimate the unknown information in the 
system. The multinomial distribution is the probability 
distribution of the outcomes from a multinomial 
experiment, where each trial has a discrete number of 
independent possible outcomes. We train mHMM by 
using the spatial and temporal information of users’ 
activities, to further improve the model accuracy. 
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HMM can be defined as λ = (S, A, B, π) having the 
following fundamental elements: 

(i) The total count of model-states S. 
(ii) Transitions probability Matrix A = {aij}. 
(iii) Observation set Matrix B = {bjk}. 
(iv) Initial state values π = {πi}. 

2.3 12B10BExpectation Maximization (EM) Algorithm 
The EM algorithm is an iterative algorithm to find 

maximum likelihood or maximum a posteriori (MAP) 
estimates of parameters, where each iteration includes 
Expectation and Maximization steps (Bilmes, 1998). 

 
1. Expectation step: 
In this step, using model parameter , the 
probability |  of the given observation 
sequence O is obtained using Eq. (1). 

| 	 | |  (1) 

 
2. Maximization step: 
In this step, we try to adjust model parameters θ 
so that the above probability is maximized. 
 

∗ |  (2) 

The parameters for the new model in terms of old 
model can be obtained with the following equations 
for the mixing coefficient ∝, mean µ and covariance 
matrix ∑, where l ∈ 1,2,.., M (Component densities). 

∝ 	
1	

| ,  (3) 

 
∑ | ,
∑ | ,

 (4) 

 
∑
∑ | ,

∑ | ,
 

(5)

Until the difference between the new model and 
the previous model parameters is less than a certain 
threshold, the iterations are continued. The above 
equations are used for both steps of EM 
simultaneously. 

2.4 13B11BViterbi Algorithm 
Viterbi algorithm is a recursive programming 

algorithm that determines the most probable sequence 
of underlying hidden states from an observation 
sequence that might have generated it (Forney Jr, 
2005). It finds maximum overall state-sequences 
possible with the help of HMM parameters. The 
maximum probability of reaching a particular 
intermediate state is defined by the partial probability 
δ, (δt(i) being the maximum probability of all 

sequences ending at state i at time t). Thus, the best 
state-sequence can be obtained by the following steps: 

 
1. Initialization step: 

o , 1  (6) 

Where bi(o1) is the probability of emitting 
response time o1 in state i. 
 
2. Recursion step: 

∗ ∗ o  (7) 

The final step is to determine the arrival of the 
state i at time t optimally after calculating the 
system probability for the previous state at time t 
– 1. A back pointer ∅ points to the previous state 
that optimally incites the current state in the 
termination step.  
 
3. Termination step: 
∅ ∗  (8) 

Where argmax operator selects the index j which 
maximizes the bracketed expression. 

2.5 14B12BSteady‐State Probability 
A system is said to be in a Steady-State, if the 

variables used to define the system-behavior, do not 
change with respect to time. Markov chain model can 
be effectively used for obtaining the Steady-State 
behavior of people visiting a particular venue over a 
longer period of time. The n-step transition 
probabilities		 	 , can be converged to steady-state 
values, independent of their initial states. The rows of 
this limiting matrix contain the probabilities of being 
in the various states as time gets large. These 
probabilities are called Steady State (SS) probabilities 
(Bertsekas & Tsitsiklis, 2002). Thus, the SS 
probability of state j, for large n, can be interpreted as 

 
 (9) 

A Markov chain with recurrent aperiodic classes 
having j states with  SS probabilities has the 
following properties. 

.  (10) 

 

1 (11) 

 
Eq. (10) is called the Balance equation and Eq. 

(11) is called the Normalization equation. The unique 
SS solution to the system is given by the quantity	 , 
where j = 1, …, m. Assuming 0,  for all 
recurrent states j and 1 , , the transition-
probability matrix is : 
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 (12) 

 
Using Eq. (12), the SS probabilities for different 

venues can be obtained that gives the measure of the 
popularity of various venues surviving at a place. 

3 2B2BPROPOSED WORK 
IN the proposed work, we thoroughly analyze the 

Foursquare check-in patterns in two major world 
cities, New York and Tokyo in section 3.1, with 
extensive LBSN user count. It helps in formalizing the 
preferences of various social-users at different times 
of a day. Next, the temporal context of users is studied 
that gives the daily and weekly periodical patterns of 
their visits to different venues. Finally, we formulate 
our model using mHMM for location prediction in 
LBSNs. Our model predicts the exact venue a 
particular user visits. In addition, we also predict the 
customers visiting a particular restaurant/venue on a 
given day of the week. Steady-State probabilities are 
obtained for depicting the chance of survival of a 
particular restaurant or venue in the future. 

3.1 15B13BAnalyzing Foursquare check‐ins expressing 
city pulse 

Every day, millions of people check-in at 
Foursquare. The check-ins data for one year taken 
from New York and Tokyo cities is plotted on a 
map29 (Foursquare check-ins pulse, 2017). Interesting 
visualizations of ebbs and flows of the cities are 
generated by the start-up data. Single check-ins are 
represented by individual dots, while the sequential 
check-ins are linked by straight lines. The condensed 
check-ins representation shows the city appearance on 
a usual day. It specifies where people are present at 
any moment of the day and how, when, and why 
they're going there. LBSNs users show a more 
pronounced range of check-ins activity near more 
commercial places in cities. In the following figures, 
we depict the snapshots of check-ins done by New 
York and Tokyo Foursquare users at various times of 
the day that help in the analysis of the check-in 
patterns. 

3.1.1 22B21BCheck‐in pattern in New York City  
We show instances of check-ins at four different 

times of a day in New York City in figure 1. Figure 
1(a) shows that at 2 AM, the highest number of check-
ins are done at nightlife spots (Blue), while most of the 
other places remain silent. However, in figure 1(b), the 
image captured at 8 AM, depicts a completely 
different view, where more people get active at this 
time and check-in at Professional and other places 
(Yellow). As shown in figure 1(c) at 3 PM, Shop and 
Services (Orange) have the most number of check-ins 
while General Food places (Green) are seen 
abundantly at 8 PM at night in figure 1(d). It shows 
that once the day sets in, users prefer to go at 

Professional Food places and as the day progresses 
show an increased presence in outdoor places, with 
least amount of activity during late nights. 

(a) 2 AM 

 
(b) 8 AM 

(c) 3 PM 

(d) 8 PM 
Figure 1.  Check‐in patterns in New York City. 
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3.1.2 23B22BCheck‐in pattern in Tokyo City  
In the following four visualizations of check-ins at 

Tokyo City (figure 2), it can be clearly seen that most 
of the check-ins during the whole day occur at venues 
like Travel and Transport places (Green) followed by 
Food places (Indigo). Major activity pattern at the 
initial part of the day shows great rush at the Travel 
and Transport places and there is slow but steady 
increase in the user-activity at other Food places as the 
day progresses. 

 

(a) 1 AM 

(b) 8 AM 

(c) 3 PM 

(d) 8 PM 

Figure 2.  Check‐in patterns in Tokyo City. 

3.2 16B14BTemporal context 
The check-in patterns studied in previous section 

showed the time-based daily visiting frequency of 
LBSN users. The temporal context depicts the 
periodical patterns of user check-ins, where they can 
show strong daily and weekly periodical affinity for 
various venues that can help in location prediction. 
The locations or venues a social-user visits in day-to-
day life, generally display a cyclic phenomenon over 
days of the week. The user preference to different 
venues can be calculated using the day of the week 
factor Pu (v) in the following Eq. (13): 

,
1,
0,

 (13) 

 

where d(tv) represents the day when the user visited 
venue v in the week, and d(tvi) ∈ {Sunday, Monday, 
…., Saturday}. Figure 3 shows the venues with the 
highest number of visits during weekdays and 
weekends for first 15 users in New York and Tokyo 
datasets. It depicts the difference between the patterns 
of visits. For example, at New York, user-1 visits bar 
more often over the weekend as compared to 
weekdays. Similarly, user-2 prefers Coffee Shop 
during weekdays that can be located near his work-
place and goes to the gym more on weekends. In case 
of Tokyo, user-2 visits office more in the weekdays 
and goes to train-station on weekends. For user-14 the 
scenario is almost reverse, showing more visits to the 
train-station on weekdays and electronics-store at the 
weekend. 
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(a) 

 (b) 

(c) 

 
(d) 

Figure 3.  Temporal Context in Check‐in patterns in New York 
and Tokyo Cities over Weekdays and Weekend. 

3.3 17B15BmHMM for user location prediction in 
LBSNs 

The proposed model predicts the location of LBSN 
users with the help of their sequence of visits on 
previous occasions to particular places. Most of the 
existing work deals with clustering the venues based 
on their type or specialty and then predicting the 
category where the user can visit (Ye, Zhu & Cheng, 
2013; Gao, Tang & Liu, 2012). We, in our proposed 
approach, try to predict the exact location of a user 
and not the category, as proposed in previous works 
and obtain a much better prediction accuracy. It makes 
easier to predict, where a user can visit in an 
unambiguous way using the proposed model. It is 
important because in most of the cases of Foursquare 
venues, multiple venues can exist under same food-
category. Therefore, the exact location of a suspect at 
a particular time, can help the security agencies to 
track the person efficiently. In addition, by inter-
changing the parameters of our model, it can be used 
by the restaurant owners to know the arrival of their 
customers on a particular day and time. They can 
know their customer’s food choice and patterns to 
prepare themselves, well in advance, which can save 
time and resources. Our model also obtains the SS 
probabilities that define the survival possibility of a 
venue over a longer time in future. To the best of our 
knowledge, our work is the first in the domain of 
location prediction for users on venue basis of LBSNs. 

Our model can be stated by following four 
parameters: 
 R: set of LBSN restaurants or venues. 
 A: matrix of transition probability. {aij} 

represents the probability of going from venue 
(i) to venue (j). 

 B: matrix of observation-sequences. {bjk} is the 
observation that a particular user visits a 
particular place on a given  day of the week (this 
is the unknown parameter to be obtained).  

 π: initial state of the system. We assume 
constant initial values to the venue-relationships.  

We obtain the respective probabilities using the 
mHMM for our system in the following manner. 

(i) N is the Restaurants’ (states) count. We 
designate the set of Restaurants   

R = {R1, R2,..., Rn} (14) 

where Ri, i = 1, 2,..., N, is a distinct Restaurant.  
(ii) M is the number of Days of Week (observation 

symbols) for every Restaurant. We denote the 
set of symbols  

V = {V1, V2, … VM} (15) 

where Vi, i = {S, M, T, W, T, F, S}, is an observation 
symbol (Day of Week). 
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(iii) The transition probability matrix of restaurants 

A = {aij} (16) 

where aij = P(qt+1 = Rj | qt = Ri), 1 ≤ i, j ≤ N; t = 1, 2, 
…; for all i, j and  ∑ 	, aij = 1 and qt indicates the 
restaurant (state) at time instant t. 

 (iv) The probability matrix of observation symbol  

B = {bjk} (17) 

where bjk = P(Vk | Rj), 1 ≤ j, k ≤ N, M and  ∑ 	bjk=1, 
1 ≤ j ≤ N.  

(v) The initial state probability vector  

π = {πi} (18) 

where πi = P(q1 = Ri), 1 ≤ i ≤ N and ∑ 	πi = 1.   
(vi) The observation sequence 

O = O1, O2, …, OL (19) 

where each observation Ot is one of the days of week 
from V and L is total count. 
Algorithm mHMM:  
Input: Foursquare dataset. 

1. Calculate initial probabilities of all venues using 
their membership values. 

2. Assign the constant values obtained for 
transition probabilities to all the venues. 

3. Calculate emission probabilities as the actual 
transition count from all the venues (i.e., 
probability of each venue getting a particular 
user on a particular day). 

4. Input these probability values to the mHMM for 
obtaining the final probabilities of the hidden 
states (Venues). 

5. For all the user-day/venue-day pairs, predict the 
hidden state sequence based on the actual state 
sequence. 

Output: Particular venue for input user-day pairs. 
LBSN user generally follows a trend in the places 

he visits, as given in detail by (Noulas, Scellato, 
Mascolo & Pontil, 2011). On weekdays, he will most 
probably visit the restaurants near his work place as 
compared to the places visited on weekends. We 
consider the sequence of places visited by a particular 

user on a particular day of a week. To map the user 
locations detection in terms of mHMM, we consider 
the 7 days of a week as the observation symbols in our 
model. We quantize the observed values into M days, 
forming the observation symbols V1, V2, ..., VM, where 
Vi, i = {S, M, T, W, T, F, S}, making M = 7. Social 
users on Foursquare give their check-in information at 
a particular venue. The sequence of the states is 
hidden from the observer as he is only able to see the 
final outcome (place visited). The set of all possible 
types of restaurants visited, forms the set of hidden 
states in the mHMM.  

The next step after deciding the symbol and state 
representations, is to determine the probability 
matrices A, B, and π. We use Viterbi algorithm and 
Multinomial-HMM to determine these three model 
parameters in training phase of our proposed work.  

As shown in figure 4, R1, R2,..., Rn denote the 
various restaurants (hidden states). The transition 
probabilities are given by aij, where (i, j) = 1, 2, …, N. 
The transition a11 denotes the probability of a user 
visiting the same venue (R1). Similarly, a12 denotes the 
transition probability of a user in moving from 
restaurant R1 to R2.  V = {S, M, T, W, T, F, S} 
represents the observation symbols from each hidden 
state. The emission probabilities are given by bjk, 
where 1 ≤ j, k ≤ N, M. The first emission bR1S 
represents the emission probability of restaurant R1 on 
Sunday and bR2W represents the emission probability of 
restaurant R2 on Wednesday. We consider the special 
case of fully-connected mHMM, where-in, the 
reachability of every state is at a single hop from 
every other state in the model.  

In a similar way, we reverse the inputs to the model 
for obtaining the prediction information for the 
restaurant owners about the user-visits. We formed the 
Venue-day pairs and these input parameters are given 
to the mHMM, as in the previous case to obtain the 
respective transition and emission probabilities. This 
time, we obtain the output as the predicted set of users 
visiting a particular venue on a particular day of a 
week. This can help the restaurant-owners to prepare 
themselves for the upcoming guests and customers, 

Figure 4.  Proposed mHMM for location‐prediction. 
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based on their number and the type of food-choices 
they make. 

4 3B3BEXPERIMENTAL EVALUATION AND 
RESULTS 

IN the following section, we give the detailed 
experimental procedure and result analysis for our 
proposed work. 

4.1 18B16BDataset description 
Foursquare check-ins data for 4 months ranging 

from 24 October 2011 to 20 February 2012 is used for 
the experimentation purpose (Yang, Zhang, Zheng & 
Yu, 2015). Noise and invalid data are filtered during 
the preprocessing. Personal check-in information is 
not available publicly and can only be accessed from 
one’s own social circle. Only active users with at least 
one check-in per week are considered and all the 
check-ins from the “sudden-move” users are 
eliminated. The category information of some 
Foursquare venues is unavailable as these cannot be 
resolved by Foursquare venue API.  

In the dataset, we represent a check-in by a 
quadruple user-time-location-activity, where users are 
uniquely identified by the IDs. User check-ins serve as 
an indicator of user activities in LBSNs. An activity is 
represented by venues corresponding to the check-in 
with the exact geographical coordinates and time. The 
spatial and temporal dimensions of check-in data are 
discretized according to the aforementioned LBSN 
scenario. After preprocessing, the New York City 
dataset includes 1083 users and 227428 check-ins 
performed over 251 venues. Similarly, 2293 users 
registered 573703 check-ins over 247 venues in Tokyo 
City dataset.  

We give the graphical representation of the user 
check-ins count over the given time period for the two 
cities in figure 5. It shows the total number of visits a 
particular user makes during the given duration. For 
example in New York, user-293 has the highest 
number of check-ins (2697) and user-18 the lowest 
check-ins (100), with an average of 210 check-ins. 
Similarly in Tokyo, user-822 has the highest number 
of check-ins (2991) and user-43 the lowest check-ins 
(100), with an average of 297 check-ins over the given 
time period. 

 

(a) 

 
(b) 

Figure 5.  User check‐ins count for New York and Tokyo cities. 

4.2 19B17BExperimental setup (Observation symbol 
generation) 

For each social-user, we train and maintain 
mHMM and find the respective observation symbols, 
after pre-processing. All the user-ids from the New 
York (1083) and Tokyo (2293) cities’ datasets were 
used for our experimentation. 7 individual runs were 
made for each day of the week for all the 3376 user-
ids in both datasets. We separately calculate the 
transition and emission probabilities for the social 
users to obtain the accuracy in location prediction. In 
the following steps, we show sample results obtained 
using our proposed model for user-1214 from Tokyo 
City dataset with 127 check-in entries in 33 different 
venues and show the sample mHMM output 
probabilities in 5 venues for the same user in table 1. 

 

Table 1.  Sample mHMM probabilities in 5 venues for user‐1214 

Venue Entries count SP TP EP 

Food & Drink Shop 0,1,0,0,0,0,0 0.0078 0.030303 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 

Fast Food Restaurant 0,1,0,0,1,0,0 0.0159 0.030303 0.0, 0.5, 0.0, 0.0, 0.5, 0.0, 0.0 

Japanese Restaurant  3,2,4,1,1,8,0 0.1508 0.030303 0.158, 0.105, 0.21, 0.053, 0.053, 0.42, 0.0 

Shrine 0,0,0,0,0,1,0 0.0078 0.030303 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 

Airport 1,0,2,0,3,0,0 0.0476 0.030303 0.166, 0.0, 0.33, 0.0, 0.5, 0.0, 0.0 
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1. Combinations: It is the list of the user-day 
pairs for all user-ids in the datasets. 
{['1214', 'Wed'], ['1214', 'Sun'], ['1214', 
'Thu'], ['1214', 'Mon'], ['1214', 'Fri'], ['1214', 
'Tue'], ['1214', 'Sat']} 
 

2. Entries: It contains the count of visits by a 
user to a particular venue on each day of the 
week. As an example, the user visits the 
Japanese Restaurant 8 times on Tuesdays 
and Airport thrice on Fridays. 

Final Probabilities using mHMM 
3. Start Probability (SP): It is calculated by the 

individual membership value for each 
restaurant given all entries of the user. It is 
given by following Eq. (20). 

	
	 	 				

	 	
 (20) 

4. Transition Probability (TP): This is the 
probability of a user switching between 
venues, i.e., probability of user going to a 
restaurant after visiting a particular 
restaurant or venue (Eq. (21)). The mHMM 
is built for each location with transitions to 
every other location. TP is set to zero, if the 
user did not travel between two venues. If 
the model is trained on the states of link l 
and its neighbor links in time interval t, the 
state of link l at time t +1 is independent 
from all other current link states, all past link 
states, and all past observations.  

. 	 	 	
	 . 	

 (21) 

5. Emission Probability (EP): This is the 
probability of each venue getting a particular 
user on each day of the week. It is calculated 
by the following Eq. (22). 

	
_ 					

_ _
 (22) 

4.3 20B18BSample output results  
The results obtained are in the form of venue-

names associated with a particular user for a particular 
day. We provide the user-id of the social-user, whose 
location we want to predict along with the day, to get 
the predicted place of his visit on that given day. We 
give some sample outputs as follows, where Bob is the 
enquirer (input) and Alice is the responder (output). 

 
Bob says: Wed 
Alice hears: Ramen / Noodle House. 
Bob says: Sun 
Alice hears: Japanese Restaurant. 
Bob says: Fri 
Alice hears: Train Station. 

4.4 21B19BResult analysis and discussion 
We conducted the experimentation on real world 

datasets for New York and Tokyo cities. We show the 
final accuracy comparison of results obtained using 
mHMM for different fractions of training dataset in 
figure 6. Further, in table 2, we give the minimum, 
maximum and the average of accuracy results 
obtained for the various partitions of the datasets. The 
accuracy varies between 29% to 41% in New York 
City, with an average of 35% location prediction 
accuracy. For Tokyo dataset, we obtain a much better 
accuracy range between 45% to 61%, with the average 
being 55% accurate location prediction. These results 
are much better as compared to the other 
contemporary works in the field of location prediction 
for LBSNs. 

Table 2.  Overall Accuracy of venue‐prediction.  

City Min. Max. Avg. 

New York 0.29 0.41 0.35 

Tokyo 0.45 0.61 0.55 

Table 3.  Overall Accuracy of user‐prediction.  

City Min. Max. Avg. 

New York 0.194 0.31 0.257 

Tokyo 0.193 0.29 0.258 
 
In figure 7, we show the output results obtained for 

predicting users visiting a particular restaurant or 
venue on a given day using mHMM for varying 
training sets. Table 3 gives the minimum, maximum 
and the average of accuracy results. On analyzing the 
results, we understand that user-prediction is a 
difficult task as compared to venue-prediction. It is 
because of more number of users than the number of 
venues due to which the probability of accuracy 
prediction suffers. Nevertheless, this information is 
important for the restaurant owners to plan the food-
preference patterns for particular customers visiting 
their places on particular days in advance. This gives a 
completely different view-point for using our model 
that can be beneficial in both ways. It can predict the 
location of a user and by interchanging the parameters, 
it can be beneficial for restaurant-owners to know the 
details of their customers visiting on any given day.  
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Figure 6.  Accuracy of venue‐prediction using mHMM. 

 

Figure 7.  Accuracy of user‐prediction using mHMM. 

Figure 8 shows the SS probabilities obtained for all 
venues present in New York and Tokyo City 
Foursquare datasets. We list SS probabilities of all 
venues that predict their chance of survival in the 
future. Out of a total of 251 venues in New York, it 
can be observed that the best SS probability obtained 
is for the Bar (0.068251) and the least for 
Photography Lab (0.0000042). We list the best five 
venues in terms of their SS probabilities in table 4. In 
similar terms, we obtain the SS probabilities for all 
247 venues in Tokyo dataset and give the best five 
venues in terms of SS probabilities in Table 5. Here, 
we observe that the venue Train-Station has the best 
SS probability (0.34018) among all the venues which 
makes it the best venue to survive over a long period 
of time as compared to all other venues in the city. 
The venue Afghan Restaurant (0.0000017) has the 
least SS probability in Tokyo. This analysis gives the 
SS probability of the venues present in the two cities 
which can help in establishing their surviving capacity 
and popularity over a long period of time.  We can 
observe that Train-Station is the single most-popular 
venue in Tokyo and the popularity distribution in New 
York is quite evenly distributed among some famous 
venues. 

 

 

(a) 

 

(b) 

Figure 8.  Steady‐State probability comparison of venues for 
New York and Tokyo cities. 

We obtained accuracy of 41% to 61% for the 
venue-prediction, which is comparatively higher than 
other existing related works, given in section 2. In our 
work, we also predicted the user presence at a 
particular venue for the first time, where accuracy is 
30%.   

Table 4. Top 5 SS probability venues for New York. 

Venue Id Venue SSP 
22 Bar 0.068251 

122 Home (private) 0.065552 

166 Office 0.054219 

224 Subway 0.039614 

115 Gym / Fitness Centre 0.039168 

Table 5. Top 5 SS probability venues for Tokyo. 

Venue Id Venue SSP 
236 Train Station 0.34018 

221 Subway 0.07086 

186 Ramen / Noodle House 0.02979 

63 Convenience Store 0.028932 

128 Japanese Restaurant 0.026902 
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5 4B4BCONCLUSION AND FUTURE DIRECTIONS 
LBSNs are used to share locations and events in a 

participatory fashion. Their popularity is increasing 
everyday due to the advent of smart-phones. In this 
paper, mHMM is implemented as a prediction model. 
Foursquare user check-in datasets for New York and 
Tokyo cities are used to train the mHMM for 
qualitative and quantitative evaluation and trend-
analysis. The experimental results show that the 
proposed model performs accurate predictions of user 
locations. The obtained accuracy of location-
prediction of particular venues, in place of categories 
of LBSNs, using mHMM is very high and outperform 
the results of various baseline methods. This work will 
be very useful for security purposes in which the exact 
location of a user, after frequent transitions between 
different venues, can be traced on a particular day or 
time. In addition, the restaurant owners can keep track 
of their customers’ arrivals on a given day. They get 
to know their food choice well in advance, that saves 
time and resources. Also, Steady-State probabilities 
are obtained, that define the popularity and chance of 
survival of venues in the future based on the user 
check-ins. To the best of our knowledge, our work is 
the first in the domain of location prediction for users 
on venue basis with such high accuracy results.  

In future, we plan to extend the work to capture 
user behavior in other LBSNs like Facebook, Twitter 
and Gowalla. Also, we plan to use multi-stage HMM 
for prediction and compare the results to obtain the 
best location-prediction. Combination of unstructured 
information like user-tips along with the temporal 
activity patterns can result in better predictive 
performance. 
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