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1 INTRODUCTION 
NONLINEAR system identification was a method 

to use input-output dataset to estimate system’s 
nonlinear mathematical model (Sha & Bajic, 2013; 
Alci & Beyhan, 2016). Among many system 
identification methods, artificial neural network 
(ANN) was frequently used to simulate the dynamic 
relationship between output and input of nonlinear 
system, and the effect of its application in function 
approximation was pretty good (Hayashi & Buckley, 
1994; Li & Chen, 2000), it not only had good fault-
tolerant ability, but also had good generalization 
ability, however, its learned result was a black-box, 
therefore, it did not have ability of explanation to the 
user, and ANN’s applications in many fields were 
limited in certain degree. Relative to ANN, fuzzy 
inference system (FIS) was another alternative that 
can be applied in system identification (Takagi & 
Sugeno, 1985; Eksin & Erol, 2000); through fuzzy 
inference, human’s knowledge and experiences could 
be converted into fuzzy rules that are easy to 
understand. However, although the behavior of the use 
of fuzzy system to simulate nonlinear system had 
feature of linguistic information, yet it was lack of 
accurate quantitative analysis and learning ability of 
numerical value calibration. 

Traditional fuzzy technique had to rely on expert’s 
experience provided by expert to set up fuzzy system, 

however, ANN’s ability to conduct learning and 
extract knowledge through training data had created 
complementary characteristic to fuzzy technique, and 
neuro-fuzzy systems was developed under such design 
concept. The integrated systems can combine the 
parallel computation and learning abilities of neural 
networks with the human-like knowledge 
representation and explanation abilities of fuzzy 
systems (Kaur, Sangal, & Kumar, 2017). Jang, in 
1993, had associated two algorithms of fuzzy theory 
and ANN to propose an innovative architecture of 
adaptive network-based fuzzy inference system 
(ANFIS) (Jang, 1993). Generally speaking, ANFIS 
used back propagation (BP) algorithm and least square 
estimation (LSE) method to adjust the parameters of 
membership function so that it can fully exploit 
model’s processing capability on system uncertainty 
and imprecision, and lots of literature had shown that 
ANFIS had good result on the identification of 
nonlinear system (Jang, 1993; Babuska, Verbruggen, 
2003; Kaur, Sangal, & Kumar, 2017; Marzi, Darwish, 
& Helfawi, 2017). 

The architecture design of ANFIS model can 
generally be divided into two stages of structure 
identification and parameters identification. In 
structure identification stage, theoretically, when more 
rules were used, it will be more helpful to construct a 
more complicated system, however, it will cause the 
increase of calculation amount at the same time. 
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Therefore, when we were constructing fuzzy system, 
the first thing needed to do was to summarize input 
spaces with similar outputs and to use appropriate 
fuzzy set to describe each input space with similar 
characteristic, therefore, it will be easy to use several 
fuzzy rules to construct a complicated nonlinear 
system. For ANFIS design method associating 
clustering technique, each cluster center obtained 
through cluster analysis can generate a fuzzy region, 
and can be mapped to a fuzzy rule in ANFIS 
architecture. Competitive learning algorithm was a 
self-organization learning method in its nature, and it 
can find from unlabeled samples for some similar 
features, rules or relationship, then these samples with 
similar features were gathered into the same class. In 
other words, competitive learning algorithm can find 
automatically from training data the inherent class 
rule, and the similarity of the processed data or its 
distribution state in high dimensional space can also 
be displayed; therefore, competitive learning was also 
very suitable to be applied in structure identification 
of ANFIS. 

The parameter identification of traditional ANFIS 
has adopted ANN learning algorithm to obtain 
network parameters. Presently, all ANN designs 
almost adopted design procedure of design-evaluate-
test cycle; in the structure design stage, it was needed 
to set up first parameters such as network structure, 
connection topology, transfer function or learning rate; 
in the evaluation stage, the learning example was 
conducted with simulation and evaluation; in the final 
test stage, unlearned data were used for the test. If the 
obtained results were not perfect, then the original 
design structure needed to be changed, that is, to start 
a new design cycle. Such design procedure meant that 
ANN designer was in an all possible network 
configuration space to use random method to search 
an optimized network configuration, and this also 

explained that ANN design can be seen as an 
optimization problem; therefore, many researches 
further proposed design method associating 
evolutionary computation to enhance the effectiveness 
of ANFIS (Juang, 2002; Ho et al., 2011; Chen, 2013; 
Fathzadeh et al., 2017; Marzi, Darwish, & Helfawi, 
2017). 

In this study, evolutionary ANFIS modeling 
approach was proposed based on competitive learning. 
First, competitive learning rule was used to conduct 
input space partitioning of FIS so as to explore 
effectively the clustering distribution state of training 
data, meanwhile, the obtained result was used in 
fulfilling coarse-level structure identification of 
ANFIS. After finishing structure identification of 
ANFIS, through hybrid learning scheme associating 
particle swarm optimization (PSO) and LSE method, 
premise parameters were finely tuned, and consequent 
parameters were learned, finally, parameter 
identification work of ANFIS model was finished. 

2 ANFIS SYSTEM 
THE proposed ANFIS model that has multiple 

inputs and single output is shown in Figure 1. It 
represents a Takagi-Sugeno-Kang (TSK)-type fuzzy 
system in a special five-layer feedforward network 
architecture. 

Layer 1: This layer is called as the fuzzification 
layer, in which every node is an adaptive node with 
node function as 
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Figure 1.  Structure of ANFIS. 
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Layer 2: Layer 2 is the production layer, in which 
every node is a fixed node with node function to 
compute the firing strength of each rule: 
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Layer 3: Each node in this layer calculates the 
normalized matching degree for each rule. 
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Layer 4: This layer known as the defuzzification 
layer. It calculates the conclusion inferred by each 
fuzzy rule. 

rmxbxbbf inmnimmm 1,2,..,   ,...110    (4) 

Layer 5: This layer is known as the output layer. It 
has only one node and it calculates the overall output. 
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The above ANFIS structure can be skilled to 
develop a TSK fuzzy inference system and determine 
membership functions for input and output variables 
of the system. For N input-output data of system to be 
identified in

ix , i = 1,2,..,N, where in
ix  ),...,,( 21 inii xxx  

is n dimensional data point, and 
iy  is its 

corresponding output, then the TSK fuzzy model 
consists of If-Then rules that has the following form: 

Rule m: IF 
in
ix  is Wm then y is 
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where r is the total number of fuzzy rules, bm0 and bmk 
are the offsets and linear weights respectively, and Wm 
is defined by 
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where 
mkmk  2 , Wm is a hyper-ellipsoid 

membership function belonging to the interval [0,1], 

mkc  and 
mk  represent the center and the length of 

the kth principal axis for the related mth hyper-
ellipsoid membership function, respectively. It is 
noted that 

mkc  and 
mk  are both required parameters 

to be selected in the premised part of the fuzzy rules. 

3 HYBRID TRAINING PROCESS OF ANFIS 
IN this study, ANFIS model design was finished in 

two stages. In the first stage, self-organizing feature 
map (SOFM) neural network was used to partition the 
input space into appropriate fuzzy regions, meanwhile, 
these fuzzy regions were used to set up coarse ANFIS 
architecture that can roughly meet input and output 
data behavior; in the second stage, precise 
approximation to the behavior of input and output data 
was used as the goal, then learning algorithm was used 
to make a series of training on the premise parameters 
and consequent parameters of ANFIS, therefore, the 
designed ANFIS can approximate as much as possible 
system to be identified. It is as shown in Figure 2. 
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Figure 2. The training process of the proposed ANFIS model. 
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3.1  Structural Identification 

3.1.1  Self‐organizing feature map 
SOFM is a neural network based on “competitive 

learning”, that is, the neurons of output layer will 
compete with each other so as to get activated 
opportunity ( Kohonen, 1989; Chen et al., 2014; Cao 
& Zhu, 2015). Generally, in competitive learning 
neural network, the winner will be selected from 
competitive phase, and the weight vector of the winner 
will be adjusted in the reward phase, which is as 
shown in equation (8)-(9). 

        ),-(  )(  )1( jijj WxtWtW   *   If jj       (8) 

where  rjWxj ji
j

,...2,1  ,minarg*          (9) 

However, the difference between SOFM and 
general competitive learning neural network is that in 
the competitive process, co-learning is adopted 
between the winning neurons and neurons which are 
the neighborhoods. In other words, in SOFM, after the 
competition, not only the winning neurons have the 
chance to learn, the neurons which are the 
neighborhoods can also have chance to learn. Figure 3 
shows the structure of a SOFM network. 
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Figure 3. The architecture of a SOFM network. 

In order to meet better the biological view point, 
the SOFM usually uses Gaussian function to decide 
the strength that SOFM neighborhood function is 
activated (Juang, 2002): 
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where 
*, jjd  represents the side linking distance 

between jth neuron and winning neuron j*. In 
addition, the effective width )(t  and learning 

parameter )(t  of the neighborhood function is set up 

respectively as: 
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where the constant 
0  and learning parameter 

0  is 

set up by the initial value, and 1  and 
2  are constants. 

Therefore, we can induce the improved SOFM 
algorithm as in the Table 1 (Chen et al., 2014): 
 
Table 1. The improved SOFM algorithm. 

1. Select output layer network topology 
2. Initialize all the connection weights to small random 

values 
3. Repeat until convergence 
(1) Select the next input vector xi  from the data set 

a. Find the unit Wj* that best matches the input 
vector xi  

rjWxWx ji
j

ji ,..,2,1 ,min  *   

b. Update the weights of the winner Wj* and all its 
neighbors WD 
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(2) Decrease the learning rate )(t and the 

neighborhood size )(t  

3.1.2   Using SOFM to realize the structural 
identification of ANFIS 

In ANFIS modeling procedure, each output neuron 
of SOFM will be mapped to one fuzzy rule of ANFIS, 
and its weight vector will be used as central value mkc
of premise membership function of fuzzy rule. 
Variable mk  of eq.(3) was width of Gaussian 

function, in order to get appropriate 
mk , we let 

  )( * mm xW      (12) 

where ),...,( **
1

*
mnmm xxx   was input data in mth 

cluster that had the longest distance to cluster center

mc  of mth cluster. Therefore, according to eq.(3) and 

eq.(12), 
mk  of membership function width of fuzzy 

set can be obtained as follows (Chen, 2000): 
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3.2  Parameter Identification 

3.2.1   PSO basics 
PSO is a population based stochastic optimization 

technique developed by Dr. Eberhart and Dr. Kennedy 
in 1995, inspired by social behavior of bird flocking or 
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fish schooling. In PSO model, the flying of a particle 
is described by its velocity and position, the formula is 
described as follows ( Kennedy & Eberhart, 1995): 
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where Pi and Pg represent the personal best position 
and the global best position, d is the dimensional 
number, i denotes the ith particle in the population, V 
is the velocity vector, X is the position vector, ω is the 
inertia factor, c1 and c2 are the cognitive and social 
learning rates, respectively. 

3.2.2  PSO‐LSE learning scheme for parameter 
identification 

According to eq.(6) and eq.(7), it was clear that 
premise parameters that needed to be decided by 
ANFIS were decided by 

mkc  and 
mk , and these 

parameters will be used to construct membership 
function Wm. In this study, PSO was used to make fine 
tuning on premise parameters obtained from SOFM, 
then accompanied with LSE method, consequent 
parameters { ) ,( 0 mkm bb , m=1,..,r; k=1,..,n} of ANFIS 

were obtained, therefore, the behavior of designed 
ANFIS model can approximate system to be 
identified. In PSO-LSE learning scheme, each particle 
of PSO represented a premise parameter set {

) ,( 0 mkm bb , m=1,..,r; k=1,..,n}. Wherein 
mkc  obtained 

from SOFM and mk obtained from eq.(13) will be 

defaulted as initial solution of Pg of PSO. For most 
ideal ANFIS model, its output value should be 
perfectly the same as desired output value, that is 
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where d
iy  was the desired output value of input data 

in
ix , and 

iy  was output value of ANFIS of the same 

input. Meanwhile, the output of ANFIS can be 
represented as 

 






 














r

m

n

j
ijmjmmi

r

m
mmir

m

in
im

r

m
m

in
im

i

xbbg

fg
xW

fxW
y

1 1
0

1

1

1

][        

   
)(

)(
  

    (17) 

where 
mig  was normalized membership grade of mth 

rule on input data in
ix , and its definition was 
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The most ideal situation of ANFIS was that its 
output and desired output was perfectly the same, that 
is 
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Therefore, eq.(19) can represented in the following 
matrix equation and is described by 
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where mg  is the normalized firing strength and N is 

the number of input-output data set. 
Then, eq.(16) can be rewritten as 

   WBYWBYWBY  -  -    -   SSE T2      (24) 

If the parameters of premise part are 
predetermined, the only unknown component in SSE 

is the consequent parameter vector B whose elements 
are the parameters in the linear regression equations of 
the ANFIS model. We can use the LSE method to 
solve the parameter vector, whose solution can be 
obtained by setting the derivative of this eq.(24) with 
respect to B to zero (Yoo, Bang, & Lee, 2004; 
Angelov, & Filev, 2004): 
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Then the consequent parameter vector B 
minimizing SSE could be obtained by the pseudo-
inversion: 

YWWWB TT 1][       (26) 

After the LSE learning stage is completed and the 
consequent parameters obtained, the mean square 
error (MSE) between the ANFIS model and the 
desired outputs is determined to evaluate the 
efficiency of the ANFIS model in the parameters 
identification stage. The MSE is calculated as follows: 
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where N is the total numbers of input-output pairs, d
iy  

denotes the desired output of the ith input data in
ix . 

In PSO-LSE learning scheme, the presented fitness 
function is exp(-MSE/5); thus, the PSO-LSE is 
determined to approach the maximal fitness value. 
The proposed PSO-LSE learning scheme is applied 
based on the fitness function’s direction to select the 
optimal parameter set from the ANFIS models to 
minimize the MSE. 

4 EXPERIMENTAL RESULTS AND DISCUSSION 
IN the following subsections, we applied the 

proposed method to three kinds of problems: Box–
Jenkins model identification (Oh & Pedrycz, 2000; 
Park, Pedrycz, & Oh, 2001; Rezaee & Zarandi, 2010), 
Chaotic Mackey–Glass time series prediction problem 
(Oh, Pedrycz, & Park, 2007; Choi, Oh, & Pedrycz, 
2008), and daily Taiwan stock indexes (TAIEX) 
dataset. We use the standard performance index of the 
MSE and root mean square error (RMSE) as expressed 
by (27) and (28): 
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4.1  Box–Jenkins gas furnace data 
In this subsection, Box-Jenkins gas furnace data 

with 296 I/O measurements data is used (Oh & 
Pedrycz, 2000; Park, Pedrycz, & Oh, 2001; Rezaee & 
Zarandi, 2010). The input measurement u(t) is gas 
flow rate into the furnace and the output measurement 
y(t) is CO2 concentration in outlet gas. In order to 
directly compare our method with other approaches in 

Oh et al., (2000), Park et al., (2001), and Rezaee et al., 
(2010), u(t-3) and y(t-1) are selected as input variables 
to the proposed ANFIS model. The first portion of the 
dataset (148 pairs) is used for training, and the 
remaining part of the time series serves as a testing 
dataset. Figure 4 shows the comparison of the actual 
output and the output produced by our model with 6 
rules. Table 2 compare out results with other models 
on this dataset. 

 
Figure 4. Desired and obtained output for the Box–Jenkins gas 
furnace data. 

Table 2. Comparison results for the Box–Jenkins gas furnace 
data. 

Model 
No. of 
rules 

MSE 

Oh & Pedrycz’s model (2000) 6 0.364 

Park, Pedrycz, & Oh’s model (2001) 6 0.333 

Rezaee & Zarandi’s model (2010) 6 0.2741 

Our model 6 0.1150 

4.2  Chaotic Mackey–Glass time series 
Chaotic Mackey-Glass time series is a differential 

delay equation defined as follows (Oh, Pedrycz, & 
Park, 2007; Choi, Oh, & Pedrycz, 2008): 
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This is a non-periodic and non-convergent time 
series that is very sensitive to initial conditions. In this 
experiment, we extracted 1000 input-output data pairs 
from the Mackey-Glass time series with t in [118-
1117]. The first 500 data pairs were used in the 
training phase, whereas the last 500 in the testing. In 
order to compare out method with other approaches, 
we perform two experimental cased. In case 1, the 
proposed method has been used to design a ANFIS 
model with four inputs: x(t-30), x(t-18), x(t-12), x(t). 
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In case 2, x(t-30), x(t-12), x(t) are selected as input 
variables. Figure 5 shows the comparison of the actual 
output and the output produced by the model with 9 
rules for case 2. The root mean square error (RMSE) 
comparison with other modeling methods is shown in 
Table 3. 

 
Figure 5.  Desired and obtained output for the Chaotic 
Mackey‐Glass time series. 

Table 3.  Comparison results for the Chaotic Mackey‐Glass 
time series. 

Model 
No. of 
rules 

RMSE Input variables 

Oh et al.’s 
model (2007) 20 0.00026 

x(t-30), x(t-18), 
x(t-12), x(t) 

Our model 20 
1.3828e-
006 

x(t-30), x(t-18), 
x(t-12), x(t) 

Choi et al.’s 
model (2008) 9 0.00311 

x(t-30), x(t-12), 
x(t) 

Our model 9 0.0025 
x(t-30), x(t-12), 
x(t) 

4.3  Forecasting for TAIEX 
In this experiment, a five-year period of the daily 

Taiwan stock indexes (TAIEX) dataset from 2000/1/4 
to 2004/12/31 is selected to test the forecasting 
performance of the proposed ANFIS model. In this 
simulation of the daily curve, the active period of 
training data ranges from 2000/1/4 to 2002/12/31, and 
the testing phase ranges from 2003/1/4 to 2004/12/31. 
Figure 6(a) and Figure 6(b) show the simulation 
results in training and testing periods for the TAIEX 
stock index based on the proposed ANFIS model, 
respectively. Evaluated performance comparison with 
the other modeling methods is illustrated in Table 4. 
Comparison results with the other modeling methods 
indicate that the proposed model can obtain the 
smallest RMSE value to approximate to the stock 
index curve of TAIEX in the testing phase. 

 
(a) 

 
(b) 

Figure 6. (a) Simulation results of the training phase for TAIEX 
dataset. (b) Forecasting results of the testing phase for TAIEX 
dataset. 

Table 4. Comparison results for the TAIEX dataset. 

Model 
No. of 
rules 

RMSE 

Chen & Hwang’s model 
(2000) 

12 119 

Huarng & Yu’s model (2005) 12 187 

Chu et al.’s model (2009) 12 84 

Our model 12 66.82 

5 CONCLUSION 
IN this paper, an ANFIS modeling method using 

SOFM to conduct structure identification and using 
hybrid PSO-LSE learning scheme to conduct 
parameter identification was introduced. SOFM was 
one type of competitive learning algorithm, and it can, 
through feature mapping method, convert high 
dimensional vector, through nonlinear projection 
method, into low dimensional output vector space, 
meanwhile, clustering rule, distribution state and 
similarity could be learned from the training data; 
when SOFM was applied in structure identification of 
ANFIS model, input space can be partitioned into 
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many nonhomogeneous fuzzy regions effectively to 
generate meaningful fuzzy rule to create quickly 
ANFIS structure that can coarsely meet the behavior 
of the system to be identified. In the learning stage of 
parameter identification, PSO algorithm will be used 
to make fine tuning the premise parameters of ANFIS 
model, meanwhile, it can associate LSE method to 
learn the coefficient values of consequent linear 
equation, therefore, the constructed model can meet 
the behavior of system to be identified more precisely. 
From the real test result, it can be seen that the 
modeling method proposed in this paper can, under 
the condition that only input-output data was known, 
make effective automatic extraction of FIS parameters 
to complete the system modeling work. 
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