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Abstract: The multispectral remote sensing image (MS-RSI) is degraded existing multi-
spectral camera due to various hardware limitations. In this paper, we propose a novel core 
tensor dictionary learning approach with the robust modified Gaussian mixture model for 
MS-RSI restoration. First, the multispectral patch is modeled by three-order tensor and 
high-order singular value decomposition is applied to the tensor. Then the task of MS-RSI 
restoration is formulated as a minimum sparse core tensor estimation problem. To improve 
the accuracy of core tensor coding, the core tensor estimation based on the robust modified 
Gaussian mixture model is introduced into the proposed model by exploiting the sparse 
distribution prior in image. When applied to MS-RSI restoration, our experimental results 
have shown that the proposed algorithm can better reconstruct the sharpness of the image 
textures and can outperform several existing state-of-the-art multispectral image restoration 
methods in both subjective image quality and visual perception. 
 
Keywords: Multispectral remote sensing, image restoration, modified Gaussian mixture, 
sparse core tensor, tensor dictionary learning. 

1 Introduction 
The radiance of a real scene is distributed across a wide range of spectral bands. 
Traditional multispectral remote sensing image (MS-RSI) is achieved by integrating the 
product of the intensity at four typical band intervals. Characterized by the distinctive 
advantages of spatial-spectrum information, MS-RSI has been widely in many fields such 
as land-cover and resource survey, geological exploration, environment monitoring and 
natural disaster monitoring [Xu, Chen, Xia et al. (2018); Fu, Xu, Zhang et al. (2019); 
Canbaz, Gursoy and Gokce (2018); Liu, Yang, Zhao et al. (2017); Xia and Hu (2016)]. In 
real cases, however, an MS-RSI is always corrupted by some noises that are generally 
conducted by equipment limitations like sensor sensitivity, photon effects and calibration 
error [Gong and Chen (2019)]. Moreover, the MS-RSI includes both 2D spatial 
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information and 1D spectral information, it has severe limitations in radiation quality 
comparing against regular panchromatic image due to the out-of-focus blur of the optical 
system, the vibration of camera platform, the disturbance of the turbulent atmosphere, the 
lowpass filtering effect and the integral average effect of the lens. To obtain high-quality 
MS-RSI, the image restoration process is often necessary when the multispectral imaging 
system is fixed.   
In the MS-RSI restoration field, there are mainly two approaches including the 2D 
approach and 3D-cube-based approach. As one of the classical problems in computer 
vision, 2D image restoration has been addressed for more than 50 years and a large 
amount of researches have been proposed on this problem, such as NLM [Penna and 
Mascarenhas (2018)], BM3D [Chen, Luo, Tian et al. (2017)], K-SVD [Chen, Liu, Huang 
et al. (2017)], dictionary learning [Zhang, Porikli, Sun et al. (2020)] and the low-rank 
matrix approximations. For example, the multilayer dictionary model restrains the noise 
by learning the image feature with similar spectral characters [Liu, Ma, Yang et al. 
(2017)]; the Laplacian scale mixture distribution and nonlocal low-rank regularization are 
used to regularize the image recovery process [Huang, Dong, Xie et al. (2017)]. These 2D 
methods can be directly applied to MS-RSI restoration by processing the images located 
at different bands separately. However, the details and textures cannot be reconstructed 
effectively caused by ignoring the inter-spectral correlation of MS-RSI. 
The more reasonable extension is specifically designed for the 3D-cube-based image 
restoration methods [Sun and Jeon (2018); Chen and Shen (2015)]. Recently, the tensor-
based approaches have led to many promising results, which regards MS-RSI as a 3rd-order 
tensor by applying the tensor factorization techniques [Peng, Meng, Xu et al. (2014); Dong, 
Huang, Shi et al. (2018)]. More specifically, Peng et al. proposed an effective nonlocal 
tensor dictionary learning method for multispectral image denoising. To exploit nonlocal 
spatiotemporal redundancy, each set of grouped similar 3D patches are linearly 
approximated by low-rank tensor approximation. Different from the rank of matrix, the 
multi-rank of tensor cannot be estimated accurately. Therefore, the sparse coding approaches 
have attracted increasingly more attention [Dian, Fang, Li et al. (2017); Yang, Wang, Li et 
al. (2015)]. Dian et al. proposed a noniterative recovery of hyperspectral images via sparse 
tensors and non-local spatial self-similarities. However, the existing multispectral tensor 
representation cannot take full use of the image structures and the spatial-spectral 
correlation. Our own recent works demonstrates the potential of sparse core tensor 
dictionary learning for MS-RSI restoration by exploiting self-repeating patterns in abundant 
similarity of edges and textures [Geng, Nie, Niu et al. (2018)]. 
To further exploit the sparse distribution prior of the core tensor, we propose a novel core 
tensor dictionary learning approach with the robust modified Gaussian mixture model 
(CTDL-MGM). The contributions of this paper are two-fold. First, to improve the 
accuracy of sparse core tensor coding, the asymmetric and the non-Gaussian distribution 
of MS-RSI data is modeled by modified Gaussian mixture model with non-zero means 
and positive scaling variables. Second, an efficient core tensor dictionary learning model 
using alternating optimization algorithm is proposed. 
 



 
 
 
Robust Core Tensor Dictionary Learning with Modified                                         915 

2 Proposed method 
In this section, the tensor dictionary learning is presented firstly. Then we analyze the 
limitation of the existing approaches. Finally, we construct a novel core tensor dictionary 
learning approach with the robust modified Gaussian mixture model.  

2.1 Tensor dictionary learning for MS-RSI 
We aim at recovering a high quality MS-RSI 𝓧𝓧 ∈ ℝ𝐿𝐿×𝑁𝑁 from its distorted measurement 
𝓨𝓨 where N=W×H denotes the number of pixels and L is the number of spectral bands:  
𝓨𝓨 = ℋ𝓧𝓧 + 𝒩𝒩                (1) 
where ℋ  is the blurring operators and 𝒩𝒩  is the additive noise. Considering both 
structural correlation in space and global correlation in spectrum, the MS-RSI patch is 
modeled by 3rd-tensor 𝒴𝒴𝑖𝑖 = ℛ𝑖𝑖𝓨𝓨, (sized by 𝑛𝑛 × 𝑛𝑛 × 𝐿𝐿 ) with the operator matrix ℛ𝑖𝑖  at 
spatial position i. Due to the redundant information, the spatial textures cannot be 
characterized with the multispectral tensor 𝒴𝒴𝑖𝑖. Then, we construct the core tensor 𝑆𝑆𝑖𝑖 by 
high-order singular value decomposition (HOSVD) as in Eq. (2), which preserves spatial 
structure information with small amount of computation.  

𝒴𝒴𝑖𝑖 = �̃�𝑆𝑖𝑖 ×1 U𝑖𝑖,1 ×2 U𝑖𝑖,2 ×3 U𝑖𝑖,3               (2) 

where U𝑖𝑖,1, U𝑖𝑖,2, U𝑖𝑖,3 ∈ ℝ𝑛𝑛×𝑛𝑛  are orthogonal matrices; the core tensor �̃�𝑆𝑖𝑖 ∈ ℝ𝑛𝑛×𝑛𝑛×𝐿𝐿  is a 
3D coefficient array; ×𝑖𝑖  denotes the i-th mode product. Thanks for the both spatial-
structural similarity and spectral correlation of the 𝒴𝒴𝑖𝑖 , most components of �̃�𝑆𝑖𝑖 =
𝒴𝒴𝑖𝑖 ×1 U𝑖𝑖,1

⊺ ×2 U𝑖𝑖,2
⊺ ×3 U𝑖𝑖,3

⊺ are close to zero and the corresponding 1D representations 
�̃�𝑠𝑖𝑖  is highly sparse as in Fig. 1. Due to the orthogonality of the U𝑖𝑖,𝑗𝑗(𝑗𝑗 = 1,2,3), the 
�U𝑖𝑖,1, U𝑖𝑖,2, U𝑖𝑖,3� can be regarded as dictionary 𝒟𝒟 and the distorted �̃�𝑠𝑖𝑖  can be recovered 
using sparse model as follows:  

 �̂�𝑠𝑖𝑖 = arg min
𝑠𝑠𝑖𝑖
‖�̃�𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖‖22 + 𝜆𝜆𝜆𝜆(𝑠𝑠𝑖𝑖)               (3) 

where the ‖�̃�𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖‖22 is the fidelity constraint term and the 𝜆𝜆(𝑠𝑠𝑖𝑖) is the sparse constraint 
term. Popular choices 𝜆𝜆(∙) of include the pseudo-norm l0 and the l1 norm, which exactly 
lead to the hard and soft thresholding of core tensor coefficient array �̃�𝑠𝑖𝑖 respectively.  

 
Figure 1: 1D curve of the core tensor 
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2.2 The limitation of the tensor dictionary learning 
For effective MS-MRI restoration, the sparse core tensor �̂�𝑠𝑖𝑖,𝑦𝑦 obtained from distorted 𝓨𝓨 
by Eq. (3) is expected to be as close as possible to the �̂�𝑠𝑖𝑖,𝑥𝑥  obtained from clean 𝓧𝓧. 
However, due to the degradation, �̂�𝑠𝑖𝑖,𝑦𝑦  will deviate from its true value �̂�𝑠𝑖𝑖,𝑥𝑥  and would 
directly decrease the quality of the reconstructed image. To further illustrate these 
differences, we define the deviation degree of the core tensor �̂�𝑠𝑖𝑖,𝑦𝑦 as:  

𝐷𝐷𝑒𝑒𝑒𝑒��̂�𝑠𝑖𝑖,𝑦𝑦, �̂�𝑠𝑖𝑖,𝑥𝑥� = ��̂�𝑠𝑖𝑖,𝑦𝑦 − �̂�𝑠𝑖𝑖,𝑥𝑥�𝐹𝐹 ��̂�𝑠𝑖𝑖,𝑥𝑥�𝐹𝐹�               (4) 

where ‖∙‖𝐹𝐹  denotes the Frobenius norm. The definition of 𝐷𝐷𝑒𝑒𝑒𝑒��̂�𝑠𝑖𝑖,𝑦𝑦, �̂�𝑠𝑖𝑖,𝑥𝑥� describes the 
similarity between �̂�𝑠𝑖𝑖,𝑥𝑥  and �̂�𝑠𝑖𝑖,𝑦𝑦 . To show the 𝐷𝐷𝑒𝑒𝑒𝑒��̂�𝑠𝑖𝑖,𝑦𝑦, �̂�𝑠𝑖𝑖,𝑥𝑥� , we performed simulated 
experiments on distorted MS-RSI, degraded by the Gaussian blurring and Gaussian white 
noise. For fair comparison, both �̂�𝑠𝑖𝑖,𝑥𝑥  and �̂�𝑠𝑖𝑖,𝑦𝑦  were obtained using the same projection 
matrices �U𝑖𝑖,1, U𝑖𝑖,2, U𝑖𝑖,3� . As shown in Fig. 2, most components of 𝐷𝐷𝑒𝑒𝑒𝑒��̂�𝑠𝑖𝑖,𝑦𝑦, �̂�𝑠𝑖𝑖,𝑥𝑥� 
concentrated in 0.1~0.25 and the �̂�𝑠𝑖𝑖,𝑦𝑦 deviates from its true value obviously. The definition 
of 𝐷𝐷𝑒𝑒𝑒𝑒��̂�𝑠𝑖𝑖,𝑦𝑦, �̂�𝑠𝑖𝑖,𝑥𝑥� indicates that the accurate �̂�𝑠𝑖𝑖,𝑦𝑦 cannot be obtained by the tensor dictionary 
learning model and the reconstructed performance can be further improved by learning the 
optimal solution of �̂�𝑠𝑖𝑖,𝑦𝑦. This observation motivates us to model a novel tensor dictionary 
learning approach, as will be further discussed in Subsection 2.3. 

 
Figure 2: Distributions of 𝐷𝐷𝑒𝑒𝑒𝑒��̂�𝑠𝑖𝑖,𝑦𝑦, �̂�𝑠𝑖𝑖,𝑥𝑥� in degraded MS-RSI 

2.3 Core Tensor dictionary learning via modified Gaussian mixture modeling 
As we can see from Eq. (3), the regularization function 𝜆𝜆(∙) is critical in sparse tensor 
approximation. In this subsection, we propose a Maximum a Posterior (MAP) method for 
estimating 𝑠𝑠 from distorted �̃�𝑠, which can be formulated as: 
𝑠𝑠 = arg min

𝑠𝑠
{− log𝑃𝑃(�̃�𝑠|𝑠𝑠) − log𝑃𝑃(𝑠𝑠)}               (5) 

where log𝑃𝑃(�̃�𝑠|𝑠𝑠) is given by the Gaussian distribution of noise, i.e.:  

log𝑃𝑃(�̃�𝑠|𝑠𝑠) ∝ −‖�̃�𝑠 − 𝑠𝑠‖22              (6) 
and 𝑃𝑃(𝑠𝑠) is the distribution prior of 𝑠𝑠. To exploit the nonlocally similar textures, the 
tensors {𝒴𝒴𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑁𝑁} are clustered into K sets and their corresponding core tensor sets 
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�Ω𝑘𝑘�Ω𝑘𝑘 = �𝑠𝑠𝑘𝑘,𝑗𝑗� � are obtained. Then each core tensor set should be characterized by the 
same prior (i.e., the probability density function with the same parameters). Motivated by 
the BAMM algorithm [Nguyen, Wu, Mukherjee et al. (2014)] and GM-based method 
[Mallouli (2019)], in this paper, we modify the asymmetric Gaussian mixture model to fit 
different shapes of observed data and incorporate the spatial information. The density 
function 𝑓𝑓(𝑠𝑠𝑖𝑖|Π,Θ) for each core tensor 𝑠𝑠𝑖𝑖 is defined as: 

𝑓𝑓(𝑠𝑠𝑖𝑖|Π,Θ) = ∑ 𝜋𝜋𝑖𝑖𝑘𝑘 ∙ ∏ 𝑝𝑝�𝑠𝑠𝑗𝑗|𝜃𝜃𝑘𝑘�
𝑤𝑤𝑖𝑖𝑖𝑖

𝑠𝑠𝑖𝑖∈𝜙𝜙𝑖𝑖
𝐾𝐾
𝑘𝑘=1               (7) 

where Π = {𝜋𝜋𝑖𝑖𝑘𝑘} is the set of between-cluster prior distributions which models the prior 
probability of core tensor 𝑠𝑠𝑖𝑖  in label Ω𝑘𝑘 , and satisfies the constraints 0 ≤ 𝜋𝜋𝑖𝑖𝑘𝑘 ≤ 1 and 
∑ 𝜋𝜋𝑖𝑖𝑘𝑘𝐾𝐾
𝑘𝑘=1 = 1. The probability 𝑝𝑝�𝑠𝑠𝑗𝑗|𝜃𝜃𝑘𝑘� is a statistical distribution, and 𝑤𝑤𝑖𝑖𝑗𝑗 is the weight 

factor of j-th tensor 𝒴𝒴𝑗𝑗  in the local neighborhood 𝜙𝜙𝑖𝑖 = {𝑠𝑠1,⋯ , 𝑠𝑠𝑚𝑚} around tensor 𝒴𝒴𝑖𝑖 , 
which will be presented in details in subsection 2.4. Since the observation 𝑠𝑠𝑖𝑖 is generally 
considered as statistically independent among the core tensor set Ω𝑘𝑘, the joint conditional 
density over the core tensor set 𝑠𝑠 = {𝑠𝑠𝑖𝑖}  can be calculated using the novel modified 
Gaussian Mixture (MGM) Model:  
Φ(𝑠𝑠|Π,Θ) = ∏ ∑ 𝜋𝜋𝑖𝑖𝑘𝑘 ∙ ∏ 𝑝𝑝�𝑠𝑠𝑗𝑗|𝜃𝜃𝑘𝑘�

𝑤𝑤𝑖𝑖𝑖𝑖
𝑠𝑠𝑖𝑖∈𝜙𝜙𝑖𝑖

𝐾𝐾
𝑘𝑘=1

𝑁𝑁
𝑖𝑖=1              (8) 

The joint conditional density Φ(𝑠𝑠|Π,Θ) is mainly influenced by the probabilities of core 
tensors 𝑝𝑝�𝑠𝑠𝑗𝑗|𝜃𝜃𝑘𝑘� in its neighborhood 𝜙𝜙𝑖𝑖 = {𝑠𝑠1,⋯ , 𝑠𝑠𝑚𝑚} around tensor 𝒴𝒴𝑖𝑖. The distribution 
𝑝𝑝�𝑠𝑠𝑗𝑗|𝜃𝜃𝑘𝑘� is the important component which can be any kind of probability statistical 
distribution (e.g., the Laplacian, Generalized Gaussian, and student’s t-distribution). 
However, these traditional distributions are symmetric and unimodal, which does not 
consider the spatial information and is often shorter than required. It means that these are 
not flexible enough to fit the shape of the multispectral core tensor 𝑠𝑠𝑖𝑖 with non-Gaussian 
and asymmetric distribution. So each component of 𝑠𝑠 can be characterized by a multiple-
statistical distributions. In this paper, we propose a modified Gaussian mixture 
distribution with a positive scaling variable to model core tensor 𝑠𝑠𝑖𝑖, which can be written 
in the form:  

𝑝𝑝(𝑠𝑠𝑖𝑖|𝜃𝜃𝑘𝑘) = 1
(2𝜋𝜋)𝐷𝐷 2⁄ ∙ 1

|Σ𝑘𝑘|1 2⁄ exp �− 1
2

(𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑘𝑘)𝑇𝑇Σ𝑘𝑘−1(𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑘𝑘)�            (9) 

where Θ = {𝜃𝜃𝑘𝑘|𝑘𝑘 = (1,⋯ ,𝐾𝐾)} is the set of Gaussian parameters with 𝜃𝜃𝑘𝑘 = {𝜇𝜇𝑘𝑘 ,Σ𝑘𝑘}. The 
D-dimensional vector 𝜇𝜇𝑘𝑘 is the mean value, the D×D matrix Σ𝑘𝑘 is the covariance value, and 
|Σ𝑘𝑘| denotes the determinant of Σ𝑘𝑘. Consequently, we have also adopted this option in this 
work, which translates the core tensor dictionary learning (described in Eq. (5)) into: 

(�̂�𝑠,𝜃𝜃) = arg min
𝑠𝑠,𝜃𝜃

‖�̃�𝑠 − 𝑠𝑠‖22 + 𝛼𝛼‖𝑠𝑠‖1 + 1
2
ωlog|Σ| + 1

2
ω(𝑠𝑠 − 𝜇𝜇)𝑇𝑇Σ−1(𝑠𝑠 − 𝜇𝜇)        (10) 

where the ‖�̃�𝑠 − 𝑠𝑠‖22 is the fidelity constraint term and the 𝛼𝛼‖𝑠𝑠‖1 is the sparse constraint 
term. As shown in Fig. 2, the core tensor 𝑠𝑠 is naturally sparse due to the both spatial-
structural similarity and spectral correlation. Then the sparse constraint term 𝛼𝛼‖𝑠𝑠𝑖𝑖‖1 can be 
removed. Therefore, the above core tensor dictionary learning model can be converted into: 
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(�̂�𝑠,𝜃𝜃) = arg min
𝑠𝑠,𝜃𝜃

‖�̃�𝑠 − 𝑠𝑠‖22 + 1
2
ωlog|Σ| + 1

2
ω(𝑠𝑠 − 𝜇𝜇)𝑇𝑇Σ−1(𝑠𝑠 − 𝜇𝜇)         (11) 

where ω is the weight factor vector of the core tensor 𝑠𝑠 in its local neighborhood, which 
will be presented in details in subsection 2.4. 𝜇𝜇 is the mean vector with D dimension. Σ is 
the covariance matrix with D×D dimension, and |Σ| is the determinant of Σ. We call such 
novel formulation Core Tensor Dictionary Learning with the Modified Gaussian mixture 
(CTDL-MGM) and the computationally efficient solution will be discussed in Section 3. 

2.4 Construction of weight factor 
In our proposed model, the conditional probability of the core tensor 𝑠𝑠𝑖𝑖 is influenced by 
the probabilities of core tensors in its neighborhood 𝜙𝜙𝑖𝑖. To incorporate the spatial-spectral 
information and core tensor intensity information, we add weigh factor 𝑤𝑤𝑖𝑖𝑗𝑗 for distant 
core tensors in order to distinguish among the contributions of different core tensors, as 
the weighted parameters decrease with increasing distance. 
Most state-of-the-art algorithms with spatial-spectral information, including nonlocal 
core tensor dictionary learning method [Geng, Nie, Niu et al. (2018)] and clustering 
methods [Li, Zhang, Lu et al. (2017); Chen, Xiong, Xu et al. (2019)], have yielded 
effective results, but still have some disadvantages: (1) Although the introduction of local 
spatial and spectral information makes the corresponding algorithm overcome the impact 
of noise, they still lack enough robustness to noise with different types or levels, 
especially in absence of prior knowledge of the noise; (2) One or more controlling 
parameters are generally introduced to balance the robustness to noise and effectiveness 
of preserving the details. Unfortunately, the selection of these parameters has to be made 
by experience or trial and error experiments. 
To overcome the above mentioned disadvantages, a new spatial weight factor should be 
constructed with the following characteristics: controlling the influence of the 
neighborhood core tensors depending on their distance from each other among the 
neighborhood to further improve the robustness to noise; utilizing the intensity 
information of the original image to make the algorithm avoid sensitive to initializations; 
being free of any balance parameter selection. Let R be the radius of the neighborhood 𝜙𝜙𝑖𝑖 
centered as core tensor 𝑠𝑠𝑖𝑖 . There are (2𝑅𝑅 + 1)2  core tensors in each neighborhood 
obviously, but not all the core tensors are useful for similarity computation. In other 
words, different core tensors in the neighborhood should have different weights. 
Therefore, we construct a novel weight factor defined as: 

 𝑤𝑤𝑖𝑖𝑗𝑗 =
exp�−∑

�𝑠𝑠𝑖𝑖−𝑠𝑠𝑚𝑚�
2

𝑁𝑁𝜙𝜙𝑖𝑖
×�𝑁𝑁𝜙𝜙𝑖𝑖

−1�𝑠𝑠𝑚𝑚∈𝜙𝜙𝑖𝑖,𝑚𝑚≠𝑖𝑖 �

∑ exp�−∑
�𝑠𝑠ℎ−𝑠𝑠𝑚𝑚�2

𝑁𝑁𝜙𝜙𝑖𝑖
×�𝑁𝑁𝜙𝜙𝑖𝑖

−1�𝑠𝑠𝑚𝑚∈𝜙𝜙𝑖𝑖,𝑚𝑚≠𝑖𝑖 �𝑠𝑠ℎ∈𝜙𝜙𝑖𝑖

            (12) 

where 𝑁𝑁𝜙𝜙𝑖𝑖 is the number of core tensors in the neighborhood 𝜙𝜙𝑖𝑖 for core tensor 𝑠𝑠𝑖𝑖 . As 
shown in above equation, it can be seen that the factor 𝑤𝑤𝑖𝑖𝑗𝑗 is formulated without setting 
any control or balance parameters to balance the robustness to noise and effectiveness of 
preserving the details. Moreover, the influence of core tensors within the local window in 
𝑤𝑤𝑖𝑖𝑗𝑗 is flexibly by using their spatial-spectral Euclidean distance from other core tensors in 
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the neighborhood. Therefore, the proposed weight factor can reflect the damping extent 
of the neighbors with the spatial-spectral distance from other neighborhood core tensors. 
Thus more local spatial information can be used. It is worth noting that the shape of the 
local window used in our experiments is square, but also, windows with other shapes like 
circle or diamond can be easily adapted to the proposed weight factor. 

3 MS-RSI Restoration with CTDL-MGM 
In the previous sections, we have seen how to solve CTDL-MGM problem for a single 
core tensor 𝑠𝑠 (a collection of image patches similar to a chosen exemplar). In this section, 
we generalize such formulation to whole-image reconstruction and study the applications 
of CTDL-MGM into image restoration including image denoising and image deblurring. 
For the degraded image 𝓨𝓨 = ℋ𝓧𝓧 + 𝒩𝒩  (as in Eq. (1)), the whole-image 𝓧𝓧  can be 
reconstructed by solving the optimization problem: 

(𝓧𝓧, {𝜃𝜃𝑖𝑖}) = arg min
𝑠𝑠,𝜃𝜃

‖𝓨𝓨−𝓧𝓧‖𝐹𝐹2 + ∑ �ℛ�𝑖𝑖𝓧𝓧 − 𝑆𝑆𝑖𝑖 ×1 U𝑖𝑖,1 ×2 U𝑖𝑖,2 ×3 U𝑖𝑖,3�𝐹𝐹
2

𝑖𝑖    

+ 1
2
ω∑ log|Σ𝑖𝑖|𝑖𝑖 + 1

2
ω∑ (𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑖𝑖)𝑇𝑇Σ𝑖𝑖−1(𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑖𝑖)𝑖𝑖                                           

        (13) 

where ℛ�𝑖𝑖 = �ℛ�𝑖𝑖0 ,ℛ�𝑖𝑖1 ,⋯ ,ℛ�𝑖𝑖𝑚𝑚−1�  denotes an operator extracting similar 3D tensors at 
spatial position i; 𝜃𝜃𝑖𝑖 = {𝜇𝜇𝑖𝑖, Σ𝑖𝑖} is the parameter in modified Gaussian mixture model. The 
above global minimization problem can be decomposed into the following two sub-
problems: minimization of 𝓧𝓧 for a fixed {𝑠𝑠𝑖𝑖} and {𝜃𝜃𝑖𝑖}; minimization of {𝑠𝑠𝑖𝑖} and {𝜃𝜃𝑖𝑖} for a 
fixed 𝓧𝓧, which can be efficiently solved by the method of alternating optimization. 
Specifically, both subproblems admits closed-form solutions when the dictionary 
�U𝑖𝑖,1, U𝑖𝑖,2, U𝑖𝑖,3� is orthogonal. 

3.1 Solving for whole image 
Let 𝒳𝒳�𝑖𝑖 = 𝑆𝑆𝚤𝚤� ×1 U𝑖𝑖,1 ×2 U𝑖𝑖,2 ×3 U𝑖𝑖,3  denotes the reconstructed tensor with an initial 
estimate of 𝑆𝑆𝑖𝑖. Then, for a fixed �𝑆𝑆𝚤𝚤��, the whole image 𝓧𝓧 can be recovered by solving the 
following l2-minimization problem： 

𝓧𝓧 = arg min
𝓧𝓧
‖𝓨𝓨−𝓧𝓧‖𝐹𝐹2 + 𝜂𝜂 ∑ �ℛ�𝑖𝑖𝓧𝓧 −  𝒳𝒳�𝑖𝑖�𝐹𝐹

2𝑁𝑁
𝑖𝑖=1                    (14) 

where 𝜂𝜂 is an increasing factor and ℛ�𝑖𝑖 is the operator matrix at spatial position i. Then, 
the reconstructed MS-MRI 𝓧𝓧�  is reconstructed by averaging each restored tensor using 
straightforward least-square solution: 

𝓧𝓧� = �𝜆𝜆ℋ⊺ℋ + 𝜂𝜂 ∑ ℛ�𝑖𝑖
⊺ℛ�𝑖𝑖𝑖𝑖 �

−1
�𝜆𝜆ℋ⊺𝓨𝓨+ 𝜂𝜂 ∑ ℛ�𝑖𝑖

⊺𝓨𝓨�𝑖𝑖𝑖𝑖 �                               (15) 

where 𝓨𝓨�𝑖𝑖 can be construced by 𝓨𝓨�𝑖𝑖 = �̂�𝑆𝑖𝑖 ×1 U𝑖𝑖,1 ×2 U𝑖𝑖,2 ×3 U𝑖𝑖,3 , ℛ�𝑖𝑖
⊺ℛ�𝑖𝑖 = ∑ ℛ�𝑖𝑖𝑖𝑖

⊺ℛ�𝑖𝑖𝑖𝑖
𝑚𝑚−1
𝑗𝑗=0  

and ℛ�𝑖𝑖
⊺𝓨𝓨�𝑖𝑖 = ∑ ℛ�𝑖𝑖𝑖𝑖

⊺𝓨𝓨�𝑖𝑖𝑖𝑖
𝑚𝑚−1
𝑗𝑗=0 . Note that it is image denoising application where ℋ = ℐ, 

and can be computed easily. 
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3.2 Solving for {𝒔𝒔𝒊𝒊} and {𝜽𝜽𝒊𝒊} 
When the image 𝓧𝓧 is fixed, the subproblem boils down to a sequence of tensor-level 
CTDL-MGM problems, i.e., for each exemplar: 

( �̂�𝑠𝑖𝑖 ,𝜃𝜃𝑖𝑖) = arg min
𝑠𝑠,𝜃𝜃

‖�̃�𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖‖22 + 1
2
ωlog|Σ𝑖𝑖| + 1

2
𝜔𝜔(𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑖𝑖)𝑇𝑇Σ𝑖𝑖−1(𝑠𝑠𝑖𝑖 − 𝜇𝜇𝑖𝑖)                     (16) 

where we have used �̃�𝑆𝑖𝑖 = 𝒳𝒳𝑖𝑖 ×1 U𝑖𝑖,1
⊺ ×2 U𝑖𝑖,2

⊺ ×3 U𝑖𝑖,3
⊺ . This is exactly the problem 

studied in the previous section. The 𝜇𝜇𝑖𝑖 and Σ𝑖𝑖 can be computed by: 
𝜇𝜇𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑗𝑗 ∙ 𝑠𝑠𝑗𝑗𝑠𝑠𝑖𝑖∈𝜙𝜙𝑖𝑖             (17) 

Σ𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑗𝑗�𝑠𝑠𝑗𝑗 − 𝜇𝜇𝑖𝑖��𝑠𝑠𝑗𝑗 − 𝜇𝜇𝑖𝑖�
𝑇𝑇

𝑠𝑠𝑖𝑖∈𝜙𝜙𝑖𝑖             (18) 

where 𝑤𝑤𝑖𝑖𝑗𝑗  is the weight factor constructed in Subsection 2.4. Putting things together, a 
complete image restoration based on CTDL-MGM can be summarized as following section.  

3.3 Algorithm of CTDL-MGM 
The main procedure of the proposed CTDL-MGM model is summarized in Algorithm 1. 
Compared with the existing approaches, there three main advantages in the CTDL-MGM 
model as follows: (1) The MS-RSI patch is modeled by 3rd-tensor preserving both 
structural correlation in space and global correlation in spectrum. (2) The core tensor 
sparse-based model is constructed to solve the core tensor approximation effectively. (3) 
Exploiting the sparse distribution prior of the core tensor, the proposed CTDL-MGM can 
obtain a better estimation of the core tensor. 

Algorithm 1 CTDL-MGM model for MS-MRI restoration 
 Initialization: 

Initialize the estimate 𝓧𝓧� (0) = 𝓨𝓨, the parameter 𝛾𝛾 and the number of cluster K. 
 Outer loop: iterate on t = 1, 2, …, Tmax. 

1. Obtain the similar tensors set {𝜙𝜙𝑖𝑖}𝑖𝑖𝐾𝐾
(𝑡𝑡) from 𝓧𝓧� (𝑡𝑡) via K-Means. 

2. Calculate the core tensor vector 𝑠𝑠𝑖𝑖 for each tensor 𝒳𝒳�𝑖𝑖
(𝑡𝑡) with HOSVD. 

3. Inner loop (core tensor {𝑠𝑠𝑖𝑖} and statistical distribution {𝜃𝜃𝑖𝑖} approximation by solving Eq. 
(12)): iterate on l= 1, 2, …, Lmax. 
(1) Calculate the weight factor  𝑤𝑤𝑖𝑖𝑗𝑗 for each core tensor 𝑠𝑠𝑖𝑖 with Eq. (13). 
(2) Update both the mean values 𝜇𝜇𝑖𝑖 with Eq. (18) and the covariance value  Σ𝑖𝑖 with Eq. (19) 

for fixed 𝑠𝑠𝑖𝑖. 
(3) Update �̂�𝑠𝑖𝑖 for fixed 𝜇𝜇𝑖𝑖 and  Σ𝑖𝑖. 
End for 

4. Reconstruct 𝓧𝓧� (𝑡𝑡+1) from ��̂�𝑆𝑖𝑖� with Eq. (16). 

5. If �𝓧𝓧� (𝑡𝑡+1) −𝓧𝓧� (𝑡𝑡)�2
2 ≤ 𝜀𝜀, iteration is stopped. 

End for 
 Output 𝓧𝓧� (𝑡𝑡+1) 

4 Experimental results 
In this section, we apply the proposed CTDL-MGM algorithm to image restoration, 
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including image denoising and image deblurring. To verify the performance of our 
proposed method, we utilized the 16 ZY-3 remote sensing images, each with 4 spectral 
bands including red, blue, green and near-infrared. The parameters of the proposed 
method are set as follows: the multispectral tensor size is 6×6×4 with 2-pixel-width 
overlap and its corresponding core tensor size is 6×6×4; the number of cluster is K=10; 
the mean values for each Gaussian component are initialized randomly; the covariance 
matrices and the prior probabilities are then initialed based on the means. To 
comprehensively assess the performance, we employ two objective image quality indices: 
peak signal-to-noise ratio (PSNR) and feature similarity (FSIM). 

4.1 Image denoising 
In the subsection, the Gaussian noise is added to the MS-RSIs, which comes from many 
natural sources, such as the spontaneous thermal generation of electrons. We parameterized 
the Gaussian noise by its standard deviation σ=10, 20, 35, 50. We have compared CTDL-
MGM based image denoising method against three current state-of-the-art methods, 
including the structured sparse coding with Gaussian scale mixture (SSC-GSM) [Dong, Shi, 
Ma et al. (2015)], hierarchical dictionary learning (HDL) [Liu, Ma, Yang et al. (2017)], 
nonlocal tensor dictionary learning (NTDL) [Peng, Meng, Xu et al. (2014)]. Both average 
PSNR (dB) and average FSIM at different noise levels are reported in Tab. 1. As can be seen 
from Tab. 1, the proposed CTDL-MGM method consistently outperforms all other leading 
algorithms. The average PSNR improvements over HDL, SSC-GSM and NTDL methods 
are larger than about 3 dB, 3 dB and 1 dB, respectively. Besides, the average FSIM 
improvements 0.01~0.02 on low noise levels (σ=10, 20) and 0.04~0.05 on high noise levels 
(σ=35, 50). On the average, HDL and SSC-GSM are mostly performing methods. However, 
they fall behind 3rd-tensor dictionary learning methods (including NTDL and CTDL-MGM) 
by less than 1.5 dB in PSNR and 0.01 in FSIM. By exploiting the sparse distribution prior of 
the multispectral 3rd-tensor, the proposed CTDL-MGM method has achieved better 
competitive denoising performance to the NTDL using nonlocal tensor similarities.  

Table 1: The PSNR (dB) and FSIM of the denoised MS-RSIs 
Noise Level  HDL SSC-GSM NTDL Proposed  

CTDL-MGM 
σ = 10 PSNR 34.13 34.19 35.94 37.21 

FSIM 0.987 0.986 0.993 0.995 

σ = 20 PSNR 30.24 30.28 31.88 32.85 
FSIM 0.966 0.965 0.982 0.986 

σ = 35 PSNR 27.37 27.31 29.87 30.32 
FSIM 0.935 0.930 0.967 0.970 

σ = 50 PSNR 25.65 25.63 27.85 28.17 
FSIM 0.907 0.900 0.950 0.953 

Fig. 3 includes the visual comparison of denoising results for ZY-3 remote sensing 
images at the moderate noise level (σ=20). It can be easily observed that the restored 
images by HDL and SSC-GSM both suffer from noticeable artifacts especially around the 
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smooth areas close to the bridge; by contrast, the NTDL and CTDL-MGM based on 
tensor dictionary learning seem to deliver the better visual quality. Obviously, the MS-
RSI restorated by our method properly removes the noise while finely preserves the 
structures underlying the image. 

 
Figure 3: Denoising performance comparison: (a) Original images at red band (image 
size: 400×400); (b) The image corrupted by Gaussian noise of σ=20; denoised images 
by (c) HDL (PSNR=30.13 dB, FSIM=0.967); (d) SSC-GSM (PSNR=30.41 dB, 
FSIM=0.964); (e) NTDL (PSNR=31.92 dB, FSIM=0.983); (f) the proposed CTDL-MGM 
(PSNR=32.87 dB, FSIM=0.986) 

4.2 Image deblurring 
We have also compared CTDL-MGM based image deblurring and three other competing 
approaches in the literature: structural compact core tensor dictionary learning (SC-CTDL) 
[Geng, Nie, Niu et al. (2018)], multispectral image deblurring with jitter image trajectory 
(MID-JIT) [Song, Fang, Pan et al. (2017)], multispectral image deblurring using 
interchannel correlation (MID-IC) [Chen and Shen (2015)]. The performance of the 
proposed CTDL-MGM model was verified on a set of 16 MS-RSIs. The original images 
were blurred by a blur kernel and then added by the additive Gaussian white noise with 
standard deviation √2. In our comparative study, two blur kernels were commonly used: (1) 
9×9 uniform blur simulating the relative motion between the subject and multispectral 
camera; (2) Gaussian blur with standard deviation 1.6 simulating the optics blur.  
Uniform blur. We have applied the proposed method and three other competing 
approaches on 16 blurred scenes by uniform blur. The PSNR and FSIM curves are depicted 
in Fig. 4. In PSNR results, the proposed CTDL-MGM method significantly outperforms 
three other methods by 2~3 dB. For the FSIM, our proposed method is better than three 
other algorithms about 0.04. From Figs. 5(c) to 5(f), we present the deblurring results of a 
city region at blue band. It can be easily observed that MID-JIT and MID-IC are quit poor 
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without considering the correlation between spatial and spectral information into account. 
The SC-CTDL method constructs the central texture based on the details in its 
neighborhood which are also corrupted. Therefore, the corresponding result is not satisfied 
enough especially for the region with abundant edges or textures. The proposed method 
leads to the best visual quality. It cannot only remove the blurring effects and noise, but 
also reconstruct more and sharper image edges than other methods. The excellent edge 
preservation owes to exploiting the sparse distribution prior of the core tensor. 
Gaussian blur. For 7×7 Gaussian blurring with standard deviation 1.6, the superior 
performance of our proposed CTDL-MGM is demonstrated as shown in Fig. 6. We can see 
that the proposed method achieves the best results. Its performance is more outstanding 
than other three methods with 1~3 dB in PSNR and 0.01~0.06 in FSIM. Moreover, the 
MID-JIT and MID-IC is comparable in FSIM. To further verify the effectiveness of the 
proposed method, we present the deblurring island image at green band in Fig. 7. The MID-
JIT produces over-smoothed results and eliminates much image details. The MID-IC also 
fails to reconstruct fine image edges and tends to generate some “ghost” artifacts around 
the edges. The SC-CTDL results seem the acceptable visual quality. In contrast, the 
proposed method presents the clearer and more details images when compared with the 
ground truth. 

   
(a)                                 (b) 

Figure 4: Performance of four image restoration algorithms for the uniform blurring: (a) 
PSNR curves; (b): FSIM curves 
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Figure 5: Deblurring performance comparison: (a) Original images at blue band (image 
size: 144×144); (b) Noisy and blurred image (9×9 uniform blur, σ=√2); deblurred images 
by (c) MID-JIT ( PSNR=34.81 dB, FSIM=0.941); (d) MID-IC ( PSNR=34.20 dB, 
FSIM=0.934); (e) SC-CTDL ( PSNR=34.66 dB, FSIM=0.963); (f) the proposed CTDL-
MGM ( PSNR=38.78 dB, FSIM=0.986) 

     
(a)                                                                       (b) 

Figure 6: Performance of four image restoration algorithms for the Gaussian blurring: (a) 
PSNR curves; (b) FSIM curves 
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Figure 7: Deblurring performance comparison: (a) Original images at green band (image 
size: 144×144); (b) Noisy and blurred image (Gaussian blur, σ=1.6); deblurred images by 
(c) MID-JIT (PSNR=34.86 dB, FSIM=0.944); (d) MID-IC (PSNR=33.42 dB, 
FSIM=0.933); (e) SC-CTDL (PSNR=37.69 dB, FSIM=0.972); (f) the proposed CTDL-
MGM (PSNR=38.98 dB, FSIM=0.983) 

Overall the proposed CTDL-MGM method leads to the best result on both subjective 
image quality and visual perception. One of the main reasons is that there is essential 
difference of data structure for MS-RSI patch between the proposed method and other 
2D-patch-based methods. In CTDL-MGM method, the MS-RSI patch is conducted by 
tensor incorporating spatial structure and spectral correlation. Additionally, the proposed 
method is capable of greatly improving the accuracy of core tensor by exploiting the 
sparse distribution prior. In contrast, MID-JIT ignored the spectral correlation and 
restored spectral image separately; MID-IC focused out-of-focus blur but not on other 
blur types; SC-CTDL emphasized more on exploiting nonlocal similarity and failed to 
strike a good balance between local variation and nonlocal invariance. Therefore, our 
proposed method can outperform other three methods. 

5 Conclusions 
To further improve the accuracy of sparse core tensor and the qaulity of reconstructed 
image, in this paper, we presented a novel prior distrebution for MS-RSI restoration. In 
order to incorporate spatial-structural similarity and spectral correlation of MS-RSIs into 
a unified representation, the MS-RSI patch is modeled by 3rd-tensor. Considering both 
the sparsity of core tensors and the orthogonality of projection matrices, the core tensors 
are restored by the sparse core tensor dictionary learning model. For the purpose of 
improving the accuracy of core tensors, the modified Gaussian mixture is introduced into 
the core tensor dictionary learning model. To this end, the core tensor dictionary learning 
approach with the modified Gaussian mixture model (CTDL-MGM) is proposed. An 
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efficient alternating optimization algorithm was presented for solving the CTDL-MGM 
minimization problem. Our results on Gaussian noise, uniform blur kernel and Gaussian 
blur kernel show that the proposed algorithm is capable of producing more accurate 
image restoration results than several state-of- the-art algorithms. 
One limitation of the proposed algorithm is the manual selection of the window size for 
the tensor. One possible extension of this work is to set the radius based on the amount of 
noise in the target image. Making our algorithm with adaptive window size selection will 
be our direction of the future work. Another limitation of the proposed algorithm is how 
to determine the number of classes/components automatically for different applications. 
The traversal strategy is generally used to determine the number of clusters/components 
based on the criteria in mixture models. Thus, addressing such questions is out of the 
scope of this paper and subjects of future research. 
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