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Abstract: The secure key rate of quantum key distribution (QKD) is greatly reduced 
because of the untrusted devices. In this paper, to raise the secure key rate of QKD, a 
device-independent quantum key distribution (DIQKD) protocol is proposed based on 
hyper-entangled states and Bell inequalities. The security of the protocol is analyzed 
against the individual attack by an adversary only limited by the no-signaling condition. 
Based on the formalization of Clauser-Horne Shimony-Holt (CHSH) violation 
measurement on local correlation, the probability of a secure secret bit is obtained, which 
is produced by a pair of hyper-entangled particles. By analyzing the secure secret bit, it is 
proven that, when both the polarization mode and the path mode contains entangled-
states, the DIQKD protocol gets a better secure key rate than common Bell states. 
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1 Introduction 
Security and channel capacity are two key problems that need to be solved urgently in 
quantum cryptographic [Liu, Xu, Zhang et al. (2019)] systems. In previous studies, the 
security of quantum cryptographic protocols [Acín, Gisin and Masanes (2006); Barrett, 
Linden, Massar et al. (2005); Masanes, Acin and Gisin (2006); Scarani, Gisin and Brunner 
(2006); Wang, Gao, Liu et al. (2019)] is guaranteed by the principle of quantum mechanics. 
The devices for preparing and measuring quantum states are considered perfect. However, 
in reality, it is difficult to achieve the perfect devices; therefore, there may be various 
security risks in real quantum cryptography systems. Currently, there are many attack 
schemes against the imperfection of devices, such as “time shift attack”, “dead time attack” 
and “blind attack by strong light”, etc. In other words, many quantum cryptographic 
protocols [Liu, Gao, Liu et al. (2019); Liu, Xu, Yang et al. (2019)], which are absolutely 
secure in theory, may not be secure in practice. Therefore, it’s meaningful to study quantum 
cryptographic protocols on the premise that devices cannot be trusted.  In addition, because 
the devices are not trusted, the secure key rate is greatly reduced. If the secure key rate is 
too low, the practical quantum cryptographic system will not be realized. 
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Most of the quantum hacker attacks are implemented by using the non-ideal devices in 
QKD systems. In order to solve these security problems fundamentally, device 
independent (DI) protocols [Acín, Gisin and Masanes (2006); Scarani, Gisin and Brunner 
(2006); Chang, Xiong, Gao et al. (2018); Umesh and Thomas (2014); Ge, Liu, Xia et al. 
(2019)] have been studied. The device-independent approach to QKD aims to establish a 
secret key between two or more parties with untrusted devices, potentially under full 
control of a quantum adversary.  
On the theoretical side, the security of DIQKD has been proven against increasingly powerful 
eavesdroppers [Acín, Brunner and Gisin (2007); Pironio, Acín, Brunner et al. (2009)] But 
experimental DIQKD still faces many challenges [Mattar, Kolodynski, Skrzypczyk et al. 
(2018)]. The first challenge is the stringent Bell test that requires the whole measurement 
process meets the requirements of Loophole-free Bell Test (LFBT), which makes most of the 
attack schemes invalid. The second challenge is the detection efficiency for observing a Bell 
violation of the CHSH [Clauser, Horne, Shimony et al. (1969)] inequality, which can be as low 
as 2/3 [Eberhard (1993)], while, a DIQKD protocol based on CHSH requires an efficiency of 
90% [Mattar, Kolodynski, Skrzypczyk et al. (2018)]. Many studies have been made to resolve 
the above two problems. The first Bell experiments closing the detection loophole used 
massive particles [Rowe, Kielpinski, Meyer et al. (2001); Matsukevich, Maunz, Moehring et al. 
(2008); Hensen, Bernien, Dreau et al. (2015); Qu, Li, Xu et al. (2019)]. Progress has also 
been made in photo-detection efficiency, which allowed for the first loophole-free photonic 
Bell inequality violations over short distances [Giustina, Mech, Ramelow et al. (2013); 
Lynden, Evan, Bradley et al. (2015)]. 
The performance of a QKD protocol can be quantified by the secret key rate, which can 
be lower-bounded via the violation of an appropriate Bell-inequality in a setup with 
untrusted devices [Holz, Kampermann and Bru (2018)]. However, the rates of key 
distribution they could provide are seriously limited owing to the measurements involved 
that, despite allowing for near unit efficiency, take significant time [Mattar, Kolodynski, 
Skrzypczyk et al. (2018); Alejandro, Jonatan and Antonio (2013)]. Holz et al. [Holz, 
Kampermann and Bru (2018)] studied secret key rates in the device-independent scenario 
for long-distance scheme using quantum repeater setups. Mattar et al. [Mattar, 
Kolodynski, Skrzypczyk et al. (2018)] introduced novel photonic protocols for DIQKD 
exploiting single-photon sources and heralding-type architectures. The use of single-
photon sources for entanglement distribution instead of standard entangled-pair 
generation schemes, provides significant improvements on the attainable key rates 
[Mattar, Kolodynski, Skrzypczyk et al. (2018)]. 
Some novel methods are proposed to reduce the difficulty of security proof of quantum 
cryptography protocol. A framework for graphical security proof is proposed to reprove a 
recent result from DI quantum cryptography: any linear randomness expansion protocol 
can be converted into an unbounded randomness expansion protocol [Breiner, Miller and 
Ross (2018)]. Fine [Fine (1982)] proposed that the following statements about a quantum 
correlation experiment are mutually equivalent. (1) There is a deterministic hidden-
variables model for the experiment. (2) There is one joint distribution for all observables 
of the experiment, returning the experimental probabilities. (3) There are well-defined, 
compatible joint distributions for all pairs and triples of commuting and noncommuting 
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observables. (4) The Bell inequalities hold. Based on Fine et al. [Fine (1982); Acín, Gisin 
and Masanes (2006); Scarani, Gisin and Brunner (2006)] proposed DI QKD protocols 
and proved its security against any individual attack by an adversary only limited by the 
no-signaling condition. 
In this paper, to raise the secure key rate of QKD, a DIQKD protocol is proposed based 
on hyper-entangled states and Bell inequalities. We analyzed the security against any 
individual attack by an adversary only limited by the no-signaling condition. By 
analyzing the secure secret bit, it is proved that, when both the polarization mode and the 
path mode contains entangled-states, the DIQKD protocol gets a better security key rate 
than that distributes common Bell states. 

2 Brief introduction of research methods 
2.1 No-signaling principle 
There are two experimental facts in physics: one is that no signal can carry information 
over the speed of light, the other is that there is a nonlocal correlation which violates the 
Bell inequality. At present, in physics, the principle of quantum mechanics can satisfy the 
above two experimental facts at the same time. However, the principle of quantum 
mechanics is not the only one that satisfies the above two experimental facts at the same 
time. There is a more nonlocal correlation in the no-signaling correlation than in the 
quantum mechanics principle. 
(1) Basic definition 
Suppose the n-party user-Alice, Bob, Charlie, etc., each party has a physical system 
(quantum state) that can be measured with different measurement inputs. xk represents the 
measurement input of the kth party user, and the ak represents the corresponding 
measurement output. Then, 1 1( ,......, | ,......, )n nP a a x x  represent the joint conditional 
probability distribution of the n party users. 1 1( ,......, | ,......, )n nP a a x x  are no-signaling, 
when the marginal probability distribution of each subset 1{ ,......, }k kma a of measurement 
results depend only on its corresponding input, i.e., 1 1( ,......, | ,......, )k km nP a a x x = 

1 1( ,......, | ,......, )k km k kmP a a x x [Masanes, Acin and Gisin (2006)]. The principle of no-
signaling is a basic prerequisite for DI quantum communication. 
(2) The monogamy of nonlocal correlations 
Unlike classical correlations, quantum correlations cannot be shared by many parties. 
This phenomenon is called the monogamy of nonlocal correlations (entanglement). The 
monogamy of nonlocal correlations is a basic characteristic of no-signaling principle. 
The result of Barrett et al. [Barrett, Linden, Massar et al. (2005)] shows that the 
maximum violation of all Bell inequalities consistent with the no-signaling principle can 
be obtained by a unique probability distribution, which has a single matching constraint. 
Let us assume that we have a Bell inequality Ё with the single largest violation of Pmax. If 
Alice and Bob maximum violate this inequality Ё (P (a, b|x, y))=1, then Alice and 
Charlie are completely irrelevant. 
It can also be considered that if a probability distribution violates the Bell class inequality, 
the probability distribution can realize a nonlocal correlation. Because of the singularity 



 
 
 
882                                                                             CMC, vol.65, no.1, pp.879-896, 2020 

of the nonlocal correlation, this probability distribution allows for the distribution of 
secret information that is absolutely secure. Of course, at present, in physics, only the 
probability distribution of entangled states can violate Bell class inequalities. 

2.2 Hyper-entanglement 
Hyper-entanglement is a state simultaneously entangled in multiple degrees of freedom. 
Photons have a variety of quantum degrees of freedom and each degree of freedom can 
define a quantum bit under suitable conditions. Theoretically these different degrees of 
freedom can also form entanglement called hyper-entanglement. A hyper-entangled Bell 
state with polarization and path mode degrees of freedom can be described as: 

1 1( 00 11 ) ( )
2 2AB AB ABPS

ll uu+Φ = + ⊗ +                                                               (1) 

where 0  and 1  denote the horizontal and vertical polarization of the photon 
respectively. Subscript A and B denote two photons in the hyper-entangled state. l and u 
represent different path modes of photons A and B. Subscript P denotes polarization 
degree of freedom and subscript S denotes path mode degree of freedom. An ultraviolet 
light pump pulse passing through a barium borate crystal (BBO) will produce an 
interrelated photonic pair in mode u, and a related pair of photons in mode l when a 
second reflection through the crystal. 

Mirror

BBO

PumplA lB

uBuA

 
Figure 1: Principle diagram of hyper-entangled Bell state source under polarization 
mode and path mode 

A two-photon hyper-entangled Bell quantum system with polarization and path mode 
degrees of freedom has 16 Bell states, which can be expressed as: 

AB PS P S
Γ = Θ ⊗ Ξ                                                                                                        (2) 

where P
Θ  denotes one of the four Bell states with polarization degrees of freedom: 

1 ( 00 11 )
2 ABP

±Ψ = ±                                                                                                 (3) 

1 ( 01 10 )
2 ABP

±Σ = ±                                                                                                  (4) 
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And S
Ξ  denotes one of the four Bell states with path mode degrees of freedom: 

1 ( )
2 ABS

ll uu±Λ = ±                                                                                                   (5) 

1 ( )
2 ABS

lu ul±Ω = ±                                                                                                  (6) 

Two non-orthogonal measurement bases under polarization degrees of freedom can be 
selected as follows: 

{ 0 , 1 }PZ =  and PX =
1{ ( 0 1 )
2P

+ = +
1, ( 0 1 )}
2P

− = − . Two non-orthogonal 

measurement bases under path mode degrees of freedom can be selected as follows: 

{ , }SZ l u=  and 1{ ( )
2

S
S

X l u= + = + , 
S

− =
1 ( )}
2

l u− . 

3 The protocol 
3.1 The CHSH inequality and principle of sharing secret bits. 
Defining CHSH inequality: 

0 0 0 1 1 0 1 1( ) ( ) ( ) ( ) 3CHSHI P a b P a b P a b P a b= = + = + = + ≠ ≤                                              (7) 
where 

( ) ( 0 | , ) ( 0 | , )j kP a b P a b l x j y k P a b u x j y k= = = = = = + = = = =  

( 1 | , ) ( 1 | , )P a b l x j y k P a b u x j y k+ = = = = + = = = =                                                    (8) 

The meaning of violation of inequality 0 0 0 1 1 0( ) ( ) ( )CHSHI P a b P a b P a b= = + = + =  
1 1( ) 3P a b+ ≠ ≤  is that: when the value of x and y is 00, 01 and 10, a equals to b, called 

positive correlation; when the value of x and y is 11, a does not equals to b, called inverse 
correlation. Therefore, if Alice publishes her input value x, Bob can use his input value y 
to determine when the measurement results are positively correlated and when they are 
inversely correlated. In this protocol, Alice and Bob use the above principle to share 
secret bits. 

3.2 Protocol for DIQKD based on hyper-entanglement 
In this section we proposed a DI protocol for QKD using hyper-entangled Bell states. The 
hyper-entangled Bell states can be denoted as: 

1 1( 00 11 ) ( )
2 2AB AB ABPS

ll uu+Φ = + ⊗ +                                                               (9) 

where subscript A and B denote two photons in the hyper-entangled state.  0  and 1  
denote the horizontal and vertical polarization of the photon respectively. l and u 
represent different path modes of photons A and B. Subscript P denotes polarization 
degree of freedom and subscript S denotes path mode degree of freedom. 
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Step 1: Eve prepares some hyper-entangled Bell states AB PS

+Φ , and then distributes each 

particle A to Alice and each particle B to Bob for the next communication.  
Step 2: Alice and Bob test for the hyper-entanglement properties of quantum systems A 
and B. 
Alice randomly selects the measurement inputs x∈{0,1} to measure each particle A, 
where x=0 means { , }SZ l u=  basis measurement first and { 0 , 1 }PZ =  basis 

measurement second, and x=1 means 1{ ( )
2

SX l u= + , 1 ( )}
2

l u−  basis measurement 

first and PX = 1{ ( 0 1 )
2

+ 1, ( 0 1 )}
2

−  basis measurement second. Bob randomly selects 

the measurement inputs y∈{0,1} to measure each particle B, where y=0 means 
( ) 2S SZ X+  basis measurement first and ( ) 2P PZ X+  basis measurement second, and 
y=1 means ( ) 2S SZ X−  basis measurement first and ( ) 2P PZ X−  basis measurement 
second. The measurement results of Alice and Bob are expressed as a and 
b∈{0l,0u,1l,1u} respectively. 
Alice and Bob select some particles computing conditional probabilities ( , | , )P a b x y  and 
determine whether the CHSH inequality is violated or not. If it is violated, the particles 
distributed to Alice and Bob are hyper-entangled, and the greater the violation is, the 
stronger the nonlocal correlation is. 
Step 3: Alice and Bob get shared secret bits. 
Alice publishes her input value x. Bob can use his input value y to determine when the 
measurement results are positively correlated and when they are inversely correlated. If 
Alice publishes her input value x=0, then Alice and Bob know that their output is the 
same (a=b). If Alice publishes her input value x=1, and Bob’s input is y=0, Bob knows 
that his output is the same with Alice (a=b). If Alice publishes her input value x=1, and 
Bob’s input is y=1, then Bob knows that his output is exactly the opposite of that of 
Alice，so Bob flips his bit. Therefore, by reversing the result of the inverse correlation, a 
pair of DI secret key can be shared between Alice and Bob securely. 
Based on one hyper-entangled Bell state, theoretically, Alice and Bob can share two 
secure secret bits (0l, 0u, 1l, or 1u). However, because the maximum violation of CHSH 
inequality is often difficult to reach, the secure key rate is usually unable to achieve the 
theoretical value. 
It should be noted that, according to the monogamy of the nonlocal correlation and no-
signaling principle, if Eve prepares a nonlocal correlation, even if Alice publishes x, Eve 
cannot know y, a, and b. 
Step 4: Classical processing. Alice and Bob use error correction and privacy 
amplification to make the key of Alice and Bob basically the same, while reducing the 
key information known to eavesdroppers to close to zero. 
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4 Security analysis 
In this section, we analyze the security of the DIQKD protocol based on hyper-
entanglement against any individual attack by an adversary only limited by the no-
signaling condition. Firstly, we analyze the eavesdropping strategies of Eve, and propose 
the optimal eavesdropping strategy for Eve. Here, the eavesdropping strategies belong to 
individual attack, and Eve is an adversary only limited by the no-signaling condition. 
Then, we give the formalization of CHSH violation measurement on local correlation, 
which can help us to estimate the amount of information obtained by Eve. Based on the 
monogamy of the nonlocal correlation under no-signaling principle and the formalization 
of CHSH violation measurement on local correlation, we obtain the probability that each 
pair of hyper-entangled particles distributed to Alice and Bob produces a secure secret bit. 
By analyzing the secure secret bit, we prove that, when both the polarization mode and 
the path mode contains entangled-states, the DIQKD protocol gets a better security key 
rate than that distributes common Bell states. 

4.1 Eve’s eavesdropping strategy 
DIQKD has a limitation on Eve, that is, “no-signaling principle”. In order to estimate the 
amount of information obtained by Eve, it is necessary to investigate the eavesdropping 
strategy of Eve. The eavesdropping strategy of Eve should satisfy some kind of “causal 
independence”: the eavesdropping strategy of Eve does not affect the probability of the 
results of Alice and Bob in the “average” sense [Guo, Li, and Peng (2016)]. This 
assumption, commonly referred to as "no-signaling principle", is mathematically 
formulated as follows [Guo, Li, and Peng (2016)]: 

( , , | , , ) ( , | , )
e

P a b e x y z P a b x y=∑ ( )z∀                                                                            (10) 

In the formula: x, y is the measurement choice of Alice and Bob; a, b is the corresponding 
measurement output; z is the eavesdropping strategy of Eve; e is Eve’s information on a 
and b under strategy z. The significance of this formula is that for any eavesdropping 
strategy z of Eve, the sum of the probabilities of eavesdropping results is invariant [Guo, 
Li and Peng (2016)]. 

The individual attack of Eve using the untrusted devices can be the preparation of pseudo 
quantum states or the setting of hidden variables on the measurement devices of Alice 
and Bob. Preparing quantum states with local correlation (non-entangled) can help Eve to 
obtain the outputs of Alice and Bob. However, if only the localized quantum states were 
prepared, ( , | , )P a b x y will be affected, and the CHSH inequality cannot be violated. 
Thus eavesdropping was discovered. To avoid that, Eve must prepare nonlocal 
correlations (entangled states). Therefore, the best strategy for Eve is to prepare mixed 
states of nonlocal correlation and local correlation satisfying 3CHSHI = . As studied in 
Scarani et al. [Scarani, Gisin and Brunner (2006)], a CHSH violation measurement on 
quantum states with local correlation can be reproduced with local hidden variables, 
which produces the same probability distribution. However, the measurement on nonlocal 
correlation cannot be reproduced with shared hidden variables. 
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In the DIQKD protocol, Eve can prepare any state, but if Eve makes quantum states at 
will, the CHSH inequality violation test will not be successful, so the protocol cannot be 
carried out. Therefore, Eve must obtain information on a and b under the constraint 
condition that CHSH inequality violated successfully. Eve can prepare the localized 
quantum states satisfying 3CHSHI =  in addition to the entangled states, where 3CHSHI =  
are the extreme points of CHSH inequality. Eve’s best eavesdropping strategy is to 
prepare mixed states ABρ of the following states: AB PS

+Φ 、 1φ 、 2φ 、 3φ 、 4φ 、

5φ , 6φ , 7φ , 8φ . 

1 2 1 2 2 1
1 2 1 1 2 2 3 3

2 1 1 2 1 2
4 4 5 5 6 6

1 2 1 2
7 7 8 8

(1 ) (1 ) (1 )
2 2 2

(1 ) (1 )(1 ) (1 )(1 )
2 4 4

(1 )(1 ) (1 )(1 )
4 4

AB AB ABPS

p p p p p pp p

p p p p p p

p p p p

ρ φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ

+ + − − −
= Φ Φ + + +

− − − − −
+ + +

− − − −
+ +

          

(11) 

1 1( 00 11 ) ( )
2 2AB AB ABPS

ll uu+Φ = + ⊗ +
                                                           (12) 

1
1 ( 00 11 )
2 AB AB

llφ = + ⊗                                                                                       (13) 

2
1 ( 00 11 )
2 AB AB

uuφ = + ⊗                                                                                     (14) 

3
1 ( ) 00
2 AB AB

ll uuφ = + ⊗                                                                                     (15) 

4
1 ( ) 11
2 AB AB

ll uuφ = + ⊗                                                                                      (16) 

5 00
AB AB

llφ = ⊗                                                                                                         (17) 

6 00
AB AB

uuφ = ⊗                                                                                                       (18) 

7 11
AB AB

llφ = ⊗                                                                                                         (19) 

8 11
AB AB

uuφ = ⊗                                                                                                        (20) 

Here 1p  is the probability of preparing entangled state in polarization mode, and 11 p−  is 
the probability of preparing local correlations (localized quantum states) in polarization 
mode. 2p  is the probability of preparing entangled state in path mode, and is the 
probability of preparing local correlations in path mode. 
Eve does not need to save any quantum states for eavesdropping. When Eve prepares 
hyper-entangled states AB PS

+Φ , even if Alice publishes her measurement inputs, Eve will 
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not know any outputs of both Alice and Bob because of the monogamy of nonlocal 
correlations. When Eve prepares 1φ , 2φ (nonlocal in polarization mode, but local in 
path mode), after Alice announces her measurement input, Eve can obtain Alice’s path 
mode output and partial output of Bob in path mode according to her strategy of 
preparing local states. When Eve prepares 3φ , 4φ ( nonlocal in path mode, but local in 
polarization mode), after Alice announces her measurement input, Eve can obtain Alice’s 
polarization mode output and partial output of Bob in polarization mode. When Eve 
prepares 5φ , 6φ , 7φ , 8φ ( local both in path mode and in polarization mode), after 
Alice announces her measurement input, Eve can obtain Alice’s output and partial output 
of Bob in both modes. Therefore, in Eve’s eavesdropping strategy, Eve does not need to 
save any quantum states. 

4.2 Formalization of CHSH violation measurement on local correlation 
In Eve’s eavesdropping strategy, Eve acquires information by preparing local quantum 
states that satisfy equation 3CHSHI = . To satisfy CHSH violation tests, Eve uses local 
hidden variables to formalize CHSH measurements of local states, which produces the 
same probability distribution. 
In this section, with local hidden variables, we formalize the CHSH violation 
measurement on localized quantum states (measuring localized quantum states in CHSH 
violation bases), which produces the same probability distribution.  
First, let’s review the formalization idea of the Bell-type experiments in Scarani et al.  
[Scarani, Gisin and Brunner (2006)]. Local hidden variables might be hidden in Alice’s 
and Bob’s laboratories, in the devices that Eve has provided to them. The bounded region, 
which contains all probability distributions that can be obtained by shared randomness, 
forms the local polytope. The vertices of the local polytope are the points corresponding 
to deterministic strategies, that is, strategies in which a=a(x) and b=b(y) with probability 
one. If a point, representing a Bell type experiment, lies within the polytope (such as the 
measurement on a local state), then there exists a strategy with shared randomness that 
produces the same probability distribution. On the contrary, if a point lies outside the 
local polytope (such as the measurement on an entangled state), then the experiment 
cannot be reproduced with shared randomness. The local polytope correspond to Bell’s 
inequalities [Scarani, Gisin and Brunner (2006)].  

According to the results of Scarani et al. [Scarani, Gisin and Brunner (2006)], the 
probability distribution ( , | , )P a b x y  of a localized quantum state lies in the local 
polytope and can be reproduced with local hidden variables. 
In the case of binary inputs and outputs, under no-signaling, the local polytope [Acín, 
Gisin and Masanes (2006); Scarani, Gisin and Brunner (2006); Fine (1982)] has eight 
nontrivial facets, which are all equivalent to 3CHSHI ≤ . On each facet lie eight out of the 
sixteen (22×22) deterministic strategies; these are said to give 3CHSHI = . For the hyper-
entangled Bell states, because of the entanglement characteristics of both the polarization 
mode and the path mode, each mode has eight deterministic strategies can give 3CHSHI = , 
which are linearly independent from one another. 
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Under no-signaling principle Barrett et al.  [Barrett, Linden, Massar et al. (2005)], in 
polarization mode, the 8 extreme points of the local correlation can be expressed in the 
following form: 

( ),
1 0: ( )P wL a x w= ; 0 ( )b y w=                                                                                           (21) 

( ),
2 0: ( )P wL a x x w= + ; 0 ( )b y w=                                                                                     (22) 

( ),
3 0: ( )P wL a x w= ; 0 ( )b y y w= +                                                                                     (23) 
( ),
4 0: ( )P wL a x x w= + ; 0 ( ) 1b y y w= + +                                                                          (24) 

In path mode, the 8 extreme points of the local correlation can be expressed in the 
following form: 

( ),
1 1: ( )S vL a x v= ; 1( )b y v=                                                                                              (25) 

( ),
2 1: ( )S vL a x x v= + ; 1( )b y v=                                                                                        (26) 

( ),
3 1: ( )S vL a x v= ; 1( )b y y v= +                                                                                        (27) 
( ),
4 1: ( )S vL a x x v= + ; 1( ) 1b y y v= + +                                                                             (28) 

Here (0,1)w∈ ; ( , )v l u∈ ; 0 1a a a=  and 0 1b b b=  are binary outputs of Alice and Bob 
respectively; (0,1)x∈  and (0,1)y∈  are binary inputs of Alice and Bob respectively. 

Suppose Eve transmits deterministic local correlations ( , )P w
jL  with probability ( , )( )P w

jp L , 

where ( , )
1

,
( ) 1P w

j
w j

p L p= −∑ , j=1,2,3,4.  

Suppose Eve transmits deterministic local correlations ( , )S v
jL  with probability ( , )( )S v

jp L , 

where ( , )
2

,
( ) 1S v

j
v j

p L p= −∑ , j=1,2,3,4.  

4.3 The secure key rate 
In this section, based on the formalization of CHSH violation measurement on local 
correlation, we first analyze the probability distribution of input and output data of Alice, 
Bob, and Eve’s information on a and b, under different eavesdropping strategies of Eve. 
Then, by calculating the qubit error rate of Alice and mutual information between Alice 
and Eve, we obtain the probability that each pair of hyper-entangled particles produces a 
secure secret bit. 
In our protocol, when Alice and Bob randomly select measurement inputs (0,1)x∈  and 

(0,1)y∈  for measurement, Eve has the greatest uncertainty, so the probability that x and 
y take values 0 and 1 is 1/2. 
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Table 1: The probability distribution of a, b and Eve’s information on a and b when Eve 
prepares hyper-entangled states AB PS

+Φ  

0x =  0b l=  0b u=  1b l=  1b u=  

0a l=  ( ??,??)p e =     

0a u=   ( ??,??)p e =    

1a l=    ( ??,??)p e =   

1a u=     ( ??,??)p e =  

Here, ( ??,??)p e = means the probability that Eve does not know Alice’s and Bob’s 
measurement results. 

Table 2: The probability distribution of a, b and Eve’s information on a and b when Eve 
prepares 1φ , 2φ (nonlocal in polarization mode, but local in path mode) 

0x =  0b l=  0b u=  1b l=  1b u=  

0a l=  ( ? ,? )p e l l=  
( ? ,??)p e l=  

( ? ,??)p e l=    

0a u=  ( ? ,??)p e u=  ( ? ,? )p e u u=  
( ? ,??)p e u=  

  

1a l=    ( ? ,? )p e l l=  
( ? ,??)p e l=  

( ? ,??)p e l=  

1a u=    ( ? ,??)p e u=  ( ? ,? )p e u u=  
( ? ,??)p e u=  

Here, ( ? ,? )p e l l= means the probability that Eve knows a1 and b1 of each a and b 
( 0 1a a a=  and 0 1b b b= ); ( ? ,??)p e l= means the probability that Eve only knows a1 of 
each a and b. 

Table 3: The probability distribution of a, b and Eve’s information on a and b when Eve 
prepares 3φ , 4φ ( nonlocal in path mode, but local in polarization mode) 

0x =  0b l=  0b u=  1b l=  1b u=  

0a l=  ( 0?,0?)p e =  
( 0?,??)p e =  

 ( 0?,??)p e =   
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0a u=   ( 0?,0?)p e =  
( 0?,??)p e =  

 ( 0?,??)p e =  

1a l=  ( 1?,??)p e =   ( 1?,1?)p e =  
( 1?,??)p e =  

 

1a u=   ( 1?,??)p e =   ( 1?,1?)p e =  
( 1?,??)p e =  

 
Table 4: The probability distribution of a, b and Eve’s information on a and b when Eve 
prepares 5φ , 6φ , 7φ , 8φ ( local both in path mode and in polarization mode) 

0x =  0b l=  0b u=  1b l=  1b u=  

0a l=  ( 0 ,0 )p e l l=  
( 0 ,??)p e l=  
( 0 ,0?)p e l=  
( 0 ,? )p e l l=  

( 0 ,??)p e l=  
( 0 ,0?)p e l=  

 

( 0 ,? )p e l l=  
( 0 ,??)p e l=  

( 0 ,??)p e l=  

0a u=  ( 0 ,??)p e u=  
( 0 ,0?)p e u=  

( 0 ,0 )p e u u=  
( 0 ,??)p e u=  
( 0 ,0?)p e u=  
( 0 ,? )p e u u=  

( 0 ,??)p e u=  ( 0 ,??)p e u=  
( 0 ,? )p e u u=  

1a l=  ( 1 ,? )p e l l=  
( 1 ,??)p e l=  

( 1 ,??)p e l=  ( 1 ,1 )p e l l=  
( 1 ,??)p e l=  
( 1 ,1?)p e l=  
( 1 ,? )p e l l=  

( 1 ,??)p e l=  
( 1 ,1?)p e l=  

1a u=  ( 1 ,??)p e u=  ( 1 ,??)p e u=  
( 1 ,? )p e u u=  

( 1 ,??)p e u=  
( 1 ,1?)p e u=  

( 1 ,1 )p e u u=  
( 1 ,??)p e u=  
( 1 ,1?)p e u=  
( 1 ,? )p e u u=  

According to Tabs. 1 to 4, the qubit error rate of Alice is obtained: 
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1 1 1 12 ( ? ,??) 2 ( ? ,??) 2 ( 0?,??) 2 ( 1?,??)
2 2 2 2

1 1[ ( 0 ,??) ( 0 ,0?)] [ ( 0 ,? ) ( 0 ,??)] ( 0 ,??)
2 2
1 1[ ( 0 ,??) ( 0 ,0?)] [ ( 0 ,? ) ( 0 ,??)] ( 0 ,??)
2 2
1 [ ( 1 ,??
2

Q p e u p e l p e p e

p e l p e l p e l l p e l p e l

p e u p e u p e u u p e u p e u

p e l

= × = + × = + × = + × =

+ = + = + = + = + =

+ = + = + = + = + =

+ =

1 2

1) ( 1 ,1?)] [ ( 1 ,? ) ( 1 ,??)] ( 1 ,??)
2

1 1[ ( 1 ,??) ( 1 ,1?)] [ ( 1 ,? ) ( 1 ,??)] ( 1 ,??)
2 2
2

8

p e l p e l l p e l p e l

p e u p e u p e u u p e u p e u

p p

+ = + = + = + =

+ = + = + = + = + =

− −
=

              

(29) 

The mutual information between Alice and Eve is:  
1 1 1 1( : ) 2 ( ? ,? ) 2 ( ? ,? ) 2 ( 0?,0?) 2 ( 1?,1?)
2 2 2 2

1 1( 0 ,0 ) 2 ( 0 ,0?) 2 ( 0 ,? )
2 2
1 1( 0 ,0 ) 2 ( 0 ,0?) 2 ( 0 ,? )
2 2

1 1( 1 ,1 ) 2 ( 1 ,1?) 2 ( 1 ,? )
2 2

( 1 ,1 )

I A E p e l l p e u u p e p e

p e l l p e l p e l l

p e u u p e u p e u u

p e l l p e l p e l l

p e u u

= × = + × = + × = + × =

+ = + × = + × =

+ = + × = + × =

+ = + × = + × =

+ =

1 2

1 12 ( 1 ,1?) 2 ( 1 ,? )
2 2

2
4

p e u p e u u

p p

+ × = + × =

− −
=

     

(30) 

The probability that each qubit produces a secure secret bit is: 

( )1 2
0 1 2

2 1( : ) ( : ) 1 ( ) 2
8 4

p pr I A B I A E h p p− −
≥ − = − − − −                                   (31) 

Each pair of hyper-entangled particles distributed to Alice and Bob, allows Alice and Bob 
to share two qubits (polarization mode and path mode), respectively, so, the probability 
that each pair of hyper-entangled particles produces a secure secret bit is: 

( )1 2
1 2

2 12[1 ( ) 2 ]
8 4

p pr h p p− −
≥ − − − −                                                                    (32) 

When 1 2p p p= = , 

11 2 ( )
4

pr h p−
≥ − +                                                                                                      (33) 

When 1 0p = , 2p p= , or  2 0p = , 1p p=  
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21 2 ( )
8 2

p pr h −′ ≥ − +
                                                                                                   

(34) 

As studied in Acín et al. [Acín, Gisin and Masanes (2006)], the common Bell states 
distributed to Alice and Bob, allows Alice and Bob to share only one qubit, respectively, 
so, the probability that each pair of common Bell states particles produces a secure secret 
bit is: 

( )1 11 1 ( ) 1
4 2

pr h p−
≥ − − −                                                                                           (35) 

Obviously, If Eve prepares hyper-entangled states AB PS

+Φ (that is 1 2 1p p p= = = ), 

because of the monogamy of nonlocal correlations, Alice and Bob can share two secure 
secret bits for each distribution of a pair of hyper-entangled particles. If Eve prepares the 
mixed state of  AB PS

+Φ , 1φ , 2φ , 3φ , 4φ , 5φ , 6φ , 7φ and 8φ (that is 

1 20.32 1p p p< = = < ), Alice and Bob always get a better security key rate than 1r . 
Moreover, with the increase of p, the advantage becomes more obvious. If Eve prepares 
the mixed state of 1φ and 2φ (that is 2 0p = , 1 1p p= = ), or the mixed state of 

3φ and 4φ (that is 1 0p = , 2 1p p= = ), Alice and Bob get a positive secure key rate 
0.41. If Eve prepares the mixed state of 1φ , 2φ , 5φ , 6φ , 7φ and 8φ , or the mixed 
state of 3φ , 4φ , 5φ , 6φ , 7φ and 8φ , when 0.63p > , Alice and Bob can get a 
positive secure key rate less than 0.41. 

 
Figure 2: The secure key rate comparison between DIQKD based on hyper-entangled 
states and common Bell states 

5 Conclusion 
In the actual QKD protocol, eavesdroppers may use the imperfectness of devices to obtain 
the distributed secret key. Therefore, the secure key rate of QKD is greatly reduced. To raise 
the secure key rate of QKD, DIQKD protocol should be considered based on hyper-
entangled states and Bell inequalities and the eavesdropper should be given a more powerful 
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eavesdropping capability without violating the principle of no-signaling in the security 
analysis. By analyzing, the secure key rate based on hyper-entangled states is found 
improved obviously, comparing with the similar DIQKD scheme based on Bell states. 
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Appendix 
 

1 2( ??,??)
4

p pp e = =
                                                                                                        (36) 

( , ) ( , )1
1 2( ? ,? ) ( ) ( )

2
S l S lpp e l l p L p L = = +                                                                             (37) 

( , ) ( , )
31 4( ) ( )( ? ,??)

2 2 2

S l S lp Lp p Lp e l
 

= = + 
 

                                                                          (38) 

( , ) ( , )1
1 2( ? ,? ) ( ) ( )

2
S u S upp e u u p L p L = = +                                                                           (39) 

( , ) ( , )
31 4( ) ( )( ? ,??)

2 2 2

S u S up Lp p Lp e u
 

= = + 
 

                                                                        (40) 

( ,0) ( ,0)2
1 2( 0?,0?) ( ) ( )

2
P Ppp e p L p L = = +                                                                           (41)        

( ,0) ( ,0)
32 4( ) ( )( 0?,??)

2 2 2

P Pp Lp p Lp e
 

= = + 
 

                                                                        (42) 

( ,1) ( ,1)2
1 2( 1?,1?) ( ) ( )

2
P Ppp e p L p L = = +                                                                             (43) 

( ,1) ( ,1)
32 4( ) ( )( 1?,??)

2 2 2

P Pp Lp p Lp e
 

= = + 
 

                                                                         (44) 

( ,0) ( ,0) ( , ) ( , )
1 2 1 2( 0 ,0 ) ( ) ( ) ( ) ( )P P S l S lp e l l p L p L p L p L   = = + +                                                  (45) 
( ,0) ( , )( ,0) ( , )
3 34 4( ) ( )( ) ( )( 0 ,??)
2 2 2 2

P S lP S lp L p Lp L p Lp e l
   

= = + +   
   

                                           (46) 



 
 
 
896                                                                             CMC, vol.65, no.1, pp.879-896, 2020 

( , ) ( , )
( ,0) ( ,0) 3 4
1 2

( ) ( )( 0 ,0?) ( ) ( )
2 2

S l S l
P P p L p Lp e l p L p L

 
 = = + +  

 
                                            (47) 

( ,0) ( ,0)
( , ) ( , )3 4
1 2

( ) ( )( 0 ,? ) ( ) ( )
2 2

P P
S l S lp L p Lp e l l p L p L

 
 = = + +   

 
                                             (48) 

( ,1) ( ,1) ( , ) ( , )
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( ,1) ( , )( ,1) ( , )
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2 2 2 2
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For all j, w and v, ( , )P w
jL is linearly independent in polarization mode, 

therefore ( , ) 11( )
8

P w
j

pp L −
= , j=1,2,3,4, w=0, 1; ( , )S v

jL is linearly independent in path mode, 

therefore ( , ) 21( )
8

S v
j

pp L −
= , j=1,2,3,4, v=l, u. 
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