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Abstract: Stance detection is the task of attitude identification toward a standpoint. Previous 
work of stance detection has focused on feature extraction but ignored the fact that irrelevant 
features exist as noise during higher-level abstracting. Moreover, because the target is not 
always mentioned in the text, most methods have ignored target information. In order to 
solve these problems, we propose a neural network ensemble method that combines the 
timing dependence bases on long short-term memory (LSTM) and the excellent extracting 
performance of convolutional neural networks (CNNs). The method can obtain multi-level 
features that consider both local and global features. We also introduce attention mechanisms 
to magnify target information-related features. Furthermore, we employ sparse coding to 
remove noise to obtain characteristic features. Performance was improved by using sparse 
coding on the basis of attention employment and feature extraction. We evaluate our 
approach on the SemEval-2016Task 6-A public dataset, achieving a performance that 
exceeds the benchmark and those of participating teams. 
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1 Introduction 
Stance detection is the task of automatic judgment of the attitude expressed in a text 
toward a specific target. Stance detection is similar to traditional emotional analysis, but 
there are also noticeable differences. Both of them use rules, machine learning, deep 
learning, and other methods to analyze and classify subjective text. The difference is that 
emotional analysis determines whether the author expresses a positive, negative, or 
neutral emotion, while stance detection aims to judge whether the author is in favor or 
against the given target. The same stance may contain different emotional states. 
The classification of stance is a target-dependent sentiment classification problem. 
Although the text contains the emotional state of the author, some studies have proved 
that single emotional tendencies cannot express the author’s exact stance [Mohammad, 
Sobhani and Kiritchenko (2017)]. Stance detection is based on sentiment analysis to 
further analyze the stance tendency of text related to the given target. Therefore, stance 
mining is used to distinguish the real stance of each party involved and has important 
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theoretical and practical significance in many fields such as elections, public social 
opinion, and product surveys. Recently, stance detection has been applied to fields such 
as rumor detection and fake news detection [Bourgonje, Schneider and Rehm (2017); 
Mohtarami, Baly, Glass et al. (2018); Li, Hu, Lu et al. (2020)]. 
Stance detection is a challenging task because the texts that express the subject points are 
diverse. The challenges of stance detection in social media are more complicated; this is 
especially seen in tweets, which are short and informal user-generated text that usually 
do not follow syntax rules and contain a large number of abbreviations. Moreover, 
sometimes the tweet stance may be toward a target that is not mentioned in the tweet. 
In recent years, most of the related works of short text stance detection have explored 
machine learning and deep learning models in their methods. We propose a neural 
network ensemble method to solve the problems of non-standardization, text implication, 
and satirical recognition of short texts in social media such as tweets. This method can 
consider local features and global features. First, we employ different kernel sizes of 
convolutional neural networks (CNNs) to extract local features of different levels. Then, 
we put the local features into bidirectional long short-term memory (Bi-LSTM) to get the 
global features that are time-dependent. Finally, we obtain the multi-level features with 
the concatenation of global features. We also employ an attention mechanism to magnify 
target-related information and use sparse coding to remove noise. We experiment on a 
public dataset to verify the validity of the method. The performance is improved 
compared with the baseline methods, which shows the effectiveness of the target 
attention matrix. The method also effectively avoids the problem of incomplete 
consideration of global and local features. Furthermore, the use of sparse coding results 
in an improvement of 1.8% over the ensemble model based on the attention matrix. 

2 Related works 
Initially, stance detection was applied to debates and parliamentary elections [Sobhani, 
Mohammad and Kiritchenko (2016); Anand, Walker, Abbott et al. (2011); Rajadesingan 
and Liu (2014)]. With the popularity of social networks, stance detection has been 
applied to short texts on social media regarding parliamentary debates and elections, 
with the goal of finding the stances users take on hot topics. Therefore, stance detection 
receives widespread attention and extensive applications, such in as public opinion 
surveys and hot topic analysis. 
Stance detection was derived from the task of sentiment analysis, which also belongs to the 
study of sentence classification. As a text classification task, stance detection was first 
formally proposed in SemeEval-2016 [Mohammad, Kiritchenko, Sobhani et al. (2016)]. 
NLPCC2016 [Xu, Zhou, Wu et al. (2016)] proposed a similar task on a Chinese dataset. 
The best baseline method trains five support vector machine (SVM) classifiers for the 
corresponding target with the characteristics of n-grams at the word-level and 
character-level, and then uses five-fold cross-validation and adjusts the parameters. Using 
the improved n-gram feature can significantly improve the average F-score. Training a 
separate classifier for each target is better than training a single classifier for all targets. 
Early stance detection was based on feature engineering. A direct method to solve the 
stance detection problem involves manually designing a target-related feature set and 
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integrating these features into feature-based classifiers such as the SVM and K-nearest 
Neighbors [Xu, Zheng, Shi et al. (2016)]. However, these methods require a lot of 
feature engineering to extract language features manually, and the sparse, discrete 
features are few. With the increasing amount of text to be processed, the cost of manual 
extraction of features became too high, and therefore researchers started to apply the 
deep learning method. Augenstein et al. [Augenstein, Rocktäschel, Vlachos et al. (2016)] 
experimented with conditional LSTM encoding, which is dependent on the target. They 
improved the performance with bidirectional encoding. Zarrella et al. [Zarrella and 
Marsh (2016)] used two recurrent neural network (RNN) classifiers: the first one was 
employed to predict task-related targets on a substantial unmarked Twitter corpus and 
initialize the second RNN classifier. However, this method requires a lot of external data 
for training parameters, which are very dependent on external data. Vijayaraghavan et al. 
[Vijayaraghavan, Sysoev, Vosoughi et al. (2016)] studied a character-level CNN and 
word-level CNN to analyze the stance in tweets. However, this method requires separate 
verification of the sub-models for different targets of the dataset, and there are 
disadvantages in migration. Later, ensemble models began to be employed since they can 
combine the merits of the different neural networks [Ren, Zhang and Suganthan (2016)]. 
Vychegzhanin et al. [Vychegzhanin and Kotelnikov (2019)] proposed an ensemble 
model based on a cross-validation procedure to evaluate the effectiveness of each 
combination and select the optimal combination. Meanwhile, Siddiqua et al. [Siddiqua, 
Chy and Aono (2019)] combined multi-CNNs and two LSTM variants. These two 
methods outperformed the best approach of SemEval-2016. 
In recent years, methods based on the combination of attention and deep learning have 
achieved excellent results in text classification [Liu, Yang, Lv et al. (2019); Xie, Hou, 
Wang et al. (2020)]. The combination makes the text feature extraction pertinent. 
Because each word in a sentence has different importance, the attention mechanism can 
focus on different relevant information in the text. Yang et al. and Chen et al. [Yang, 
Yang, Dyer et al. (2016); Chen, Sun, Tu et al. (2016)] used the attention mechanism to 
extract words that express essential information for the sentence and weigh the words to 
obtain the sentence vector. The experimental results indicate the effectiveness of 
applying the attention mechanism to text classification. Dey et al. [Dey, Shrivastava and 
Kaushik (2018)] proposed a two-phase LSTM-based model with attention embedding: 
the first phase classifies the tweets into neutral and non-neutral, while the second phase 
classifies the non-neutral tweets into favor and against stances. Sobhani et al. [Sobhani, 
Inkpen and Zhu (2019)] proposed an attention-based encoder-decoder framework, and 
employed different RNN models to solve the potential dependency among targets. Lastly, 
Wang et al. [Wang, Sun, Li et al. (2020)] proposed a hierarchical network with an 
attention mechanism to learn the mutual attention between document and linguistic 
information. The employment of attention measures the importance of different 
linguistic features. 
Recently, researchers have studied user-level stance detection [Darwish, Stefanov, 
Michaël et al. (2019); Zhu, He and Zhou (2020)]. Darwish et al. propose that if multiple 
users forward the same controversial topic, then these users are likely to have the same 
stances. This method is employed to improve the stance detection performance at the 
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user level. However, in many situations, it is not straightforward to obtain related 
information at the user level, such as in forwarding. In this case, text-based stance 
detection is more effective. 
Different from previous studies, we propose an ensemble model based on attention and 
sparse coding. We not only focus on the target-related information but also integrate local 
features and global features in feature extraction. Furthermore, we employ sparse coding to 
remove irrelevant features and noise because the features are sparse in the stance text of 
social media posts and the high-dimensional abstract features contain noise. 

3 Methodology 
In this section, we propose a method for stance detection in the social network by 
building a new neural ensemble model based on sparse coding and an attention 
mechanism. The method consists of three components. First, we employ LSTM to 
generate an attention matrix. Then, we use different convolution filters to extract features 
of different levels and separately input these features into Bi-LSTM to obtain the 
multi-level features, which contain word meanings and the sentence’s meaning. 
Furthermore, we employ sparse coding to remove the noise and put characteristic 
features into softmax for classification. 

3.1 Generating an attention matrix based on LSTM 
Since stance detection is a target-related task, considering more information about the 
target can improve detection accuracy. In this work, we utilize the time-dependent ability 
of LSTM [Hochreiter and Schmidhuber (1997)] to learn information about the target. 
Furthermore, we generate an attention matrix as a weight matrix through target 
information learning. The weight matrix is a coefficient of vector stance text and makes 
each word focus on target-related information. 
First, we obtain word embedding wL ( ||VRL k

w ×∈ ) of each target. Here, k is the dimension 
of the word vector, and |V|  is the size of the word vector. Then, we feed target vectors into 
LSTM and select the last state representation as the word embedding expression of the target 
information after calculating the implicit representation of each position. 
In the transmission, the sequence }...,,{ 21 Twww  is stance description information. The 
initial state is 0, h is the implicit output, and g is the implicit unit state. Moving from the 
previous state to the next state is expressed as follows: 

0],[ 00 =gh                                                            (1) 

),,(],[ 00111 chwLSTMgh =                                               (2) 
... 

),,(],[ 11 −−= TTTTT chwLSTMch                                            (3) 
Finally, we generate an attention matrix α  with a weight matrix of stance text, α  is 
shown in Eq. (4). 

)]([ 21
d

n R...α,αα ∈= αα                                                (4) 
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where d is the dimension of the vector, n is the maximum target length, and )...2,1( nii ∈α  is 
the weight of each target word. 

3.2 Combining different sizes of CNNs with Bi-LSTM 
In this section, we describe an ensemble model to obtain the multi-level features through 
combining different sizes of CNNs and Bi-LSTM. We employed convolution kernels of 
different sizes to extract features. Because the CNN has excellent feature extraction 
ability, and different filters have different sensitivities, the CNN can capture different 
features [Kim (2014)]. In this work, we feed different features into Bi-LSTM to obtain 
the global features, which include the local features. Then, we can obtain a higher-level 
global feature that concatenates different levels of global features. In the following, we 
describe the specific details of the different sizes of CNNs and Bi-LSTM in our model. 
The purpose of convolution is to extract abstract expressions from the text. First, the 
word vector is fed into the convolution layer. The word vector matrix is the target-related 
vector matrix, which is the dot product of the pre-trained text and the attention matrix H. 
H is shown in Eq. (5). 

XH ⋅=α                                                             (5) 
where α is an attention matrix; X is the words matrix with maximum length n. X is shown 
in Eq. (6). 

)](...,[ )...2,1(21
k

niin RxxxxX ∈= ∈                                             (6) 

where )...2,1( niix ∈  is the k-dimensional vector of the word in the sentence. 

Then, we extract abstract features in H by utilizing different filter sizes. Here, we control 
the feature abstraction through the filter size and recalculate when the matrix H is 
invariant. Generally, in the single convolution filter, ⊙ is used to represent the 
convolution operation between the matrix H and the filter F, that is, the abstract feature Y 
is defined as in Eq. (7). 

∑= jFY (j ⊙ )]1:[:, −+miiH                                                   (7) 

where j is the filter size, and ]1:[:, −+miiH  is the matrix segment. To obtain the simplified 
expression of the lower dimension, we use maximum pooling to reduce the dimension. 
The equation is shown in Eq. (8). 

)(j LjYMaxC ∈=                                                         (8) 
where L is the collection of different filter sizes. 
After extracting local features, we input these features into Bi-LSTM. The forward 
direction of Bi-LSTM can focus on past information, and the backward direction can 
focus on future information. In the single transmission, a forward map transfer from a 
previous state to a subsequent state is performed as described in 3.1. 
Therefore, output vectors in two directions are generated, and the final bidirectional output 
d is the sequential connection of the forward hl and backward hr, as shown in Eq. (9). 

),( w1
rlrl Rhhhhd ×∈⊕=                                                 (9) 
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Here, w is the number of hidden units. 
Eventually, we fuse the different levels of feature abstraction, as shown in Eq. (10). 

jdddD ⊕⊕= ...21                                                     (10) 

where D is an abstract feature with multi-level stance information. 

3.3 Applying sparse coding 
We employ sparse coding to remove noise during feature extraction. The implementation 
of sparse coding does not depend on the nature of the input data but rather the statistical 
characteristics of the natural environment. Sparse coding aims to reconstruct data with a 
few components. Feature extraction mostly contains redundant components in the 
original model, i.e., noise, which has a specific influence on the study. Furthermore, the 
features of short social media texts always contain some noise. In this study, we obtain 
high-relevance features through the application of sparse coding, that is, the significant 
features of the stance text. 
Using sparse coding satisfies condition Eq. (11). 

),(
1

Rknax
K

k
knkn ∈=∑

=

φ                                                 (11) 

where xn is a set of given vectors, and kφ  is a dictionary of bases. The sparse coding 
training process is shown in Eq. (12). 
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sparsity penalty, where λ  is a constant, and || ,kna  is the L1-norm regularization on 
0)( ,, ≥knkn aa . 

Sparse coding can be completed by optimizing the former part of Eq. (12) because the 
coefficient vector is sparser and the value of the objective equation is smaller. Thus far, 
in the process of optimization, the coefficient vector can develop in a sparser direction. 

4 Experiment 
We evaluated the proposed method for stance detection by conducting experiments. 

4.1 Dataset collection and preparation 
We chose a public tweets dataset used in the SemEval-2016Task 6-A (Mohammad et al. 
[Mohammad, Kiritchenko, Sobhani et al. (2016)]) to conduct our experiments. The training 
set consists of 2914 tweets, and the test set consists of 1249 tweets relevant to five targets: 
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“Atheism,” “Climate Change is a Real Concern” (“Climate”), “Feminist Movement” 
(“Feminist”), “Hillary Clinton” (“Hillary”), and “Legalization of Abortion” (“Abortion”). 
Each tweet was annotated as Favor, Against, or None toward the specific target. Specific 
data statistics are reported in Tab. 1. 

Table 1: Distribution of instances in the stance training and test sets (the total number of 
training and test tweets are shown in bold) 
  % of instances in training set % of instances in test set 
Target #total #train favor against neither #test favor against neither 
Hillary Clinton 984 689 17.1 57.0 25.8 295 15.3 58.3 26.4 
Feminist Movement 949 664 31.6 49.4 19.0 285 20.4 64.2 15.4 
Legal Abortion 933 653 18.5 54.4 27.1 280 16.4 67.5 16.1 
Atheism 733 513 17.9 59.3 22.8 220 14.5 72.7 12.7 
Climate Change  564 395 53.7 3.8 42.5 169 72.8 6.5 20.7 
All 4163 2914 25.8 47.9 26.3 1249 24.3 57.3 18.4 

Apart from tweets that express an opinion toward the target, the dataset also includes 
tweets in which the target of opinion is not directly given. On the SemEval2016 website, 
an interactive visualization of the stance dataset shows various statistics about the data, 
including the target of opinion annotations. The stance dataset divided opinion toward 
the target, other, and no opinion. We collect statistics of the instances of opinion toward 
the stance labels. Whether the opinion is expressed directly about a given target is shown 
in Tab. 2. 

Table 2: Distribution of instances in the opinion toward (opinion’s relevance about the 
given target is shown in bold) 

 Opinion Toward 
Stance Target Other No Opinion 
FAVOR 94.23% 5.11% 0.66% 
AGAINST 72.75% 26.54% 0.71% 
NEITHER 0.90% 79.52% 19.58% 
ALL 36.18% 58.81% 5.01% 

We prepared the text by removing irrelevant symbols and performing case conversion. 
There are a lot of consecutive texts such as “WhyInotVotingForHillary,” which is 
rewritten using regular expressions and processed as "why I not voting for Hillary." 

4.2 Experimental settings 
During preprocessing, the 150-dimensional word2vec model was trained on the dataset 
in the embedding layer. The maximum length of the text after preprocessing was 30. 
A 30×150-dimensional attention matrix was generated through 30 LSTM neurons. The 
activation function of LSTM was tanh. 
We then employed four kernel sizes (2, 3, 4, 5) to extract local features. the number of 
filters was 32. Then, we spliced the local features as a higher-level feature. In the 
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convolution layer, we used the ReLU activation function, selected the maximum pooling, 
and used a dropout size of 0.2 to avoid over-fitting. The activation function of Bi-LSTM 
was tanh. 
L1 regularization with 10e-5 was applied to the sparse coding. L2 regularization with 
10e-6 was applied to avoid over-fitting in the Dense layer. The learning rate was 0.01. 
We used the mean F1 score as the evaluation index. Parameter statistics are shown in 
Tab. 3. 

Table 3: Parameters of our model 

Parameter Value 
Word embedding size 
LSTM neurons 
Bi-LSTM neurons 
kernel sizes 
filters number 
dropout 
learning rate 

150 
30 
64 
2, 3, 4, 5 
32 
0.2 
0.01 

L1-norm 1.00E-05 
L2-norm 1.00E-06 

4.3 Results and discussion 
In Tab. 4, the results of our proposed method are compared to those of the benchmark 
methods SVM-unigrams and SVM-grams [Mohammad, Kiritchenko, Sobhani et al. (2016)] 
and to those of the top-three participating teams, MITRE [Zarrella and Marsh (2016)], 
pkudblab [Wei, Zhang, Liu et al. (2016)], and Takelab [Tutek, Sekulić, Gombar et al. (2016)]. 
A-ensemble is an ensemble method based on attention, and AS-ensemble is an ensemble 
method based on attention and sparse coding. A-ensemble obtained a better result, while 
AS-ensemble had the best performance and could surpass the baseline. Moreover, utilizing 
sparse coding led to a 1.8% improvement over A-ensemble. 
The results of the experiment demonstrate that our proposed method has the following 
advantages. First, our approach minimizes the steps of linguistic processing, and use nothing 
of the external corpus. Previous methods mainly rely on linguistic processing or external 
lexicons, which increases the number of processing tasks and the possibility of error due to 
interference from external data. Second, we consider target information in the application of 
the attention matrix. The attention matrix serves as the weight matrix of the text, and 
concerns the target-related information. Third, we obtain multi-level features by the 
extraction of local features and global features. Through comparison with other methods, we 
found that the performance of SVM-ngrams is much higher than the performance of 
SVM-unigrams; this demonstrates that employing higher-order n-grams features is much 
better than using unigrams features. It also illustrates that the extraction performance of the 
multi-kernel CNN is better than that of the single-kernel CNN. Furthermore, we optimize the 
performance of stance detection through sparse coding. Sparse coding can remove noise by 
utilizing the statistical characteristics of the natural environment. 
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We found that the extraction performance of the against stance is better than that of the 
favor stance. This may be because the number of tweets toward against is more than that 
toward favor. Furthermore, the baseline training of a separate classifier for each target is 
better than training a single classifier for all targets, and thus the best baseline method 
has higher performance than the methods of participating teams. Training separate 
classifiers for overall targets is likely to more easily balance ‘favor’ and ‘against’ than 
only one classifier. The best experimental result of our method is better than that of the 
best baseline method. However, we found that the improvement toward against is better 
than that toward favor. We consider that the reason for this may be that the percentage of 
target-related tweets toward favor is higher than those against. According to Tab. 2, 
94.23% of target-related tweets are toward favor while 72.75% are against. Because the 
opinion toward others also has a stance, the employment of the attention matrix makes 
target-unrelated tweets concern the target. Therefore, the higher the proportion of other 
opinions, is more significant the improvement. Tab. 2 shows that 5.11% of other 
opinions are toward favor while 26.54% are against. Another reason for this may be that 
the sparse coding is randomly sparse, and the number of tweets with against stances is 
higher than that with favor stances. Thus, the effect of removing noise from the against 
stance is more stable than for the favor stance. 

Table 4: Results of different methods (the highest scores in each column are shown in bold) 

Method Ffavor Fagainst Favg 
Baselines    
  SVM-unigrams 54.49 72.13 63.31 
  SVM-ngrams 62.98 74.98 68.98 
Participating Teams    
  MITRE 59.32 76.33 67.82 
  pkudblab 61.98 72.67 67.33 
  Takelab 60.93 72.73 66.83 
We propose    
  A-ensemble 56.8 77.9 67.95 
  AS-ensemble 59.2 79.2 69.20 

5 Conclusion 
This paper showed that the ensemble model based on attention and sparse coding is a 
successful approach to stance detection. The target attention matrix concerns 
target-related information, and sparse coding can remove the noise of features. When 
applying both an attention mechanism and sparse coding, our method surpasses the 
baseline method on the SemEval-2016Task 6-A Twitter Stance Detection corpus. Our 
future work will focus on methods of extracting characteristic features from multiple 
targets and fake news detection based on stance detection. 
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