
Computers, Materials & Continua                            CMC, vol.65, no.1, pp.653-681, 2020 

CMC. doi:10.32604/cmc.2020.011264                                                         www.techscience.com/journal/cmc 

 
 

Deep Learning-Based Intrusion System for Vehicular Ad Hoc 
Networks 

 
Fei Li1, *, Jiayan Zhang1, Edward Szczerbicki2, Jiaqi Song 1, Ruxiang Li 1 and 

Renhong Diao1 
 
 

Abstract: The increasing use of the Internet with vehicles has made travel more 
convenient. However, hackers can attack intelligent vehicles through various technical 
loopholes, resulting in a range of security issues. Due to these security issues, the safety 
protection technology of the in-vehicle system has become a focus of research. Using the 
advanced autoencoder network and recurrent neural network in deep learning, we 
investigated the intrusion detection system based on the in-vehicle system. We combined 
two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the 
detection of intrusive behavior. In order to verify the accuracy and efficiency of the 
proposed model, it was evaluated using real vehicle data. The experimental results show 
that the combination of the two technologies can effectively and accurately identify 
abnormal boundary behavior. The parameters of the model are self-iteratively updated 
using the time-based back propagation algorithm. We verified that the model proposed in 
this study can reach a nearly 96% accurate detection rate. 
 
Keywords: Internet of vehicles, safety protection technology, intrusion detection system, 
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1 Introduction  
In recent years, intelligent vehicles, a fusion of Internet technology and the machinery 
manufacturing industry, have resulted in the development of comprehensive information 
services for travel and daily commutes [Unluturk, Oguz and Atay (2015); Contreras-
Castillo, Zeadally and Guerrero-Ibañez (2017)]. Whether intelligent network vehicles can 
achieve a high security and complete availability of their information is crucial for the 
development of intelligent vehicles. Historically, the computer systems in cars have been 
isolated from the outside world, and so the safety of these systems has been ignored. 
However, in recent years, hackers have proven that cars that utilize networked computing 
platforms can be compromised [Sedjelmaci, Senouci and Abu-Rgheff (2014); Li and 
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Yang (2015); Tariq (2019)]. Compared with other network devices with a high storage 
capacity and computing power, the automobile is more vulnerable to network attacks due 
to its limited storage and computing power [Taylor, Leblanc and Japkowicz (2016)]. The 
frequent occurrence of automobile safety problems has made people realize the 
importance of automobile safety protection [Feng, He, Li et al. (2017); Miller and 
Valasek (2015); Checkoway, McCoy, Kantor et al. (2011)]. 
The earliest attacks on vehicles through the On-Board Diagnostics-II (OBD-II) port were 
only possible if the OBD-II connector was directly connected to a laptop, so it was 
difficult to carry out continuous attacks on different types of vehicles [Han, Kwak and 
Kim (2018)]. In recent years, with the development of computer technology, new 
encryption dog applications via the OBD-II connection have appeared on the market at an 
affordable price, and these applications can be applied to various kinds of vehicles, 
regardless of the car’s manufacturer, model, or release year [Bernardini, Asghar and 
Crispo (2017)]. The malicious hackers who use these applications pose a threat to the 
lives of car owners, passengers, and pedestrians. Along with the development of 
intelligent connected vehicles, the emergence of automobile safety problems has made 
people realize the importance of automobile safety protection. 
In order to ensure vehicle safety, a variety of network security technologies using 
artificial intelligence have been deployed [Samad, Alam, Mohammed et al. (2018)]. On 
the Internet, the first security defense system is commonly firewalls. They are deployed 
between the internal network and external network according to specific rules to filter the 
packet flow. Other types of security protection methods, such as identity authentication, 
Public Key Infrastructure (PKI) system, and other encryption methods, can achieve a 
better defense effect in a specific network environment. However, in the face of complex 
communication scenarios, such as automobiles or processing the data frames with unique 
characteristics, it is difficult for these traditional network security technologies to be able 
to be directly deployed on the vehicle [Woo, Jo and Lee (2014)]. As a mainstream 
network security technology, intrusion detection technology also faces many problems 
encountered by traditional methods. In recent years, many scholars have advanced a large 
number of real-time intrusion detection systems based on specific behavior rules or 
statistical models based on the users’ behavior. However, it is challenging to apply these 
intrusion detection models to vehicles. The reasons are as follows: (1) Vehicles have 
limited computing resources and storage resources, and cannot complete the monitoring 
and analysis of activities. Therefore, the effective allocation of computing and storage 
resources for the vehicle intrusion detection system is a problem. (2) The topological 
communication environment of a vehicle is complex, and driving is affected by many 
subjective and objective factors, such as weather. Since the initial IDS model did not 
consider the data associated with these factors at the beginning of the design, many IDS 
models proposed in the existing research cannot be directly or well applied to cars. (3) 
The existing intrusion detection models always have a high false alarm rate. Due to the 
complexity of a vehicle’s communication topology, the existing IDS model easily 
produces a high false alarm rate in the face of an abnormal environment. For example, if 
a normally driving car suddenly encounters heavy rain or large-scale traffic congestion, 
the packet loss rate will rise rapidly because the data on the Control Area Network 
(CAN) bus cannot be sent to the destination address in time. At this time, the IDS-model-
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based anomaly will predict this situation as abnormal behavior, so that IDS will produce 
a high false alarm rate. Therefore, we must consider the following factors when designing 
an IDS model for automobiles: (1) The designed IDS model can achieve a lower 
communication load and consume less storage space when deployed on platforms with 
limited computing and storage resources. It can adapt to the characteristics of a strong 
dynamic topology and high real-time processing power in automobile communications. 
(2) It is necessary to consider the complex communication topology of the vehicle. For 
example, when the vehicle encounters non-malicious abnormal behavior, it should realize 
this behavior and categorize it correctly through autonomous learning. (3) For the known 
types of attacks, we can achieve a higher alarm rate. While in the face of non-malicious 
abnormal behavior, we can identify the behavior through learning independently to 
achieve a lower false alarm rate. 
We needed to solve the problems related to the existing IDS, which only performs 
efficient detection for specific types of attacks [Tyagi and Dembla (2014); Sun, Yan, 
Zhang et al. (2015)], and improve the detection efficiency of the IDS on the vehicle 
system. This study presents a new IDS model based on an in-vehicle system using an 
advanced autoencoder and recurrent neural network in deep learning. Because of the 
limited computing and storage capacity of the vehicle system and the need to avoid the 
running burden on the vehicle system, it is not suitable to use higher dimensional data in 
vehicle information systems. We used an advanced autoencoder network and the 
corresponding sparse term constraints to reduce the dimension of the data on the CAN 
bus. The advanced autoencoder can learn other data representations at a high dimension 
by supervised learning. The data, after performing the dimension reduction using the 
advanced autoencoder network, contain all the information so that it can be regarded as 
data with the noise removed. We used the matrix operation and activation functions to 
complete the data recovery. The data processed by the advanced autoencoder not only do 
not result in the loss of useful information but also eliminates the invalid noise of the data 
so that the data can be sent to the classifier in a lower dimension for learning after being 
processed, reducing the cost of the model training inference and storage, and 
correspondingly improving the performance of the model [Li (2019)]. We took into 
consideration the poor performance of the embedded hardware in a vehicle system and 
maximized the use of the vehicle terminal hardware resources; we used the recurrent 
neural network combined with the SoftMax classifier to achieve the classification of the 
feature data. This method ensures a shorter processing time and maximizes the 
classification ability of the model without adding too much of an extra burden. The data 
on the CAN bus is equal time sequence data. However, the recurrent neural network has a 
strong ability to process sequence data and includes a simple global shared parameter 
mechanism [Yang, Wu, Wang et al. (2018)]. In addition, it has a weak dependence on the 
data context background in the training model, so the training time is shorter than that of 
a traditional Convolutional Neural Network (CNN) and some Recurrent Neural Network 
(RNN) variant networks, such as the Long Short Term Memory (LSTM) [Yuan, Zhang, 
Shi et al. (2019)]. The trained model achieved a higher accuracy and lower false alarm 
rate compared with the traditional IDS model, even in the face of non-abnormal 
exceptional circumstances, because the recurrent neural network can learn the sequential 
characteristics of the behaviors of the vehicle data effectively when training the model. 
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The trained IDS model can also learn pre-order features autonomously to correctly 
identify the data characteristics of the driving environment. To solve the problem that the 
recurrent neural network may encounter during the training period, it is easy to cause the 
gradient to disappear with the increasing depth of the model. We introduced the time-
based back propagation (BPTT) algorithm to complete the training process of the whole 
model. In terms of the overall training efficiency, unlike the traditional CNN or RNN 
variants, which have more door unit and parameter training, it is difficult to adapt to the 
limited storage and computing resources of the automobile. The IDS model proposed in 
this study can complete the training of the model in a short time. The model proposed in 
this study can achieve a higher efficiency than the traditional intrusion detection model in 
terms of its detection accuracy because it considers the mechanical characteristics and 
timing of the vehicle. 
The rest of study is organized as follows: the second part elaborates on the relevant 
background knowledge of the Internet of Vehicles and the related work of deep learning 
in IDS. The third part describes the relevant methodology of this article, and how the 
autoencoder and recurrent neural network are applied to the IDS of the vehicle system. In 
the fourth part, we use real cars to evaluate and compare the performance of our proposed 
models with traditional models. Finally, we summarize the problems raised and explain 
future directions of this work. 

2 Background knowledge 
Here, we introduce the basics of the Internet of Vehicles and deep learning. 

2.1 The architecture of the internet of vehicles 
The Internet of Vehicles refers to the use of a new generation of mobile communication 
technology to achieve a full-scale network connection within the vehicle, vehicle-to-
person, vehicle-to-vehicle, vehicle-to-road, and vehicle-to-service platform. A new 
format for automotive and transportation services was built by improving the level of 
automotive intelligence and enhancing self-driving capabilities. It can provide users with 
intelligent, comfortable, safe, energy-saving, and efficient comprehensive services by 
improving traffic efficiency and boosting the driving experience of cars [Li, Zhong, Chen 
et al. (2019)]. The topological diagram of the Internet of Vehicles communication is 
shown in Fig. 1. The main communication entities include the Road Side Unit (RSU), the 
intelligent connected vehicle, the pedestrians on the road, and the official traffic authority 
for road communication. Each intelligent connected vehicle is composed of several 
devices, such as the Telematic Box (T-Box), Electronic Control Units (ECU), and GPS, 
which can help the vehicles to make contact with other entities in the communication 
scene. For example, the T-Box can complete the corresponding communication process 
through the built-in communication module and special automobile SIM card, combined 
with the Dedicated Short-Range Communications (DSRC) protocol in 802.11p or the 
Long Term Evolution Vehicle. 
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Figure 1:  Network of vehicles communication scenario topology 

In an intelligent connected vehicle, the bus network in the vehicle is formed using the bus 
communication protocol to connect the nodes of the vehicle ECU. Fig. 2 shows a simplified 
version of the intelligent network communication schematic diagram. ECU is not only the 
core component of the whole vehicle communication but also the essential communication 
unit of the in-vehicle communication. The node receives different message information 
from the bus to complete the specified command action [Li, Zhong, Chen et al. (2019)]. If 
different ECU nodes need to communicate with each other, they need to implement the bus 
protocol in the vehicle. The most famous bus protocol used in the vehicle is the CAN 
protocol. The CAN is a standard for the in-vehicle internal bus system, which can provide 
enough communication information for the ECU. The CAN bus is a reliable and 
economical serial bus of the vehicle network [Seo, Song and Kim (2018)]. When 
communicating, each ECU node sends data to the bus in a competitive way. At this time, 
the priority of the bus access control is obtained according to the priority domain in the data 
frame. ECU nodes with a low value in the arbitration field will get the priority to send the 
data, and the other nodes will wait for the bus to be idle and compete again. This way of 
broadcasting improves the real-time performance of data communications, which is why 
Robert Bosch GmbH6 introduced the CAN protocol in the 1980s. In modern cars, there are 
more than 50 ECUs, which make the communication speed between ECUs reach 1 
Mbit/sec [Martinelli, Mercaldo, Orlando et al. (2018)]. However, the vehicle network uses 
a broadcast for the corresponding communication, and the communication process is often 
not authenticated, which makes it easy for attackers to access the CAN bus. 
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Figure 2: Simplified communication diagram of an intelligent connected vehicle 

2.2 Research status of deep learning in intrusion detection 
In the current application scenarios of the Internet of Vehicles, the in-vehicle IDS is usually 
deployed in the form of hardware or software on the vehicle for use. By completing the 
corresponding analysis process by collecting data from each ECU node or CAN bus, it can 
ensure the safety of drivers and passengers by timely notifying the emergency response 
background system in case of any abnormal behavior [Gao, Li, Xu et al. (2019)]. However, 
in the early stage of the development of the Intelligent Connected Vehicle (ICV), the ECU 
installed on vehicles only had a small storage space and low computing power because of 
the limited technology of a single-chip microcomputer. When facing a network attack, it is 
challenging to apply the existing IDS model directly to the vehicle system of an ICV. 
Many scholars have proposed an IDS based on the in-vehicle system to address the fact 
that the existing IDS cannot be directly used in the vehicle system. Liu et al. [Liu, Li and 
Man (2015)] presented an anomaly-based intrusion detection model. In this model, the 
network layer and MAC address layer are detected to analyze the normal behavior 
characteristics of the mobile nodes, and the outlines are detected by data mining. In order 
to verify their work, used NS2 to verify this model. The proposed method can achieve 
anomaly detection with a high efficiency. However, with an increasing number of detection 
nodes, the overall detection efficiency of the model decreases. Besson et al. [Besson and 
Leleu (2016)] developed a distributed vehicle intrusion detection model based on 
AWISSENET. This model searched the trusted services and related paths. The proposed 
IDS model was tested on a heterogeneous test platform, and the experiment showed that the 
proposed model can be applied to different wireless networks. Lauf et al. [Lauf, Peters and 
Robinson (2010)] presented an anomaly intrusion detection model based on Vehicle Ad 
Hoc Networks (VANET). In this model, the contextual background of the interactive nodes 
on the network application layer is detected to enable the learning of the attack behaviors’ 
characteristics. The model also uses the density function and the global behavior maximum 
function to realize the detection of abnormal behavior. The model was experimentally 
verified to have a relative improvement in the optimization of computation compared with 
the anomaly intrusion detection model using only a traditional context-based approach. 
However, when presented with some unusual traffic scenarios, the model still has a high 
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false alarm rate. A distributed IDS for wireless sensor networks based on reputation 
detection was proposed by Banković et al. [Banković, Moya, Araujo et al. (2010)]. In this 
model, each node in the network is assigned a reputation by the trained model to realize the 
evaluation and detection of malicious nodes. The corresponding experiments showed that 
the proposed intrusion detection system separated the malicious nodes from the network 
and inhibited the spread of malicious activities. However, the model still has a high alert 
rate in detecting node malicious refreshing node reputation. Cho et al. [Cho, Hong, Lee et 
al. (2013)] developed a local IDS model for wireless sensor networks. The model reduces 
the dimension of the data coding by introducing the Bloom filter proposed by Howard 
Bloom to reduce the storage and calculation requirements of the model. Experimental 
results show that the proposed method can detect potential DoS attacks by simulating the 
corresponding wireless communication environment.  
Many scholars have found that using cryptography or the network layer related protocols to 
implement IDS for malicious behavior detection often emphasizes feature engineering and 
feature selection, which cannot effectively solve the problem of the massive intrusion data 
classification in the actual network application environment [Yin, Zhu, Fei et al. (2017)]. It 
is difficult to achieve the self-directed learning of attack features to identify the 
corresponding attacks in the face of a changeable attack strategy [Mershad and Artail 
(2012); Dong and Wang (2016); Yin, Zhu, Fei et al. (2017)]. With the successful 
application of machine learning and deep learning in many fields, scholars in various 
countries are now combining these technologies with intrusion detection systems to achieve 
the efficient detection of external attackers and internal malicious behaviors. 
Medhat et al. [Medhat, Ramadan and Talkhan (2015)] presented an intelligent intrusion 
detection model based on a wireless sensor network. This model combines supervised 
learning with unsupervised learning to train the IDS model: supervised learning is used to 
train sensor nodes; unsupervised learning is used to train base station nodes and 
convergence nodes. During this period, a series of rules learned will form a decision binary 
tree to judge normal and abnormal behavior. The experimental results show that the model 
can achieve a lower time complexity and more accurate detection of the attack data. Ronak 
et al. [Ronak, Ganesh, Akshay et al. (2016)] provided a distributed intrusion detection 
system for wireless sensor networks based on the Naive Bayes and Apache mahout. The 
proposed model can detect multiple attacks autonomously and has a strong robustness. 
Peraković et al. [Peraković, Periša, Cvitić et al. (2017)] developed an intrusion detection 
model based on an artificial neural network. This model uses a supervised learning method 
to realize the corresponding learning of traffic labels to complete the recognition of 
abnormal traffic. However, this model only has obtained an 82% accuracy due to some 
similarities in the values of legitimate traffic and UDP DDoS attack parameters. Anzer et al. 
[Anzer and Elhadef (2018)] proposed an anomaly intrusion detection model base d on deep 
learning. The model can model the network traffic data using a fully connected neural 
network. Experiments show that the model proposed in this study can achieve more 
efficient learning of feature data compared with some traditional machine learning 
algorithms, such as Adaboosting, random forest, and SVM. It also has a higher accuracy 
and lower false alarm rate in the detection rate compared with some anomaly intrusion 
detection models based on traditional deep learning [Kwon, Kim, Kim et al. (2017)]. 
Pavani et al. [Pavani and Damodaram (2013)] proposed a neural network based on the 
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multi-layer perceptron to detect malicious behavior in Mobile Ad Hoc Network (MANET). 
Their experimental results showed that the proposed model can effectively detect the grey 
hole and black hole attacks. Leinmüller et al. [Leinmüller, Held, Schäfer et al. (2014)] 
proposed an intrusion detection system based on the Intelligent Proportional Overlapping 
Score (POS). Their IDS model uses the information received from the trace file of 
VANETs to reduce additional features to improve the performance and safety of the 
autonomous vehicle. The features extracted from the tracking files are helpful to distinguish 
normal vehicles from abnormal vehicles. The model also uses an artificial neural network 
to realize the learning of audit data and the detection of attack behavior. Experiments 
showed that their proposed model can effectively detect black hole attacks by learning the 
data characteristics of the trace files. 
However, these technologies have many limitations, such as the need to be able to interact 
with a higher level of human experts, the demands for a large amount of expert knowledge 
in the processing of data, or the need for the differentiation of the data and operation mode 
to achieve accurate recognition needs [Tan, Li, Xia et al. (2019)]. They are not only a 
labor-intensive and expensive processes, but they are also error prone [Zhao, Yan, Chen et 
al. (2019)]. Using a large amount of training data results in too much system overhead, 
which may become a challenge to deploy in an Internet of Vehicles environment with 
heterogeneous characteristics and highly dynamic environment. Deep learning, as an 
advanced subset of machine learning, can overcome some limitations of shallow learning. 
Preliminary deep learning research has proved that its superior hierarchical feature learning 
can improve or at least match the performance of shallow learning technology [Hou, Saas, 
Chen et al. (2016)]. Abnormal behavior will change with time, and intruders will adjust 
their network attacks to avoid existing intrusion detection solutions [Kumar and 
Venugopalan (2017)]. Deep learning can analyze the network data at a deeper level, and 
identify any abnormal data and related patterns quickly. Moreover, artificial intelligence 
has a good black box feature. Therefore, it is difficult for attackers to manipulate the 
internal structure of the detection system. 
Deep learning has been used for intrusion detection with the Internet of Things, especially 
in the Internet of Vehicles. The basic idea is to use deep learning to realize the learning of 
vehicle boundary behavior features, and then to design the corresponding classifier based 
on these boundary features. Using this classifier, we can achieve the efficient classification 
and anomaly detection of an entity’s behavior data. Due to the limited computing and 
storage capacity of traditional automobile ECUs, many advanced and efficient algorithms 
in deep learning cannot be directly applied to the automobile [Kang and Kang (2016)]. 
However, the development of intelligent vehicle information systems has improved the 
calculation and storage capacity of the on-board ECU, and the efficiency in processing real-
time tasks has also been greatly improved [Johansson, Törngren and Nielsen (2015)]. The 
recurrent neural network and the autoencoder based on sparse item constraints serve as a 
deep development of deep learning. By learning the boundary features, a multilayer 
recurrent neural network with learning ability was established to predict and perceive the 
unknown behavior. The relevant optimization algorithm was used to optimize the 
parameters of the model. Through experiments, we found that the model designed by deep 
learning has a better robustness than the traditional IDS based on statistics or signatures 
[Qiao, Li and Chen (2018); Mohammadi and Namadchian (2017); Liang (2017)]. 
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3 Research on intelligent vehicular intrusion detection system based on deep learning 
3.1 Structural design of intrusion detection algorithm 
The detection flow chart of the in-vehicle intrusion detection model based on the advanced 
autoencoder and recurrent neural network is shown in Fig. 3. The proposed model consists 
of three steps: (1) data pre-processing, (2) the advanced autoencoder is used to extract the 
correlation features between the data, and (3) the combination of the recurrent neural 
networks and the SoftMax classifier is used to classify the corresponding data. Since the 
relevant experimental data collected from the vehicles were composed of continuous type 
data and discrete type data, we needed to normalize the data using some pre-processing 
methods. The specific data introduction is described in the fourth section. After the data 
pre-processing, the standard format data was used as the input of the sparse auto-encoder to 
complete the data feature extraction. We obtained data with high sparse characteristics. We 
used these data with great sparse features as the input of the recurrent neural network 
classifier, and then used the recurrent neural networks and SoftMax to learn and classify the 
corresponding feature data. Finally, we used the sorted results as the output to judge 
whether the relevant vehicle CAN bus data was abnormal. 

Input training set Input testing set

Data pre-processing

Data standardization

Data normalization

Feature learning
Data recoding and 
learning of relevant 

features

Training

Forward propagation

Back propagation

Intrusion detection 
model based on RNN

Behavior detection 
and classification

 
Figure 3: Flow chart of the Intrusion Detection System based on deep learning 

3.2 Methodology 
The autoencoder is a kind of deep learning network structure used to learn the coding 
structure of data. Its primary purpose is to learn high-dimensional complex data and extract 
a suitable coding expression mode to realize the dimension reduction processing and related 
feature learning of high-dimensional data [Yuan, Zhang, Shi et al. (2019)]. Fig. 4 shows the 
model diagram of the autoencoder. We can see that the network structure is composed of 
two parts: One is the data encoder represented by the function h = f (Wx + b), and the 
other is the decoder for data generation and reconstruction by the function x = g (WTh +
b). We used the unsupervised learning algorithm to optimize the constraint weight matrix 
W and reconstructed the weight matrix WT to minimize the error between the input and 
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output of the model, which makes x(i) = x′(i). In this work, we used the autoencoder with 
constraints on sparse regular terms to limit on the number of features extracted from data 
and complete the process of data dimension reduction. The sparse autoencoder was 
obtained by adding L1 regular term constraints to the fundamental loss function to achieve 
the effective extraction of features. The specific algorithm steps are shown in Algorithm 1. 
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Figure 4: Simplified auto-encoder model 

Algorithm 1 Using the sparse autoencoder to extract the data features 

Input:𝒙𝒙𝒊𝒊(i=1, 2, …, n) 
Output: 𝒙𝒙𝒊𝒊′(i=1, 2, …, n) 
Note: 𝒕𝒕𝒊𝒊 is the training times of the sparse auto-encoder, 𝑻𝑻𝒊𝒊 is the total number of times to train, and 
𝒔𝒔𝒍𝒍 is the node number of layer l. 
1: Coding:𝒉𝒉 = 𝐖𝐖𝒙𝒙 + 𝒃𝒃 
2: While 𝒕𝒕 < 𝑻𝑻 ∶ 
3:       𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 𝒊𝒊 < 𝒏𝒏 ∶ 
4:    ∆𝑾𝑾𝒍𝒍 = ∆𝑾𝑾𝒍𝒍 + 𝛁𝛁𝑾𝑾𝒍𝒍 ∙ [𝑱𝑱(𝑾𝑾,𝒃𝒃) + 𝜷𝜷 ∙ ∑ 𝑲𝑲𝑲𝑲(𝝆𝝆||𝝆𝝆�)]𝒔𝒔𝟐𝟐

𝒋𝒋=𝟏𝟏  
where 𝑱𝑱(𝑾𝑾,𝒃𝒃) is the loss function of the traditional autoencoder, and the corresponding expression 
is 
 𝑱𝑱(𝑾𝑾,𝒃𝒃) = 𝟏𝟏

𝒏𝒏
∙ ∑ �𝟏𝟏

𝟐𝟐
∙ �𝒉𝒉𝑾𝑾,𝒃𝒃�𝒙𝒙𝒊𝒊� − 𝒚𝒚𝒊𝒊�𝟐𝟐� + 𝝀𝝀

𝟐𝟐
𝒏𝒏
𝒊𝒊=𝟏𝟏 ∙ ∑ ∑ 𝑾𝑾𝒊𝒊𝒋𝒋

𝟐𝟐𝒔𝒔𝒍𝒍
𝒋𝒋=𝟏𝟏

𝒔𝒔𝒍𝒍−𝟏𝟏
𝒊𝒊=𝟏𝟏

, the second term in the expression, 

is a regular term, which can effectively avoid overfitting. However, due to the sparse encoder used 
in this study, the sparse constraints 𝜷𝜷 ∙ ∑ 𝑲𝑲𝑲𝑲(𝝆𝝆||𝝆𝝆�)]𝒔𝒔𝟐𝟐

𝒋𝒋=𝟏𝟏  were added to the right side of the equation. 
Using the KL distance to measure the difference between codes, the corresponding expression is as 
follows: 𝑲𝑲𝑲𝑲(𝝆𝝆||𝝆𝝆�) = 𝝆𝝆 𝐖𝐖𝐥𝐥𝐥𝐥 𝝆𝝆

𝝆𝝆�
+ (𝟏𝟏 − 𝝆𝝆) 𝐖𝐖𝐥𝐥𝐥𝐥 𝟏𝟏−𝝆𝝆

𝟏𝟏−𝝆𝝆�
, where 𝝆𝝆� = 𝟏𝟏

𝒎𝒎
∙ ∑ [𝒂𝒂𝒋𝒋𝟐𝟐 ∙ 𝒙𝒙(𝒊𝒊)]𝒏𝒏

𝒊𝒊=𝟏𝟏
 is the average value 

of the output of the hidden layer node, and 𝒂𝒂𝒋𝒋𝟐𝟐 is the activation of the input vector 𝒙𝒙(𝒊𝒊) to the hidden 
layer unit of j. 
5:               ∆𝒃𝒃𝒍𝒍 = ∆𝒃𝒃𝒍𝒍 + 𝛁𝛁𝒃𝒃𝒍𝒍 ∙ [𝑱𝑱(𝑾𝑾,𝒃𝒃) + 𝜷𝜷 ∙ ∑ 𝑲𝑲𝑲𝑲(𝝆𝝆||𝝆𝝆�)]𝒔𝒔𝟐𝟐

𝒋𝒋=𝟏𝟏  
6:                𝑾𝑾𝒍𝒍 = 𝑾𝑾𝒍𝒍 − 𝜶𝜶[�𝟏𝟏

𝒎𝒎
∙ ∆𝑾𝑾𝒍𝒍� + 𝝀𝝀𝑾𝑾𝒍𝒍] 

7:                𝒃𝒃𝒍𝒍 = 𝒃𝒃𝒍𝒍 − 𝜶𝜶[�𝟏𝟏
𝒎𝒎
∙ ∆𝒃𝒃𝒍𝒍�] 

8:                𝒊𝒊 = 𝒊𝒊 + 𝟏𝟏, 𝒕𝒕 = 𝒕𝒕 + 𝟏𝟏 
9: Decoding: 𝐱𝐱′ = 𝐥𝐥(𝐖𝐖𝐓𝐓𝐖𝐖 + 𝐛𝐛) 
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After using Algorithm 1 to perform multiple iterative trainings on the autoencoder, the 
optimal constraint weight matrix and reconstruction matrix were obtained. Using these 2 
matrices minimizes the loss error between the data obtained after the dimension reduction 
and the original data. The low-dimensional representation of high-dimensional data features 
are obtained, and these data are used as the input data for subsequent recurrent neural 
network classifiers. 
The recurrent neural network is usually composed of three parts: input unit, hidden unit, 
and output unit. The essential aspect of the model is a one-way flow process from the input 
unit to the hidden layer unit, and then to the output unit after inputting the relevant time 
series data. In the hidden layer unit, the RNN has stored the data status information from 
the previous time. When the current information data stream enters the relevant hidden 
layer unit, the hidden layer unit can use the mixed calculation operation of the current data 
stream and the previously saved digital data stream to obtain the behavior state that may 
occur in the next state. Hence, we usually regard the hidden layer unit in the network as the 
storage in the whole network structure. It is used to store the state data of the previous part 
of the behavior and to calculate the state data of the next behavior. The corresponding 
network structure diagram of the current network is shown in Fig. 5. 

Input Layer

Hidden Layer

Output Layer

 
Figure 5: Folded recurrent neural network structure 

From Fig. 5, we can see that introducing a ring structure helps “remember” the previous 
relevant information and apply it to the current output calculation. The structure of the 
RNN is different from a traditional CNN. The sequence result calculated by the 
corresponding hidden layer unit in the current layer is related to the output result of the 
hidden layer unit in the previous layer, and the neurons between each hidden layer unit 
have a specific information exchange process. We used the advanced autoencoder designed 
in the previous section to reduce the data dimensions to complete the learning of the 
corresponding features. Then we used the recoded data to train the RNN model and then 
used the relevant test data set to evaluate the accuracy of the model. 
From Fig. 3, we can also see that our RNN training process is divided into two 
corresponding stages: forward propagation training and back-propagation training. In this 
research, we used the BPTT algorithm to complete this process. Forward propagation is 
responsible for calculating the predicted value of samples under the corresponding weight 
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matrix for a given sample. In contrast, back-propagation updates the relevant weight matrix 
using the differential to calculate the accumulated residual. 

h0 h1

ＷＸ1

Ｕ

Ｙ1Ｖ

h２

ＷＸ２

Ｕ

Ｙ２Ｖ

hｎ

ＷＸｎ

Ｕ

ＹｎＶ

．．．．．．

 
Figure 6: Unfolded recurrent neural network structure 

Fig. 6 is a complete unfolded structure of the RNN. We separated the structure of the 
standard recurrent neural networks shown in Fig. 6 into the elemental composition of the 
following three elements: (1) A given series of training samples xi (where i=1, 2, …, n); (2) 
the hidden layer state unit sequence hi of the corresponding layer (where i=1, 2, …, n); and 
(3) a series of predicted output values yi  (where i=1, 2, …, n). The other relevant 
parameters in the structure that participate in the calculation are as follows. U is the 
connection weight between the hidden layer unit at the previous time and the hidden layer 
unit at the current time. V is the link weight between the hidden layer unit of the 
corresponding layer and the output layer unit. W is the connection weight between the 
corresponding layer input unit and the hidden layer unit. For the RNN shown in Fig. 6, we 
used the BPTT algorithm to complete the corresponding training process. The specific 
operation process is shown in Algorithms 2 and 3. We used the following objective 
function to evaluate the loss on each of the input RNN model training samples (xi, yi): 
f(θ) = L(yi, yı�) [Martens and Sutskever (2011)], where L can evaluate the actual deviation 
distance value between the actual label yi and the predicted value label yı� . The function 
used to evaluate the loss used was the cross-entropy function Lt = ∑ −yı�

Tlog (yt)i=n
i=1 . 

Algorithm 2 Forward Propagation Algorithm 
Input: 𝐱𝐱𝐖𝐖 (i =1, 2, …, n) 
Output: 𝒚𝒚𝐢𝐢�  
1: for i form 1 to n do: 
2:       𝒔𝒔𝒊𝒊 = 𝑼𝑼𝒉𝒉𝒊𝒊−𝟏𝟏 + 𝒘𝒘𝒙𝒙𝒊𝒊 + 𝒃𝒃 
3:       𝒉𝒉𝒊𝒊 = 𝝈𝝈(𝒔𝒔𝒊𝒊)         𝝈𝝈 is the hyperbolic tangent activation function used in this study 
4:       𝒛𝒛𝒊𝒊 = 𝑽𝑽𝒉𝒉𝒊𝒊 + 𝒄𝒄 
5:       𝒚𝒚𝒊𝒊 = 𝒔𝒔𝒔𝒔𝒔𝒔𝒕𝒕𝒎𝒎𝒂𝒂𝒙𝒙(𝒛𝒛𝒊𝒊) 
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Algorithm 3 Back-Propagation Through Time 
Input:< 𝒚𝒚𝒊𝒊,𝒚𝒚𝒊𝒊� >(i=1, 2, …, n) 
Output:𝜽𝜽 = {𝑾𝑾′,𝑼𝑼′,𝑽𝑽′,𝒃𝒃′, 𝒄𝒄′} 
1: for i from 1 to n do: 
2:       𝝏𝝏𝑲𝑲

𝝏𝝏𝑽𝑽
= 𝝏𝝏𝑲𝑲𝒕𝒕𝒊𝒊

𝝏𝝏𝑽𝑽
= 𝝏𝝏𝑲𝑲𝒕𝒕

𝝏𝝏𝒛𝒛𝒊𝒊
∙ 𝝏𝝏𝒛𝒛𝒊𝒊
𝝏𝝏𝑽𝑽

= (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) ∙ (𝒉𝒉𝒕𝒕)𝑻𝑻 

3:       𝝏𝝏𝑲𝑲
𝝏𝝏𝒄𝒄

= 𝝏𝝏𝑲𝑲𝒕𝒕
𝝏𝝏𝒄𝒄

= 𝝏𝝏𝑲𝑲𝒊𝒊
𝝏𝝏𝒛𝒛𝒊𝒊

∙ 𝝏𝝏𝒛𝒛𝒊𝒊
𝝏𝝏𝒄𝒄

= 𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊 
4: 𝑽𝑽′ = 𝑽𝑽 − 𝜽𝜽∑ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) ∙ (𝒉𝒉𝒕𝒕)𝑻𝑻𝒏𝒏

𝒊𝒊=𝟏𝟏  
5: 𝒄𝒄′ = 𝒄𝒄 − 𝜽𝜽∑ 𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊𝒏𝒏

𝒊𝒊=𝟏𝟏  
However, although the parameters W, U, and b are shared, they not only contribute to 
the 
output of the time of t but also contribute to the input 𝒔𝒔𝒕𝒕+𝟏𝟏 of the hidden layer at the 
time of t+1. Therefore, when deriving the parameters W, U, and b, we need to start the 
derivation step-by-step from the back. 
6: for i from 1 to n do: 
7: 𝝏𝝏𝑲𝑲

𝝏𝝏𝑾𝑾
= 𝝏𝝏𝑲𝑲

𝝏𝝏𝒉𝒉𝒊𝒊
∙ 𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒔𝒔𝒊𝒊

∙ 𝝏𝝏𝒔𝒔𝒊𝒊
𝝏𝝏𝑾𝑾

= �𝝏𝝏𝑲𝑲
𝝏𝝏𝒛𝒛𝒊𝒊

∙ 𝝏𝝏𝒛𝒛𝒊𝒊
𝝏𝝏𝒉𝒉𝒕𝒕

+ 𝝏𝝏𝑲𝑲
𝝏𝝏𝒉𝒉𝒊𝒊+𝟏𝟏

∙ 𝝏𝝏𝒉𝒉𝒊𝒊+𝟏𝟏
𝝏𝝏𝒉𝒉𝒊𝒊

� ∙ 𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒔𝒔𝒊𝒊

∙ 𝝏𝝏𝒔𝒔𝒊𝒊
𝝏𝝏𝑾𝑾

 

            = �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝜹𝜹𝒊𝒊+𝟏𝟏 ⊙ 𝝈𝝈′(𝒛𝒛𝒊𝒊+𝟏𝟏)� ∙ 𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒔𝒔𝒊𝒊

∙ 𝝏𝝏𝒔𝒔𝒊𝒊
𝝏𝝏𝑾𝑾

 

            = �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝜹𝜹𝒊𝒊+𝟏𝟏) ∙ 𝝈𝝈′(𝒛𝒛𝒊𝒊+𝟏𝟏)� ∙ 𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒔𝒔𝒊𝒊

∙ 𝝏𝝏𝒔𝒔𝒊𝒊
𝝏𝝏𝑾𝑾

 

            = �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝝈𝝈′(𝒛𝒛𝒊𝒊+𝟏𝟏)) ∙ 𝜹𝜹𝒊𝒊+𝟏𝟏� ∙ 𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒔𝒔𝒊𝒊

∙ 𝝏𝝏𝒔𝒔𝒊𝒊
𝝏𝝏𝑾𝑾

 

            = �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝟏𝟏 − 𝒉𝒉𝒊𝒊+𝟏𝟏𝟐𝟐 ) ∙ 𝜹𝜹𝒊𝒊+𝟏𝟏� ∙ 𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒔𝒔𝒊𝒊

∙ 𝝏𝝏𝒔𝒔𝒊𝒊
𝝏𝝏𝑾𝑾

 

            = 𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝟏𝟏 − (𝒉𝒉𝒊𝒊)𝟐𝟐) ∙ �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅�𝟏𝟏 − 𝒉𝒉𝒊𝒊+𝟏𝟏𝟐𝟐 � ∙ 𝜹𝜹𝒊𝒊+𝟏𝟏� ∙ (𝒙𝒙𝒊𝒊)𝑻𝑻 
8: 𝝏𝝏𝑲𝑲

𝝏𝝏𝒃𝒃
= 𝝏𝝏𝑲𝑲

𝝏𝝏𝒉𝒉𝒊𝒊
∙ 𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒔𝒔𝒊𝒊

∙ 𝝏𝝏𝒔𝒔𝒊𝒊
𝝏𝝏𝒃𝒃

= 𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝟏𝟏 − (𝒉𝒉𝒊𝒊)𝟐𝟐) ∙ �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅�𝟏𝟏 − 𝒉𝒉𝒊𝒊+𝟏𝟏𝟐𝟐 � ∙ 𝜹𝜹𝒊𝒊+𝟏𝟏� 

9: 𝝏𝝏𝑲𝑲
𝝏𝝏𝑼𝑼

= 𝝏𝝏𝑲𝑲
𝝏𝝏𝒉𝒉𝒊𝒊

∙ 𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒔𝒔𝒊𝒊

∙ 𝝏𝝏𝒔𝒔𝒊𝒊
𝝏𝝏𝑼𝑼

 

           = 𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝟏𝟏 − (𝒉𝒉𝒊𝒊)𝟐𝟐) ∙ �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅�𝟏𝟏 − 𝒉𝒉𝒊𝒊+𝟏𝟏𝟐𝟐 � ∙ 𝜹𝜹𝒊𝒊+𝟏𝟏� ∙ (𝒉𝒉𝒊𝒊−𝟏𝟏)𝟐𝟐 
10:  𝑾𝑾′ = 𝑾𝑾− 𝜽𝜽 ∙ ∑ 𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝟏𝟏 − (𝒉𝒉𝒊𝒊)𝟐𝟐) ∙ �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅�𝟏𝟏 − 𝒉𝒉𝒊𝒊+𝟏𝟏𝟐𝟐 � ∙𝒏𝒏

𝒊𝒊=𝟏𝟏
𝜹𝜹𝒊𝒊+𝟏𝟏� ∙ (𝒙𝒙𝒊𝒊)𝑻𝑻 
11: 𝑼𝑼′ = 𝑼𝑼− 𝜽𝜽 ∙ ∑ 𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝟏𝟏 − (𝒉𝒉𝒊𝒊)𝟐𝟐) ∙ �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅�𝟏𝟏 − 𝒉𝒉𝒊𝒊+𝟏𝟏𝟐𝟐 � ∙𝒏𝒏

𝒊𝒊=𝟏𝟏
𝜹𝜹𝒊𝒊+𝟏𝟏� ∙ (𝒉𝒉𝒊𝒊−𝟏𝟏)𝟐𝟐 
12: 𝒃𝒃′ = 𝒃𝒃 − 𝜽𝜽 ∙ ∑ 𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅(𝟏𝟏 − (𝒉𝒉𝒊𝒊)𝟐𝟐) ∙ �𝑽𝑽𝑻𝑻 ∙ (𝒚𝒚𝒊𝒊� − 𝒚𝒚𝒊𝒊) + 𝑼𝑼𝑻𝑻𝒅𝒅𝒊𝒊𝒂𝒂𝒅𝒅�𝟏𝟏 − 𝒉𝒉𝒊𝒊+𝟏𝟏𝟐𝟐 � ∙ 𝜹𝜹𝒊𝒊+𝟏𝟏�𝒏𝒏

𝒊𝒊=𝟏𝟏  

4 Simulation results and discussion 
4.1 Data set description 
In order to verify that the model proposed in this study can achieve the efficient detection 
of vehicle behavior, we cooperated with a domestic automobile information security 
laboratory and carried out the simulation experiments on real intelligent vehicles. There are 
usually two ways to collect the internal parameters of the vehicle: 1. Passively monitor the 
data on the Electronic Control Suspension (ECS) network through the OBD-|| diagnosis 
interface or obtain the data from the car through the OBD diagnosis interface using the 
standard communication protocol. 2. By using the CAN converter to access the vehicle 
CAN bus to complete the monitoring of the vehicle CAN bus. 
We chose the second approach to collect data by connecting the USB-to-CAN converter 
directly to the OBD-||. There are two reasons: 1. After directly using the USB-to-CAN 
converter to access CAN bus, we could easily collect the required data by passive 
monitoring. 2. When obtaining data through the OBD port, it is often necessary to send 
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request parameters to obtain the corresponding data, which is a complicated process. 
Through statistical analysis, we found the propagation of various essential parameters on 
the bus is shown in Tab. 1. These parameters are sent when the car is working normally 
without any request process. After weighing, we chose to obtain data on the Engine Control 
Module (ECM) bus, because there are many important parameters of the sender on this bus. 
For example, the engine speed is directly calculated by the ECU and shared with other 
modules through this bus. 

Table 1: Broadcast of several important parameters on each bus 

              Parameter Speed Revolutions 
Per minute 

Accelerator 
Pedal 

Position 

Intake 
Pressure 

Brake 
Pedal 
Status 

Steering 
Angle 

Gear 
Position 

Bus 
Category 

Motor Meters o o x x o o o 
 Convenience 
System o o x x o x x 

Power System o o o o o x x 
Engine 
Control 
Module 

o o o o o x o 

Electronic 
Stability 
Controller 

o o o x o o o 

Fig. 7 shows the environment configuration of the data collection from connecting the 
acquisition adapter to the bus where the engine ECU is located (Fig. 8). The adopted CAN 
acquisition equipment was a KvaserCAN Leaf LightV2 and the software for the data 
collection on the computer was the open-source software Vehicle Spy. We collected nearly 
300,000 pieces of data related to the vehicle. We used Vehicle Spy to generate the 
corresponding data log file for the data collected on the CAN bus. Part of the data sample 
we collected is shown in Fig. 9. It can be seen from the figure that the collected data consist 
of a timestamp, data domain, data length, arbitration domain, description domain, and 
vehicle network status information. Because the arbitration domain and some other 
parameters involve confidential information being sent between the experimental center 
and the automobile manufacturer, we blurred some regions in the graph 

 

Figure 7: The vehicle used for data acquisition in the experiment 
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The Shifting Mechanism 
of Secondary Control Unit 

Parking 
Controller

Control Element 
Drive Motor

Engine Control 
Module

DC-DC 
Convertors

Transmission 
Control Unit

Engine Control Module Network Rate:500Kbit/s
 

Figure 8: Architecture of the engine’s CAN bus 

 
Figure 9: Sample data collected by vehicle spy 

4.2 Data pre-processing 

4.2.1 Data extraction and calibration 
We used the sklearn package in Python to initialize the data. It can be seen from Fig. 10 
that most of the data transmitted on the engine’s CAN bus were transmitted in the basic 
format. Messages with different IDSs send 1 or more parameters. For example, in the 8 
byte data of a CAN data package, bytes 1 and 2 represent the high 8 bits and low 8 bits of 
data information, respectively, while bytes 3 and 4 represent the high 8 bits and low 8 bits 
of speed, respectively. Moreover, the range of these data may be from 0×0000 to 0×FFFF. 
Therefore, in order to get the real speed or other parameters, we needed to convert them, 
generally through Eq. (1). V is the actual value. X is the value transmitted through the can 
packet. B is the deviation. 
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𝑣𝑣 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏                                                                                                       (1) 

 
Figure 10: Format of the vehicle spy log file 

The parameters acquired by Vehicle Spy could not be directly sent to the network for 
training. In order to get the parameters that we needed, we also needed to carry out the 
corresponding data analysis process. We used the script written in the sklearn package in 
Python to extract the parameters of the CAN log of Vehicle Spy and converted them into 
the CSV files, as shown in Fig. 11. 

 

Figure 11: Data after pre-processing 

4.2.2 Data normalization 
The parameters in Fig. 11 (after column 3) vary from 0 to 1, which is because these 
parameters vary in different ranges. The standard method is data normalization. The 
purpose of data normalization is to standardize the data of different dimensions and units to 
solve the differences between the data indicators. After normalization, different pieces of 
data are at the same level, which is convenient for comprehensive comparative evaluation. 



Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks                  669 

There are many ways to normalize, such as the Z-score (Eq. (2)) and Min-Max (Eq. (3)): 
𝑋𝑋∗ = 𝑥𝑥−𝜇𝜇

𝜎𝜎
                                                                                                                           (2) 

𝑋𝑋∗ = 𝑥𝑥−𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑥𝑥−𝑚𝑚𝑚𝑚𝑚𝑚

                                                                                                                   (3) 

Because there was no special requirement for this application scenario, the Min-Max 
normalization method was selected because this method is the simplest. It is worth noting 
that when the Min-Max method is used to normalize the data, it is necessary to use the 
unified fixed maximum and minimum values. Otherwise, the prediction is not accurate due 
to the difference between the two values in the experiment. 

4.2.3 Data interpolation 
Because these parameters were transmitted serially via the CAN datagram, as shown in Fig. 
11, data interpolation was also needed. There are many interpolation methods. We chose 
the forward interpolation method, as shown in Fig. 12. The horizontal axis in the figure is 
the time, and the vertical axis is the parameter. The italicized and underlined values in the 
figure show the actual received parameter value, and the rest are the values that were 
inserted using the forward interpolation method. 

 
Figure 12:  Sample data interpolation 

4.2.4 Data sampling 
After analysis, we found that the received data had much redundancy after interpolation. 
The redundant data were due to the interpolation of the data. The channel arbitration 
mechanism of CAN had a certain randomness, so the received data were not evenly 
distributed in time. For these reasons, the data needed to be sampled. The sampling method 
adopted here was to round to the nearest 10 milliseconds, that is, each column of data was 
sampled in milliseconds. When sampling, the data closest to the whole number 10 was 
taken, so the amount of training data could be significantly reduced. 

4.3 Data characteristics and correlation analysis 
The characteristics of the data in the ICV and the corresponding correlation analysis are 
usually completed in the following two ways. (1) Analyze the data flow generated by the 
car under normal driving conditions. For example, the analysis process is completed by 
analyzing the data packet transmission frequency, state change rate, and CAN bus 
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utilization rate under normal driving conditions. (2) With the help of the working principles 
of the car, the parameters of the car in different states and the correlations between them are 
analyzed (such as the relationships among the RPM (Revolutions Per Minute) and the 
speed of the car as well as the air intake of the car under the normal driving conditions). In 
the experiment, we used the Pearson correlation coefficient to analyze the collected data 
and find a group of data with the strongest correlation. As shown in Fig. 13, the overall 
trend of these data is relevant. 

 
Figure 13: Changing trend of the automobile parameters 

Through analysis, we can usually divide the data transmitted on a CAN bus into two 
categories according to the apparent characteristic relationships: the data with obvious 
mechanical rules, such as the pedal position of the car and the speed and acceleration of the 
car. Or the data without apparent rules, such as the information of the air intake of the 
engine and the status of the brake pedal. The reason these data do not have transparent 
characteristic relationships is that the set parameters corresponding to these data need to be 
adjusted by the driver according to the road conditions in real time. 
Different vehicle parameters with corresponding relationships will also present a 
corresponding normal threshold range under certain normal driving conditions, such as the 
driving speed of the vehicle, the automatic gear of the vehicle, and the speed of the vehicle 
engine under certain driving conditions. Their change rate is the upper limit of the average 
threshold range. Fig. 14 shows that there is a limited change rate between the speed of the 
car and the speed of the engine and the gear speed under normal driving conditions. 
However, when we tried to implement a replay attack or forge the driving state data to the 
vehicle CAN bus using Vehicle Spy, the change rate and the corresponding parameter 
threshold range among the three also changed. As shown in Fig. 15, the standard speed 
information and the replayed speed information are mixed due to the replaying attack on 
the engine speed of the vehicle, so that may lead to the phenomenon that the waveform of 
the image vibrates. As a result, we can speculate that at the inflexion point of the curve 
where the oscillation occurs is when the abnormality occurs. Although we can see from the 
figure that the replay speed does not lead to significant changes in other parameters, we 
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cannot deny that the replay attacks or a forgery attack will not affect other parameters. 
When we replay the corresponding abnormal data at a higher frequency, we can easily see a 
black curve by setting the low-pass filter at the corresponding receiver, as shown in Fig. 16. 
When the engine speed is replayed at a higher frequency, the corresponding vehicle speed 
has a breakpoint, which also has a particular impact on the vehicle speed. 

 
Figure 14: Under normal driving conditions, the relationship among the driving speed, 
gear position, and RPM of the vehicle 

 
Figure 15: During the replay attack: the relationship among the driving speed, gear 
position, and RPM of the vehicle 
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Figure 16: Change process of the vehicle speed after sending abnormal data at different 
frequencies 

4.4 Feature selection 
After analyzing the strong correlations of the data in Section C, we selected several auto 
parameters with a strong correlation as the data vectors of the whole model, such as the 
speed of the car, engine speed, engine intake pressure, automobile accelerator pedal 
position, and automatic transmission gear. The time correlation of these parameters and 
their relationship with each other have definite characteristics. In order to verify that there 
is a strong correlation between the parameters we selected, we chose Eq. (4) to calculate the 
covariance coefficient of the selected parameters, as shown in Tab. 2. We can see that these 
parameters are positively correlated: 

𝑐𝑐𝑐𝑐𝑣𝑣(𝑋𝑋,𝑌𝑌) = ∑ (𝑋𝑋𝑖𝑖−𝑋𝑋�)(𝑌𝑌𝑖𝑖−𝑌𝑌�)𝑛𝑛
𝑖𝑖−1

𝑚𝑚−1
                                                          (4) 

Table 2: Covariance matrix of selected parameters 

 RPM  Speed  MAP  MAF  AccPedal  Throttle  

RPM  1  0.793538  0.525027  0.313592  0.438199  0.565193  

Speed  0.793538  1  0.495519  0.365531  0.215287  0.494654  

MAP  0.525027  0.495519  1  0.832216  0.654406  0.484693  

MAF  0.313592  0.365531  0.832216  1  0.496407  0.553881  

AccPedal  0.438199  0.215287  0.654406  0.496407  1  0.38837  

Throttle  0.565193  0.494654  0.484693  0.553881  0.38837  1  

4.5 Experiment evaluation 
The purpose of this research was to improve the detection efficiency using the sparse feature-
based autoencoder and the recurrent neural network, respectively, and improve the 
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convergence speed of the whole network using the BPTT. We used the alarm rate and false 
alarm rate to evaluate the overall performance of the proposed model. The corresponding 
alarm rate and false alarm rate were calculated using Eqs. (5) and (6), respectively. The true 
positive (TP) is the number of records identified as abnormal, false positive (FP) is the 
number of records identified as normal, true negative (TN) is the number of records identified 
as normal, and false negative (FN) is the number of records identified as abnormal: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

∗ 100%                                                                                                       (5) 

𝐹𝐹𝑇𝑇𝑇𝑇 = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹

∗ 100%                                                                                                       (6) 

We used the currently popular deep learning framework Keras to complete the training 
process of the model. We completed the corresponding experiment on a laptop. The 
experimental configuration included an ASUS fl8000u, core i7-8550u CPU, 16 GB 
memory, and a GPU that was not used for the acceleration process. In order to compare the 
scheme proposed in this study with the machine learning method [Medhat, Ramadan and 
Talkhan (2015); Ronak, Ganesh, Akshay et al. (2016); Peraković, Periša, Cvitić et al. 
(2017); Pavani and Damodaram (2013)], we also designed the corresponding comparative 
experiments to compare the schemes. 

Table 3: Accuracy rate and convergence time of the model for different learning rates 
and hidden layer nodes 

 Train Sets Test Sets Convergence Time (s) Detection time on Test Sets (ms) 
Hidden Nodes=40 

Learning Rate=0.01 95.20% 87.24% 5340 6.47 

Hidden Nodes=40 
Learning Rate=0.05 95.47% 89.74% 5041 6.12 

Hidden Nodes=40 
Learning Rate=0.1 96.95% 89.92% 4885 5.94 

Hidden Nodes=60 
Learning Rate=0.01 96.32% 83.25% 4991 6.03 

Hidden Nodes=60 
Learning Rate=0.05 97.64% 85.96% 4764 5.76 

Hidden Nodes=60 
Learning Rate=0.1 98.17% 86.43% 4683 5.21 

Hidden Nodes=80 
Learning Rate=0.01 98.52% 89.94% 4954 5.84 

Hidden Nodes=80 
Learning Rate=0.05 98.94% 92.37% 4892 5.32 

Hidden Nodes=80 
Learning Rate=0.1 99.36% 95.84% 5103 4.97 

Hidden Nodes=100 
Learning Rate=0.01 97.25% 87.67% 5701 6.15 

Hidden Nodes=100 
Learning Rate=0.05 97.86% 89.54% 5394 5.87 

Hidden Nodes=100 
Learning Rate=0.1 98.58% 91.21% 5248 5.63 

In the experiment, we mapped the 16-dimensional data features to 48-dimensional data 
features using the one-hot encoding coding technology, which is used as the input of the 
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autoencoder. Therefore, the neural network classifier in this study has 48 input nodes and 2 
output nodes. In order to get a better training process, we set the number of hidden layer 
nodes in the neural network to 40, 60, 80, and 100 and the learning rate is also setting to 
0.01, 0.05, and 0.1 in the training process. Tab. 3 shows the classification accuracy and 
convergence time of the model under different parameters. 
 

 
Figure 17: The predicted results of the RPM using the proposed model 

 
Figure 18: Variance sequence of the RPM between the actual value and predicted value 

The experimental results in Tab. 3 show that when the hidden layer node is set to 80 nodes 
and the learning rate is set to 0.1, and the model has achieved a high accuracy regardless of 
whether it is the test set or the training set. Although the methods discussed in this study 
spend more time on the training model, we tried to use the GPU or offline method to carry out 
the corresponding training process for the model [Yin, Zhu, Fei et al. (2017); Kang and Kang 
(2016)]. At the same time, Tab. 3 also shows the autonomous feature learning ability of the 
sparse autoencoder and the consideration of the recurrent neural network for data timing 
characteristics. We can realize the real-time detection of abnormal data at the millisecond 
level. The comparison results between the predicted engine speed value and the actual value 
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using the proposed model are shown in Fig. 17. A small error is achieved between these 
values, and the accurate prediction of the data is realized. In order to make the error results in 
Fig. 17 easier to observe, Fig. 18 shows the variance sequence between the actual value and 
the predicted value about the engine speed. Therefore, using the advantages of deep learning 
in data set feature extraction and model classification, the model can significantly improve the 
accuracy of the detection efficiency and achieve a high accuracy and low false alarm rate. 

 

Figure 19: Influence of fake vehicle RPM data on vehicle speed 

Fig. 19 shows the signal graph generated when the vehicle driving data pass through the low-
pass filter after the forgery attack on the vehicle in the normal driving state. We see that after 
injecting the RPM forged data into the CAN bus, the calculated results showed they would 
have an impact on the other vehicle parameters, as well as an abnormal performance on the 
other parameters’ prediction. At this time, we can calculate the variance between the real value 
and the predicted value as a judgment value index. If the calculated variance is higher than a 
specific safety-critical value, such as the abnormal point in Fig. 19, we can determine the 
corresponding abnormal behavior. In this way, no matter which parameter of the vehicle is 
forged or attacked by the attacker, our model can detect the attack accurately with the help of 
the mechanical characteristics between the vehicle data. Based on these test results, we can 
take emergency response measures, such as informing the administrator to control the 
communication link of the vehicle, so as to ensure the external network security of the vehicle. 
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Figure 20: Confusion matrix corresponding to the test results 

 

Figure 21: ROC curves for in-vehicle intrusion detection performance 

 
Figure 22: Comparing the average processing time of different IDS models 
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Fig. 20 shows the confusion matrix of the detection results in terms of the proposed model 
for the test data set under the optimal parameter conditions. The experimental results show 
that the accuracy of the model is about 96%. In addition, we compared our IDS models 
with those in the literature [Medhat, Ramadan and Talkhan (2015); Ronak, Ganesh, Akshay 
et al. (2016); Peraković, Periša, Cvitić et al. (2017); Pavani and Damodaram (2013)], and 
the results are shown in Fig. 22. From Fig. 22, we can see that the average processing time 
of the proposed IDS model is significantly less than the relevant IDS model based on deep 
learning in several studies [Medhat, Ramadan and Talkhan (2015); Ronak, Ganesh, Akshay 
et al. (2016); Peraković, Periša, Cvitić et al. (2017); Pavani and Damodaram (2013)]. 
Similarly, we compared the proposed IDS model with the IDS model proposed in the 
literature [Medhat, Ramadan and Talkhan (2015); Ronak, Ganesh, Akshay et al. (2016); 
Peraković, Periša, Cvitić et al. (2017); Pavani and Damodaram (2013)] in terms of the 
detection efficiency. The experimental results are shown in Fig. 21. From the figure, we can 
see that the proposed scheme can achieve nearly 96% in terms of the TPR index, while only 
2%-3% in FPF, which means that it is achieving a lower false alarm rate. The figure shows 
that the model proposed in this study achieves a higher detection efficiency and lower false 
alarm rate compared with the IDS based on deep learning proposed by its predecessors. 

5 Conclusion 
Although our model has achieved encouraging results, we acknowledge that it is not perfect, 
and there is room for further improvement. The proportion of the Internet of Vehicles in 
people’s lives will increase with the continuous development and combination of 
information technology and automotive machinery technology. However, due to the special 
limitations of the Internet of Vehicles technology and the incompleteness of its existing 
security technology, government agencies and people of all countries should pay closer 
attention to the development trend of the Internet of Vehicles security issues. Therefore, 
based on the analysis of the current security problems of the vehicle network, we propose to 
use advanced autoencoder and recurrent neural networks to improve the detection rate of 
abnormal behaviors in the vehicle system. Through experiments that evaluated our 
proposed model using real ICV data, we found that the model can well classify vehicle 
behavior and improve the safety of the vehicle system to a large extent. In the future, we 
hope to further consider the use of other kinds of deep learning technology to ensure the 
safety of the in-vehicle system to find a more efficient solution, as well as to promote the 
use of these technologies with artificial intelligence methods in network security. We 
believe that this work can also improve the efficiency of network security problems. 
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