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Abstract: Ore image segmentation is a key step in an ore grain size analysis based on 
image processing. The traditional segmentation methods do not deal with ore textures and 
shadows in ore images well Those methods often suffer from under-segmentation and 
over-segmentation. In this article, in order to solve the problem, an ore image 
segmentation method based on U-Net is proposed. We adjust the structure of U-Net to 
speed up the processing, and we modify the loss function to enhance the generalization of 
the model. After the collection of the ore image, we design the annotation standard and 
train the network with the annotated image. Finally, the marked watershed algorithm is 
used to segment the adhesion area. The experimental results show that the proposed 
method has the characteristics of fast speed, strong robustness and high precision. It has 
great practical value to the actual ore grain statistical task. 
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1 Introduction 
In the mining industry, ore grain size is an important indicator to measure the quality and 
efficiency of the entire beneficiation process [Budzan and Marek (2018)].There are many 
methods for calculating ore grain size, and the measurement based on image 
segmentation has now become a key method. For the segmentation of ore images, many 
methods have been proposed, most of which is the combination of basic steps such as 
grayscale, normalization, filtering and watershed segmentation. Some people have tried 
to improve the existing algorithms, especially the watershed segmentation algorithm 
[Dong and Jiang (2014); Mohanapriya and Kalaavathi (2019)]. 
However, the methods mentioned above have many problems in terms of robustness and 
generalization. Due to the influence of the actual production environment, the stones in the 
ore image collected outdoors often overlap each other, and the surface of the stone often 

 
1 School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, 

100083, China. 
2 School of Computer and Communication Engineering, University of Science and Technology Beijing, 

Beijing, 100083, China. 
3 Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, 100083, China. 
4 Amphenol AssembleTech, Houston, 77070, USA. 
* Corresponding Author: Aziguli Wulamu. Email: aziguli@ustb.edu.cn. 
Received: 19 January 2020; Accepted: 04 May 2020. 



 
 
 
564                                                                              CMC, vol.65, no.1, pp.563-578, 2020 

has shadows and textures. The conventional methods of image processing often suffer from 
under-segmentation and over-segmentation when encountering such problems, and these 
methods rely on fine parameter adjustments, so their generalization is poor. 
In this case, we use deep learning to solve these problems. Deep learning has developed 
rapidly in the field of image processing in recent years. Among them, convolutional 
neural networks have the characteristics of accurate segmentation and strong robustness 
in semantic segmentation [Shelhamer, Long and Darrell (2017); Wu, Liu and Liu (2019)]. 
Therefore, we collect ore images for annotation, then train the modified U-Net 
[Ronneberger, Fischer and Brox (2015)], and combine the marked watershed algorithm to 
optimize the segmentation results of neural networks. The experimental results show that 
the proposed method has the characteristics of fast speed, strong robustness, high 
precision and the great practical value of the actual ore granularity statistical task. 
To sum up,  the main contributions of this work can be summarized as follow: (1) In 
response to the real time and generalization requirements of the ore grain size statistical 
task, we modify the structure and loss function of U-Net, which increases the processing 
speed of the network by 70% and enhance the performance while processing different 
types of ore images. (2) For the segmentation task, we collect ore images from different 
scenes, design the annotation method, selectively label the ore images and use it to train 
the improved U-Net. The experimental results show that the obtained model has high 
segmentation accuracy and robustness. (3) In view of the adhesive area problem of 
segmentation results, we use a marked watershed algorithm to optimize, which makes the 
method of this article have higher accuracy and practical value in a statistical sense. 
The rest of this article is organized as follows. The related work is summarized in Section 2, 
and the details of the proposed method are described in Section 3. The experimental results 
and discussion are presented in Section 4. Finally, the conclusion is drawn in Section 5. 

2 Related work 
2.1 Ore image segmentation method 
In literature, ore image segmentation methods can be summarized into two categories. 
The first category is based on handmade image features. The ore image is segmented by 
analyzing shallow features on the pixel level of the ore image, such as thresholds, edges, 
and regions. The second category is based on deep learning which uses a large number of 
depth features of images for processing. 
The first category of ore image segmentation methods is mostly based on the low order 
visual information of the image pixel itself. Therefore, these methods are difficult to 
achieve a satisfactory effect in the complex segmentation task such as ore image 
segmentation. Dong et al. [Dong and Jiang (2013)] proposed a complex ore image 
segmentation algorithm combining local adaptive thresholding and improved the 
watershed transform. The algorithm extracts the ore area by using the integral image and 
the local threshold, and combines the watershed transformation with the area combination 
to segment the image. The segmentation rate and the adaptability to illumination are 
improved, and the over-segmentation problem is effectively avoided, but the accuracy of 
the segmentation result needs to be improved. Zhang et al. [Zhang and Jiang (2011)] 
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achieve the marker watershed transformation based on distance transformation and 
morphological reconstruction by smoothing the image using a bilateral filter. This 
method can effectively reduce the over-allocation rate, but most of the thresholds in the 
algorithm are selected by manual debugging, and the robustness is poor. 
The second category, which is based on deep learning, usually achieves good results 
compared to traditional methods. Deep learning is a new idea for solving image 
segmentation in recent years. The image segmentation model with strong robustness can 
be obtained by studying a large number of samples. [Chen, Papandreou, Kokkinos et al. 
(2018); Badrinarayanan, Kendall, Cipolla et al. (2017); Zhao, Shi, Qi et al. (2017); Tian, 
He, Shen et al. (2019); Girshick, Donahue, Darrell et al. (2014)]. Yuan et al. used HED 
[Xie and Tu (2017)] to perform edge detection on ore images, then extracted the refined 
edges with a table lookup algorithm, and finally marked the connected regions and 
obtained segmentation results, which is better robust than traditional methods, but the 
result is not ideal [Yuan and Duan (2018)]. 
The method in this article is also based on deep learning. We use the modified U-Net to 
segment the ore image and then optimize it using a marked watershed algorithm. Not 
only has it achieved high segmentation accuracy, but it also improved the segmentation 
rate and adaptability to illumination, and it also has good generalization in ore images of 
different scenes. 

2.2 U-Net model 
U-Net is a segmentation network built on the FCN [Shelhamer, Long and Darrell (2017)] 
architecture, which is a typical encoder-decoder convolutional network. The author adds 
a number of feature channels to combine shallow features with deep features. Deep 
features are used for positioning and shallow features are used for precise segmentation. 
Its loss function is computed by a pixelwise softmax over the final feature map combined 
with the cross-entropy loss function. In order to reflect the importance of different pixels, 
the closer the distance is to the boundary of the target object, the greater the weight. 
U-Net is widely used in the field of medical imaging, thanks to its unique data 
augmentation. In the scenario of the actual application, the organ tissue in the human body 
will be in a different state of rotation at any time, and sometimes the shape will become 
distorted when it is squeezed by other organ tissues. Therefore, the author uses excess data 
augmentation by applying elastic deformations. In each round of training, the original 
image is stretched, scaled, and translated to greatly improve the accuracy of the model. 
The tasks we are dealing with have a lot of similarities to the segmentation tasks in the 
field of medical images. Firstly, the stacking of stones is very similar to the extrusion 
deformation of the tissue. Its data enhancement method is also applicable to the 
segmentation of ore images. Secondly, the gaps between the tissue and the gaps between 
the stones are closed and connected, belonging to a connected domain. They have a lot of 
semantic information similar to the edges inside the edges. For instance, in a cell image, 
there are some internal cell structure edges in the cell. And in the ore image, the ore 
surface also has some texture and shadow. 
Therefore, making training set and training on U-Net can achieve good results in our task. 
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Moreover, since the ore image segmentation task has high requirements for realtime and 
generalization in practice, we modify the structure of U-Net to speed up its processing 
without reducing the accuracy. We also do the loss function. The modification makes the 
model based on the same training set to achieve better generalization performance on the 
rock image of different scenes. 

2.3 Statistics of ore grain size 
Ore grain size is an important indicator to measure the quality and efficiency of the entire 
ore beneficiation process. First, in order to measure the size of the ore we have to choose 
a metric, such as the length and width of the circumscribed rectangle, and so on. Then the 
ore grain size statistical task is to count the number of ores in different size intervals. 
Through it, we can also detect whether there is ore beyond the alarm threshold. 

3 Proposed method 
The process of our proposed method is shown in Fig. 1. The whole process can be 
divided into four steps: (1) Image acquisition, (2) Image preprocessing, (3) Image 
segmentation, (4) Grain size analysis. Through step (1), we get the ore-image for 
preprocessing. After step (2), we use the trained U-Net for image segmentation and the 
watershed algorithm for optimization. The grain size can be analyzed by traversing the 
closed region of the obtained binary image. 

 

Figure 1: The process 

3.1 Image acquisition 
In order to solve the problem of inaccuracy caused by texture and shadow on the ore, we 
collect images under different lighting conditions from the production site for a total of 
1500. As shown in Figs. 2(a) and 2(b) are obtained under direct sunlight at different 
angles. (c) is obtained during the day without sunlight, and (d) is obtained under the light 
of lamps at night. After that, we convert the captured image to grayscale and intercept the 
region of interest. Then, we use bilateral filtering to denoise the image. Finally, we 
equalize the image histogram and complete the image preprocessing stage. 
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(a)                                (b)                                (c)                                (d) 

Figure 2: Image acquisition 

3.2 Image annotation 
In the traditional segmentation method, the problem of under-segmentation and over-
segmentation is often encountered. This is because the ore has a roundness. In the pictures 
taken by the camera, the ore is often stacked together, so the segmentation result of 
different stones may adhere too, which called the under-segmentation. And for the texture 
and shadows on the surface of the stone are very similar to the edges of the stone, they may 
be treated as gaps between the stones during the segmentation, causing over-segmentation. 
Based on the characteristics of this specific segmentation task, we design the annotation 
strategy. We define the gaps and the edges between different stones as the background 
class because their diversity at the pixel level is generally small. And the texture and 
shadow of the surface are usually inside the stone area, so we combine them with the 
stones as the foreground class. The semantic information of the stone itself allows the 
network to learn to distinguish between texture and edges. For the very thin edges 
between the stacked stones, we also annotate them as the background class and thicken 
them appropriately. 

    
(a)                                (b)                                (c)                               (d) 

Figure 3: Annotation result 

As shown in Fig. 3, no matter how small the pixel value on the stone surface is, as long as 
these pixel points belong to stone, they are marked as a whole; no matter how small the 
gap between the stones is, as long as it is completely separated, mark it as two stones. In 
other words, the labeling strategy is based on whether the edge of the stone is closed or 
not. The annotation process is done manually, (b) is the annotating result of (a) and (d) is 
the annotating result of (c) in Fig. 3. 
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The entire annotation process is iterative, which can reduce the workload and make the 
model very general and robust. We first select a small part of the ore image from the 
collected ore images for annotating, and make a training set to train the model. Then, using 
the trained model to process the remaining ore images, and a part of the images with results 
of poor prediction is selected for the next round of annotating. After repeating the iteration 
several times, we randomly crop each annotated image and resize the result to the same size, 
which enriches the multiscale information and increase the training set. 
In the experiment, we select 25 images for annotating and conduct the first round of 
training. Then we use it to process the remaining images, select out 10 to 20 images with 
the effects of the worst prediction, and carry out the second round of annotating and 
training. The whole process has gone through six rounds, and a total of 78 images have 
been selected. The training set finally obtained after random crops with a total of 258 
annotated images. 

3.3 Modification on U-Net 
In response to the realtime and generalization requirements of the ore grain size statistical 
task, we modify the structure and loss function of U-Net. 
In the original U-Net structure, the resolution of the input image is 572×572, while the 
output is 388×388 because of the crop operation. However, in actual scenes, the size of 
the ore is usually no more than 1 meter. Using 1 pixel to represent 1 cm in the actual 
scene can meet the basic needs of statistical tasks, which does not pay attention to the 
number of tiny stones. Therefore, we reduce the resolution of the input image to 256×256 
and also reduce the inference time of the network. We also delete the crop operation in 
the original network. This is because the crop operation will reduce the resolution of the 
segmentation result, resulting in a loss of semantic information and affecting the accuracy 
of statistical tasks. Under the modifications mentioned above, the classic U-Net structure 
is shown in Fig. 4.  
Moreover, in order to improve the processing speed without reducing the accuracy of the 
model, we also adjust the convolution at every stage, using deeper features to reduce the 
total amount of parameters. The most intuitive way is to halve the number of convolution 
kernels in each layer of the network, as shown in Fig. 5(a). We define it as operation A. 
However, this operation may reduce the accuracy of the network. To compensate for this 
reduction, we can increase the number of convolution operations at each stage, making 
the network deeper. We define it as operation B, as shown in Fig. 5(b). Operation B adds 
1 convolution operation to each stage. 

We use c to indicate the number of U-Net convolution kernels in the first stage. If operation 
A is performed such that c is reduced, each layer of the network will reduce the 
corresponding ratio. The number of convolution operations at each stage is indicated by d. 
Then the classic U-Net structure can be represented by 64c×2d. By performing different 
combinations of operations A and B, we have designed several sets of experiments. After 
the experiments, we obtain the structure with the best performance of 16c×4d, and set it as 
our proposed model. The number of convolution operations between every stage is changed 
from 2 to 4, and the feature maps generated per convolution are decreasing to a quarter.
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Figure 4: Classic U-Net structure 

 
(a)                                                                   (b) 

Figure 5: Operation A and B 

As for the loss function, we modify it from two aspects. Firstly, in the actual scene, there 
is a large amount of texture and shadows on the surface of stones, especially in the case 
of uneven illumination. The neural network may separate such stones into several regions 
because of the overfitting, causing over-segmentation. To avoid it, we add the influence 
of uniform distribution on the loss function. Secondly, the sample capacity of the 
foreground in the annotated image is much larger than the background, and the training 
of the background target is the key to solving the under-segmentation problem. In order 
to equalize the foreground and background in sample capacity, we increase the weight of 
the background. The details of our loss function are described below and we will show 
the benefits of this modification through a contract experiment in Section 4. 
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Let 𝑎𝑎𝑘𝑘(𝑥𝑥) denotes the activation in feature channel 𝑘𝑘 at the pixel position 𝑥𝑥 ∈ Ω with 
Ω ⊂ 𝑍𝑍2and the number of classes is 𝐾𝐾. The softmax is defined as follow: 
𝑝𝑝𝑘𝑘(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒( 𝑎𝑎𝑘𝑘(𝑥𝑥))/(∑ 𝑒𝑒𝑒𝑒𝑒𝑒( 𝑎𝑎𝑘𝑘′(𝑥𝑥))𝐾𝐾

𝑘𝑘′=1 )                 (1) 
Then we use cross entropy to calculate 𝐸𝐸𝐿𝐿  and 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 . 𝐸𝐸𝐿𝐿  denotes the cross entropy 
between 𝑝𝑝𝑘𝑘(𝑥𝑥) and true label distribution at every pixel position of Ωwhile 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 is the 
cross entropy of 𝑝𝑝𝑘𝑘(𝑥𝑥) and uniform distribution. Their expressions are shown as follow: 
𝐸𝐸𝐿𝐿 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑙𝑙(𝑥𝑥)(𝑥𝑥))𝑥𝑥∈𝛺𝛺                          (2) 

𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝐾𝐾
∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑘𝑘′(𝑥𝑥))𝐾𝐾

𝑘𝑘′=1𝑥𝑥∈𝛺𝛺                       (3) 

And 𝑙𝑙: 𝛺𝛺 → {1, . . . , 𝐾𝐾}is the true label of each pixel. We define𝑓𝑓𝑘𝑘  as the frequency of 
pixels belong to class k , which is obtained by calculating average on the entire 
annotated training set. Thus, our loss function is: 

𝐸𝐸 = 1
𝑓𝑓𝑙𝑙(𝑥𝑥)

(𝐸𝐸𝐿𝐿 + 𝑏𝑏𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴)=∑ 1
𝑓𝑓𝑙𝑙(𝑥𝑥)

(𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑙𝑙(𝑥𝑥)(𝑥𝑥)) + 𝑏𝑏
𝐾𝐾
∑ 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑘𝑘′(𝑥𝑥))𝐾𝐾
𝑘𝑘′=1𝑥𝑥∈𝛺𝛺 )     (4) 

where 𝑏𝑏 is a hyperparameter and we set it to 0.1 during training. 

3.4 Marked watershed algorithm 

We use a watershed algorithm for binary images to further deal with under-segmentation 
problems. Refer to the method in Zhang et al. [Zhang and Jiang (2011)], which achieves 
the marker watershed transformation based on morphological reconstruction. In this 
article, we perform morphological reconstruction on the obtained binary image and use it 
as a mark image to optimize the segmentation result. The small connections between 
different regions can be cut off through this, which has a great improvement in the 
accuracy of the statistical results.  

4 Experiments 
4.1 Implementation details 
The experiment of U-Net image segmentation is conducted under the deep learning 
framework TensorFlow. The network model is trained and tested by GPU with the model 
GeForce GTX 1080Ti. In Python3.5 environment, combined with image processing 
libraries such as OpenCV and Skimage, image processing, watershed optimizing and 
connected region markers are programmed. All our network models are trained with the 
annotation data set mentioned above with the same parameter settings, and the training 
parameters are shown in Tab. 1. We use AMSGrad as the optimize algorithm. The ‘lr’ 
represents the basic learning rate; ‘beta_1’ and ‘beta_2’ represent the attenuation 
coefficient of AMSGrad; ‘steps_per_epoch’ represents the number of iterations per epoch, 
and the maximum number of iterations is 50000 since epochs=50. Each iteration takes 
approximately 1 s. When the training iteration has reached 40000, the convergence is 
basically completed. 
We also apply data augmentation of U-Net during training. The ‘rotation_range’ 
represents the angle of random rotation; ‘width_shift_range’ represents the amplitude of 
the random horizontal offset; ‘height_shift_range’ represents the amplitude of the random 
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vertical offset; ‘shear_range’ represents the degree of random shear transformation; 
‘zoom_range’ represents the magnitude of the random scaling of the image. 

Table 1: Training parameters 
Parameter name Value 
lr 0.0001 
beta_1 0.9 
beta_2 0.9 
steps_per_epoch 1000 
epochs 50 
rotation_range 0.2 
width_shift_range 0.05 
height_shift_range 0.05 
shear_range 0.05 
zoom_range 0.05 

 
4.2 Evaluation metrics 
To prove the generalization of our model, we annotate the ore image download from the 
web and make it our test set. For the several modified and classic U-Net, we train them 
all and apply them on the test set. 
First of all, we define the standard for calculating the Statistics of ore grain size. When 
using the segmented image for grain size statistics, it is necessary to traverse the closed 
region in the image to obtain the area of them. Using the obtained region area 𝑆𝑆, the 
number of pixels belonging to a closed region in the segmented image, we can calculate 
the grain size 𝐷𝐷 by Eq. (5): 

𝐷𝐷 = 2�𝑆𝑆
𝜋𝜋
�
1
2                               (5) 

After getting the grain size, we need to define its statistical interval. We use 1 pixel to 
represent 1 cm. Since the grain size of a piece of ore is usually less than 160 cm, 160-256 
of 𝐷𝐷 is defined as a statistical interval. Setting a statistical interval every 20 between 0 
and 160 can basically meet the needs of the statistical tasks. Finally, the total amount of 
ore needs to be counted as a statistical interval as well.  
Since the ultimate goal of ore grain size statistics is to count the cumulative size 
distribution, we calculate the average of all the test results, and the result of annotation 
images is used as a reference. 
In order to evaluate the performance of the proposed method, we have to define several 
metrics. Accuracy and Recall are common metrics in traditional segmentation networks. 
Accuracy is defined as the number of correct pixels in the segmentation result divided by 
the total number of pixels. And we calculate the Recall from the point of view of the 
foreground class, and it is defined as the number of correct pixels belonging to the 
foreground in the segmentation results divided by the number of pixels in the annotation 
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images that belong to the foreground. This metric reflects the correctness of the model for 
foreground detection. 
Then we define the error of average statistical of the ore grain size statistics, denoted by 
ASE. In each interval, we count the absolute value of the difference between the 
statistical quantity of ore and the actual quantity and divide it by the latter. ASE is 
obtained by calculating the mean of each interval. This metric reflects the deviation of the 
analyzed grain size distribution from the actual distribution. The smaller the value, the 
better the result. It is the core metric of the ore grain size statistical task. 

4.3 Results and evaluation 
Then we compare the images generated in every experiment with the annotation images 
using the metrics defined before. In experiment 1, we gradually perform operation A on 
the classical U-Net, and obtain four model structures of 64c×2d, 32c×2d, 32c×2d and 
32c×2d according to the expression defined in section 3.2. For models that use the loss 
function defined in Section 3.3, add -l to the end of the expression. All models are trained 
using the same parameters and training sets. The training accuracy of each model in 
experiment 1 is shown in Fig. 6, which gradually decreases due to operation A, and the 
loss function in our article can slightly improve the convergence speed of the model. 

 

Figure 6: Training accuracy of the experiment 

Tab. 2 shows the statistical results with ASE of different models on the test set. With the 
increasing use of operation A, the statistical results are also gradually getting worse, 
while using the loss in this article has improved the statistical results under various 
conditions. This proves the effectiveness of our proposed loss function. 
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Table 2: Statistics of ore grain size in experiment 1 

Models 0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160+ Total ASE 

label 660 304 94 38 20 18 4 8 2 1148 0 
64c × 2d 500 263 75 40 25 19 10 6 4 942 0.2981 

64c × 2d-l 484 255 76 44 20 17 9 6 5 916 0.2739 
32c × 2d 428 238 86 43 24 14 8 8 6 855 0.2826 

32c × 2d-l 424 252 73 46 19 15 8 6 8 851 0.3165 
16c × 2d 262 180 63 28 30 16 7 6 11 603 0.4440 

16c × 2d-l 373 256 64 51 24 13 7 5 9 802 0.3692 
8c × 2d 259 155 37 32 29 13 8 2 16 551 0.5928 

8c × 2d-l 302 219 73 43 25 15 8 6 9 700 0.3802 

In experiment 2, we gradually perform operation B on different structures in experiment 
1 with the proposed loss function. Fig. 7 shows the training accuracy varies with different 
parameter d in experiment 2. It can be seen from Figs. 7(a) and (b) that operation B can 
increase the accuracy and make up for the decline caused by operation A. But in Fig. 7 
(a), the accuracy of the model decreases when d=4 is increased to d=5, which indicates 
that operation B does not lead to continuous improvement. 

   
(a)                                                                     (b) 

Figure 7: Training accuracy of experiment 2 

Tab. 3 shows the statistical results with ASE in experiment 2. Under the condition of 
c=32, the effect of the model gradually deteriorates with the increase of d, which 
confirms that the effect of operation B is related to the parameter c of the network. In the 
case of c=16 and c=8, d=4 achieves the best ASE respectively. 
In experiment 3, we apply the watershed operation mentioned in Section 3.4 to a different 
model, and use -w to represent the model using watershed operation. The effect of 
watershed optimization in this article is shown in Fig. 8, many small connections are cut 
off, and the several regions will not be considered as a whole area in statistics. This 
operation has a great effect on improving the performance of our methods on ore grain 
size statistical tasks. 
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Table 3: Statistics of ore grain size in experiment 2 

Models 0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160+ Total ASE 

label 660 304 94 38 20 18 4 8 2 1148 0 
32c×2d-l 424 252 73 46 19 15 8 6 8 851 0.3165 
32c×3d-l 505 272 83 42 24 15 12 5 4 962 0.3546 
32c×4d-l 511 230 78 39 23 10 10 2 10 913 0.4238 
16c×2d-l 262 180 63 28 30 16 7 6 11 603 0.4440 
16c×3d-l 462 267 63 40 23 16 11 4 4 890 0.3585 
16c×4d-l 460 265 90 37 22 16 11 5 5 911 0.3213 
16c×5d-l 442 224 82 44 20 14 12 3 7 848 0.4272 
8c×2d-l 302 219 73 43 25 15 10 6 9 700 0.4300 
8c×3d-l 437 254 87 30 27 19 9 2 9 869 0.3863 
8c×4d-l 418 216 84 27 22 20 9 1 6 803 0.3814 
8c×5d-l 446 208 67 35 24 16 10 3 5 814 0.3836 

 

    
(a)                               (b)                                (c)                               (d) 

Figure 8: Effect of watershed 

Tab. 4 shows the statistical results before and after the watershed in experiment 3. We 
use ASE as the final evaluation metric. “Time” is the time required for the method to 
process a picture. Because of the running time of the watershed algorithm on our 
platform is 16ms, so the method using the watershed algorithm increased the time by 
16ms. “Complexity” represents the number of parameters of the model, which is 
proportional to the inference time. In the model that does not use watershed algorithm, 
the classic U-Net structure achieves the best result, with the inference time of 46ms and 
ASE of 0.2739. The 8c×4d-l-w model (using watershed algorithm) has a running time of 
32ms and ASE of 0.2016. The running time of 32c×2d-l-w model is 30ms and ASE is 
0.1920. The running time of 16c×4d-l-w model is 34ms and ASE is 0.1612. It can be 
seen that the 16c×4d-l-w model achieves the best performance. 
We can see here a promising improvement by modification. Compared with the classic u-
net structure without watershed, the proposed method has improved ASE metric by 11.27% 
and running speed by 26.09%. Even with watershed processing, the classical U-Net 
structure is only 0.2009 on ASE, but the processing time is added to 62ms, which confirms 
the efficiency of our modifications. 
Moreover, we also compare the average Recall and average Accuracy of different models 



 
 
 
Ore Image Segmentation Method Based on U-Net and Watershed                          575 

on the test set. As shown in Tab. 5, it can be seen that operation A can decrease the ASE 
performance of the model. But the average Accuracy and average Recall on the test set of 
the several models are very close, which indicates that the key to the ore grain statistics 
task is to solve the over-segmentation and under-segmentation problems in the 
segmentation process, rather than the accuracy of segmentation. 

Table 4: Statistics of ore grain size in experiment 3 
Models Complexity Time 0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160+ Total ASE 

label 
64c×2d-l 

/ 
31M 

/ 
46ms 

600 
484 

304 
255 

94 
76 

38 
44 

20 
20 

18 
17 

4 
9 

8 
6 

2 
5 

1148 
916 

0 
0.2739 

64c×2d-l-w 31M 62ms 577 303 96 32 21 17 9 6 3 1064 0.2009 

32c×2d-l 7.7M 14ms 424 252 73 46 19 15 8 6 8 851 0.3165 

32c×2d-l-w 7.7M 30ms 518 300 87 39 22 18 8 6 4 1002 0.1920 

16c×2d-l 1.9M 9ms 373 256 64 51 24 13 7 5 9 802 0.3692 

16c×2d-l-w 1.9M 25ms 465 287 80 40 22 16 8 7 5 930 0.2318 

8c×2d-l 0.48M 4ms 302 219 73 43 25 15 10 6 9 702 0.4300 

8c×2d-l-w 0.48M 20ms 396 296 85 39 25 15 7 6 7 876 0.2588 

32c×3d-l 11.7M 18ms 505 272 83 42 24 15 12 5 4 962 0.3546 

32c×3d-l-w 11.7M 34ms 618 327 78 44 23 16 7 4 4 1121 0.2047 

16c×3d-l 2.9M 15ms 462 267 63 40 23 16 11 4 4 890 0.3585 

16c×3d-l-w 2.9M 31ms 550 286 73 34 22 17 9 2 4 997 0.2819 

8c×3d-l 0.73M 8ms 437 254 87 30 27 19 9 2 9 869 0.3863 

8c×3d-l-w 0.73M 24ms 503 303 78 40 24 17 8 4 3 979 0.2320 

32c×4d-l 15.6M 27ms 511 230 78 39 23 10 10 2 10 913 0.4238 

32c×4d-l-w 15.6M 43ms 618 283 92 35 21 15 10 6 5 1085 0.2459 

16c×4d-l 3.9M 18ms 460 265 90 37 22 16 11 5 5 911 0.3213 

16c×4d-l-w 3.9M 34ms 512 305 91 38 20 20 7 5 3 1001 0.1612 

8c×4d-l 0.97M 16ms 418 216 84 27 22 20 9 1 6 803 0.3814 

8c×4d-l-w 0.97M 32ms 492 257 90 25 22 17 6 4 2 915 0.2016 

16c×5d-l 4.8M 25ms 442 224 82 44 20 14 12 3 7 848 0.4272 

16c×5d-l-w 4.8M 41ms 527 269 83 39 23 17 9 6 4 977 0.2428 

8c×5d-l 1.2M 23ms 446 208 67 35 24 16 10 3 5 814 0.3836 
8c×5d-l-w 1.2M 39ms 498 245 63 39 24 17 7 4 3 900 0.2472 

Table 5: Recall and Accuracy on test set 

Models 64c×2d 32c×2d 16c×2d 8c×2d 

Recall (%) 0.8787 0.8687 0.8569 0.8503 
Accuracy (%) 

ASE (%) 
0.8382 
0.2981 

0.8351 
0.2826 

0.8452 
0.4440 

0.8419 
0.5928 

Finally, in order to prove the superiority of our method, we complete a comparative 
experiment. As shown in Fig. 9, segmentation result of our proposed method is compared 
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with the result of the watershed transform based on the gradient correction method. 

    
(a)                              (b)                                (c)                                (d) 

Figure 9: Segmentation results 
In Fig. 9, (a) is the preprocessed image, (b) is the segmentation result of our modified U-
Net (16c×4d-l), and compared with the unmodified result (c) (64c×2d), it can be seen that 
the improvement of this article has achieved good results on the over-segmentation 
problem. The model does not separate the texture and shadow of the stone surface as 
edges. And (d) is the result of the watershed transformation based on the gradient 
correction method (WGC). Intuitively, the proposed method has a better segmentation 
effect. The statistical results of the experiment are shown in Tab. 6. The ASE of our 
method is 0.1612, while the traditional method is 0.5073, which strongly proves the 
superiority of the method in this article. 

Table 6: Comparison with traditional methods 

Models 0-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160+ Total ASE 

Label 660 304 94 38 20 18 4 8 2 1148 0 

WGC 725 427 123 54 32 24 14 8 0 1407 0.5073 
64c×2d 500 263 75 40 25 19 10 6 4 942 0.2981 

64c×2d-l-w 577 303 96 32 21 17 9 6 3 1064 0.2009 
16c×4d-l-w 512 305 91 38 20 20 7 5 3 1001 0.1612 

5 Conclusion 
This article collects a variety of ore images, creates an annotated dataset, and uses the 
neural network-based U-Net model as well as marked watershed to address the problem 
of over-segmentation and under-segmentation in the task of ore image segmentation. This 
process achieves the purpose of image segmentation of ore images in outdoor 
environments. The experimental results show that the proposed method has the 
characteristics of fast speed, strong robustness and high precision. It has great practical 
value for the actual ore grain statistical task. 
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