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Abstract: Time series classification (TSC) has attracted various attention in the 
community of machine learning and data mining and has many successful applications 
such as fault detection and product identification in the process of building a smart 
factory. However, it is still challenging for the efficiency and accuracy of classification 
due to complexity, multi-dimension of time series. This paper presents a new approach 
for time series classification based on convolutional neural networks (CNN). The 
proposed method contains three parts: short-time gap feature extraction, multi-scale local 
feature learning, and global feature learning. In the process of short-time gap feature 
extraction, large kernel filters are employed to extract the features within the short-time 
gap from the raw time series. Then, a multi-scale feature extraction technique is applied 
in the process of multi-scale local feature learning to obtain detailed representations. The 
global convolution operation with giant stride is to obtain a robust and global feature 
representation. The comprehension features used for classifying are a fusion of short time 
gap feature representations, local multi-scale feature representations, and global feature 
representations. To test the efficiency of the proposed method named multi-scale feature 
fusion convolutional neural networks (MSFFCNN), we designed, trained MSFFCNN on 
some public sensors, device, and simulated control time series data sets. The comparative 
studies indicate our proposed MSFFCNN outperforms other alternatives, and we also 
provided a detailed analysis of the proposed MSFFCNN.  
 
Keywords: Time Series Classifications (TSC), smart factory, Convolutional Neural 
Networks (CNN). 

1 Introduction 
Time series classification (TSC) is one of the critical factors for implementing smart 
factories in industry 4.0 due to many time series generated from the process of global 
production every day and everywhere, such as vibration signals and all kinds of sensor data: 
humidity sensor data, speed sensor data etc. All those data generated from machines react to 
the status of the machine or surroundings. By predicting the future status of machines and 
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surroundings, decision-makers could make a reasonable adjustment in advance to avoid 
failure and downtime. Therefore, it enables the company and factory to increase production 
efficiency and save production costs. More importantly, ensure personal safety. Developing 
an accurate approach for TSC is the key to reach this achievement.  
TSC consists of distance-based methods, feature-based methods [Xing, Pei and Keogh 
(2010); Zheng, Liu, Chen et al. (2014); Cui, Chen and Chen (2016)], and machine 
learning-based methods. Distance-based methods such as k-nearest neighbor (KNN) and 
support vector machine (SVM) could be used for TSC directly on raw time series by 
calculating the similarity or dissimilarity between two time-sequences. The measurement of 
calculating the similarity is defining the distance function, such as Manhattan distance, 
Euclidean distance, and maximum distance etc. However, Both KNN and SVM [Chen, Xu, 
Zuo et al. (2019)] require equal length and are sensitive to the dimension of the time series. 
To overcome the above shortcomings, Batista et al. [Batista, Wang and Keogh (2011)] 
proposed the Dynamic Time Warping (DTW) to perform time series classification. 
Additionally, combining the KNN and DWT can effectively improve prediction accuracy 
[Chotirat and Eamonn (2005)]. It is still problematic that DWT requires too many time and 
computing resources [Zheng, Liu, Chen et al. (2014)].  
The key idea of feature-based methods for TSC is capturing most representations of raw 
time series. Some statistical components such as mean, standard deviation, maximum 
value, minimum value, skewness etc. have been applied as statistical-domain features for 
TSC [Lei and Wu (2020)]. Meanwhile, the lower-dimensional reshaped time series has 
been employed as a feature representation for TSC. Principle component analysis (PCA) 
was employed for TSC [Li (2015); Cao, Tian and Bai (2015)] due to it has an excellent 
dimensionality reduction capacity. To obtain rich and robust feature representations, 
transformation-based methods have been proposed for time series classification such as 
Fourier transform (FT), Fast Fourier transform (FFT) and wavelet transform (WT) 
[Hendrik (2008); Zhang, Ho, Lin et al. (2006)]. They transform the raw time series from 
time-domain into frequency-domain to find the strong, and novel feature expression for 
accurately classifying time series. The useful information of the transformed signal is 
highly concentrated on the low-frequency part, but the noise on the high-frequency part. 
The transformation as mentioned above consists of discrete and continue transforms (DT 
and CT). Generally, CT requires more computing resources and time than DT. After 
feature selection, applying one classifier such as logistic and SVM to classify the time 
series. Recently, another feature-based method shapelet has proven that it is powerful for 
TSC [Arathi and Govardhan (2015); Hills, Lines, Baranauskas et al. (2014); Ahn and Lee 
(2018)] and became popular. The above methods only use one single model for TSC may 
lose some critical information. Therefore, some ensemble approaches combine multiple 
classifiers have been proposed for time series classification and have achieved excellent 
performance [Wang, Yan and Oates (2017)]. For instance, the Elastic Ensemble (PROP) 
[Lines and Bagnall (2015)] combines 11 classifiers using elastic distance measures in a 
weighted ensemble scheme; The flat collective of transform-based ensembles (COTE) 
combines 35 different classifiers by extracting features from the time-frequency domain 
[Bagnall, Lines, Hills et al. (2015)]. However, all those methods need crafted feature 
selection and are time-consumption when having massive data, respectively. 
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Recently, the machine learning-based method for TSC has extracted various attention. 
Tradition machine learning methods contain SVM, decision tree, and random forest (RF). 
Although they can implement TSC without feature selection engineering, the 
performance is still deficient, which cannot satisfy our needs. Fortunately, the new deep 
learning-based method gives us a new choice. Notably, the convolutional neural network 
(CNN) has been a hot topic for TSC due to its black-box and dominant feature extraction 
characteristics. In CNN, extracted deep and robust features are fed into classifier 
automatically, that is, feature selection and classifying are integrated into one single 
framework for TSC. Follows are some CNN-based methods which already achieved great 
success in the domain of TSC. i.e., Cui et al. [Cui, Chen and Chen (2016)] proposed a 
multi-scale CNN (MCNN) for TSC and verified its excellent performance through 44 
UCR time series archives. However, we still need to execute some extra transforms to 
obtain multi-scale feature representations. To avoid extra operations simultaneously 
keeping high performance, Wang et al. [Wang, Yan and Oates (2017)] developed three 
deep learning-based methods: Fully CNN (FCNN), deep multilayer perceptron (MLP), 
and the residual networks (ResNet). They evaluated and analyzed those three methods on 
the same benchmark datasets to Cui’s paper [Cui, Chen and Chen (2016)], the 
comparative experiments indicate the premium performance of FCNN. Zhao et al. [Zhao, 
Lu, Chen et al. (2017)] applied a classic CNN architecture for TSC and tested on UCR 
and simulated data sets. The biggest challenge of TSC using UCR achieves [Chen, Keogh, 
Hu at al. (2016)] is that training sets are much less. However, most of CNN architectures 
need to train the model with massive data. Cui et al. [Cui, Chen and Chen (2016)] proposed 
a sliding window (SW) data augmentation technology to generate more data sets. 
Besides, Guennec et al. [Guennec, Malinowski and Tavenard (2016)] employed a 
window warping (WW) method for data augmentation and compared with SW. The 
above methods only focused on univariate TSC (UTSC). As a matter of factor, time 
series that occurred in real-life may be multivariate. To deal with multivariate time series, 
Zheng et al. [Zheng, Liu, Chen et al. (2014)] proposed a multi-channel deep CNN 
(MCDCNN) for MTSC. Two channels were adopted to extract features in his paper, and 
they treated one-source time series as one channel to extract represented region 
individually. Extracted features are combined by one full connection layer. Liu et al. 
designed a multivariate CNN (MVCNN) for fault detection on prognostics and health 
management (PHM) data set [Liu, Hsaio and Tu (2019)]. In his paper, multi-source time 
series is transformed into three-dimensional (3-D) tensor as the input and then adopted 
MVCNN with four stages to capture the rich features for MTSC. Motivated by MCNN 
[Cui, Chen and Chen (2016)], Jiang et al. proposed [Jiang, He, Yan et al. (2018)] 
multi-scale CNN (MSCNN) for fault diagnosis of wind turbine gearbox, in which, the 
authors adopted three scales of the mean of each time series at different time gap for 
feature extraction. However, it did not test in the case of using a lack of data to train the 
model. Yazdanbakhsh et al. [Yazdanbakhsh and Stick (2019)] proposed a dilated 
convolutional neural network for MTC and validated its effectiveness on two human 
activity recognition time series (WISDM v1. 1 [Kwapisz, Weiss, Moore et al. (2011)] and 
WISDM v. 2 [Lockhart, Weiss, Xue et al. (2011)]). However, the accuracy is still lower 
than some traditional feature-based methods. The main related works for TSC using 
CNN-based methods as summarized in Tab. 1. 
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Table 1: Main related CNN-based methods for TSC 
Paper Classifier Dataset Type 

[Zheng, Liu, Chen et al. (2014)] MCDCNN 
PAMAP2/ 
BIDMC 

MTSC 

[Cui, Chen and Chen (2016)] MCNN UCR UTSC 
[Guennec, Malinowski and 
Tavenard (2016)] t-leNet-DM+SVM UCR UTSC 

[Wang, Yan and Oates (2017)] FCNN, MLP, ResNet UCR UTSC 

[Zhao, Lu, Chen et al. (2017)] Classic CNN (CCNN) 
UCR/ 
simulated data 

Both 

[Jiang, He, Yan et al. (2018)] MSCNN - UTSC 
[Liu, Hsaio and Tu (2019)] MVCNN PHM2015 MTSC 

[Yazdanbakhsh and Stick (2019)] Dilated CNN WISDM v1.1/ 
WISDM v. 2 

MTSC 

From Tab. 1, we can see most of the CNN-based research focused on one type of TSC, 
only Zhao et al. [Zhao, Lu, Chen et al. (2017)] employed classical CNN to do both them. 
Another drawback of the current CNN-based methods for TSC we discussed above is they 
still need other transformation or preprocessing operations. Moreover, some of them cannot 
deal with fewer data, as well. Motived by this, we designed, trained, and evaluated 
MSFFCNN to deal with those issues without any handcrafted feature engineering. We 
double that the reason for the above issues existing is cannot mine rich, robust, and detailed 
key representations of raw time series. Therefore, in our proposed model, we adopted a 
cascading structure to capture abundant feature maps. The main contributions of the 
manuscript are summarized as follows: 
• To the best of our understanding, a few types of research focused on using one 
CNN-based model for both UTSC and MTSC. This paper addresses this issue with 
MSFFCNN. 
• The cascading structure of MSFFCNN is detailly designed, trained, and verified on 
both univariate and multivariate time series. The comparative studies indicate our proposed 
method outperforms other excellent methods without special preprocessing operations.  
• The feature learning capacity of the proposed method is analyzed and learned inner 
feature map is visualized.  
The rest of the paper is arranged as follows. Section 2 gives the problem definition of TSC. 
Section 3 introduces CNN for TSC and depicts the proposed framework. Detailed experiment 
verifications are carried out in Section 4. In Section 5, we discuss the effectiveness of the 
proposed MSFFCNN. At last, we present the conclusions of this manuscript. 

2 Problem definition  
The TSC problem is to predict the label of the time series, which could be subdivided 
into UTSC and MTSC according to the dimensions of time series. The univariate time 
series in smart factory mainly are vibration signals could be expressed as a sequence of 
real-valued data points at different timestamps, which could be written as Eq. (1). Where 
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𝑛𝑛 is the length of timestamps, 𝑡𝑡𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎ data point of vibration signal 𝑈𝑈𝑇𝑇. We 
give the detailed definition of two types of TSC problems as follows. 
𝑈𝑈𝑇𝑇 = {𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝑖𝑖,⋯ , 𝑡𝑡𝑛𝑛}                                                (1) 
Definition 1: The UTSC problem is considered as a vibration signal regarding a label that 
could be formalized as 𝑈𝑈𝐷𝐷𝑖𝑖 = {(𝑈𝑈𝑇𝑇𝑖𝑖,  𝐿𝐿𝑖𝑖)|𝑈𝑈𝑇𝑇𝑖𝑖 ∈ 𝑈𝑈𝑇𝑇  𝐿𝐿𝑖𝑖 ∈ 𝑍𝑍∗} . Where 𝑈𝑈𝐷𝐷𝑖𝑖  is a 
complete data sample including vibration signal, and regarding label 𝐿𝐿𝑖𝑖  must be a 
positive integer, the number of 𝐿𝐿𝑖𝑖 depends on how many statuses it has in a real-case 
production environment. The whole data set is formalized as 𝑈𝑈𝐷𝐷 = {𝑈𝑈𝐷𝐷1, 𝑈𝑈𝐷𝐷2,
𝑈𝑈𝐷𝐷3, … , 𝑈𝑈𝐷𝐷𝑖𝑖, … ,𝑈𝑈𝐷𝐷𝑛𝑛}, where 𝑛𝑛 is samples of data set. 
Definition 2: The multivariate time series is a set of univariate time series with the same 
timestamps that can be detonated as Eq. (2). where 𝑚𝑚 is the number of univariate time 
series. Empathy, the MTSC problem could be formalized as 𝑀𝑀𝐷𝐷𝑖𝑖 = {(𝑀𝑀𝑇𝑇𝑖𝑖,  𝐿𝐿𝑖𝑖)|𝑀𝑀𝑇𝑇𝑖𝑖 ∈
𝑀𝑀𝑇𝑇  𝐿𝐿𝑖𝑖 ∈ 𝑍𝑍∗}. The whole data set could be written as 𝑀𝑀𝐷𝐷 = {𝑀𝑀𝐷𝐷1, 𝑀𝑀𝐷𝐷2, 𝑀𝑀𝐷𝐷3, … ,
𝑀𝑀𝐷𝐷𝑖𝑖, … ,𝑀𝑀𝐷𝐷𝑛𝑛}. In this paper, we will apply UCR data sets for UTSC verification and 
real-life multivariate time series for MTSC verification.  
𝑀𝑀𝑇𝑇 = {𝑈𝑈𝑇𝑇1,𝑈𝑈𝑇𝑇2,⋯ ,𝑈𝑈𝑇𝑇𝑖𝑖,⋯ ,𝑈𝑈𝑇𝑇𝑚𝑚}                                         (2) 

3 Methods 
This paper proposed a novel MSFFCNN model to solve the TSC problem without any 
handcrafted feature engineering operations. The following two subsections give the 
related pre-knowledge of CNN and a detailed description of the proposed MSFFCNN.   

3.1 CNN 
CNN is proposed by Lecun et al. [Lecun, Bengio and Hinton (2015)], it is a typical 
feedforward neural network and mainly employed for image classification, object 
detection. The standard CNN consists of two critical components: convolutional layer 
and pooling layer. Those two layers alternatively occurred in the CNN structure to extract 
rich feature maps within one sparse expression. The convolutional layer has properties of 
weights sharing, transformation, and scaling invariance. Consequently, it could extract 
robust feature representations. The process of convolution, as shown in Eq. (3). Where 
𝑥𝑥𝑖𝑖 is 𝑖𝑖𝑡𝑡ℎ input data points in the range of 𝑗𝑗 input values 𝑀𝑀𝑗𝑗, 𝑦𝑦𝑖𝑖 is the 𝑗𝑗 feature maps 
after convolution operation with 𝑗𝑗 filters 𝑘𝑘𝑖𝑖𝑗𝑗, 𝑏𝑏𝑗𝑗 is 𝑗𝑗 basis of each feature map. 
𝑦𝑦𝑗𝑗 = 𝑓𝑓(∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑀𝑀𝑗𝑗 × 𝑘𝑘𝑖𝑖𝑗𝑗 + 𝑏𝑏𝑗𝑗)                                                 (3)  

After convolution operation, the convoluted data are processed with one activation 
function. This will make some data points active randomly to achieve the sparse 
representation. One of the most popular activation functions is the Rectified Linear Unit 
(ReLU), which enabled a nonlinear expression of input signals to enhance the 
representation ability, as shown in Eq. (4). 
𝑎𝑎𝑗𝑗 = max (0,𝑦𝑦𝑗𝑗)                                                        (4) 
The pooling layer is used to reduce the dimension of features and speed up the 
convergence of the networks, which has three types of pooling down sample methods: 
Maximum pooling, minimum pooling, and average pooling. We give the maximum 
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pooling operation as follows: 
𝑝𝑝𝑗𝑗 = 𝑚𝑚𝑎𝑎𝑥𝑥�𝑞𝑞𝑗𝑗�                                                       (5) 
where 𝑝𝑝𝑗𝑗 is the output of maximum value among the obtained feature maps 𝑞𝑞𝑗𝑗 from the 
preceding layer; usually, the convolutional and pooling operations alternatively occurred 
in the CNN model to extract the deep, abstract, and global feature expressions [Peng and 
Marculescu (2015); Chen, Li and Sanchez (2015)]. CNN can handle well with one 
dimensional (1-D) signals [Liu, Yang, Lv et al. (2019)], two dimensional (2-D) images, 
and three dimensional (3-D) videos [Arif, Wang, Fei et al. (2019)]. For the TSC problem, 
we mainly apply CNN to deal with 1-D vibration signals. 

3.2 Proposed deep model 
The architecture of proposed MSFFCNN for TSC consists of four parts: short-time gap 
feature learning, multi-scale feature learning, global feature learning and feature fusion, and 
output, as shown in Fig. 1. We concatenate multiple UTSC cells (marked with a red box in 
Fig. 1) for MTSC. Furthermore, different from the image classification problem, the input 
of the image classification problem is a two-dimension (2-D) image. The input of designed 
MSFFCNN is a one-dimension (1-D) time series. It learns feature through one raw time 
series for UTSC, and by combining the feature of multiple individual univariate time series 
for MTSC. The more detailed description of them will be depicted in the following 
subsections. We will take an example with UTSC to explain the workflow of MSFFCNN. 

 
Figure 1: The architecture of the proposed MSFFCNN for TSC problem, which consists 
of four parts: short-time gap feature learning, multi-scale local feature learning, global 
feature learning, feature fusion, and classification, respectively. The convolution layer is 
donated as Conv1D, and the max-pooling layer is donated as Max1D. Additionally, 1D 
means convolutional, and max pooling operations are utilized to process one dimensional 
(1-D) tensor. The term “Conca” means concatenating operation. This architecture is 
given in making three-source time series (𝐔𝐔𝐔𝐔𝟏𝟏,𝐔𝐔𝐔𝐔𝟐𝟐,𝐔𝐔𝐔𝐔𝟑𝟑) classification using three-scale 
convolution technology, which is donated as 𝟏𝟏 × 𝟐𝟐, 𝟏𝟏 × 𝟑𝟑, and 𝟏𝟏 × 𝟒𝟒. For the UTSC 
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problem, only by using one part of the architecture of MSFCNN as marked in the red box 
for learning multi-scale and global feature representation 

3.2.1 Short-time gap feature learning 
Similar to the other CNN-based classification problems, the input shape of MSFFCNN 
requires 1-D tensor. Therefore, 1-D time series need to be transformed into tensor 
previously by using reshape operation as shown in Eq. (6) for UTSC and Eq. (7) for MTSC. 
Where the inputs of time series are 𝑈𝑈𝑇𝑇 and 𝑀𝑀𝑇𝑇, 𝑀𝑀𝑇𝑇 contains some 𝑈𝑈𝑇𝑇, as described in 
Section 2. Especially, 𝑚𝑚 is three in Fig. 1. For instance, by using transformation function, 
we could transform one 𝑈𝑈𝑇𝑇 with length 100 to a tensor with the shape of [1,100].  
𝑇𝑇𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢𝑡𝑡 = 𝑅𝑅𝑇𝑇𝑇𝑇ℎ𝑎𝑎𝑝𝑝𝑇𝑇(𝑈𝑈𝑇𝑇)                                                 (6) 
𝑇𝑇𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑡𝑡 = 𝑅𝑅𝑇𝑇𝑇𝑇ℎ𝑎𝑎𝑝𝑝𝑇𝑇(𝑀𝑀𝑇𝑇),𝑀𝑀𝑇𝑇 = {𝑈𝑈𝑇𝑇1,𝑈𝑈𝑇𝑇2, … ,𝑈𝑈𝑇𝑇𝑚𝑚}                         (7) 

After the transformation, we applied wide convolution technology to capture the features 
which have the most relationship in short time gaps, and we named it as short-time gap 
features. The wide convolution technology is implemented by one convolution layer with 
various big-size filters. Especially, we adopted filter size in this paper is 64, the obtained 
short-time feature 𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠 for each univariate time series could be written as Eq. (8). 
For MTSC, the obtained features in this sub-step are multiple 𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠. 
𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠 = 𝐶𝐶𝑇𝑇𝑛𝑛𝐶𝐶1𝐷𝐷(𝑇𝑇𝑇𝑇𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢𝑡𝑡)                                           (8) 

3.2.2 Multi-scale local feature learning 
The preceding feature expressions we obtained are processed by multi-scale convolution 
technology to extract the rich local feature representations. We defined three-scale 
convolution operations in Fig. 1, which are implemented through three convolution layers 
with different filter sizes, and each convolution layer contains various filters. We defined 
that three-scale convolution operations are 1 × 2 , 1 × 3 , and 1 × 4 , respectively. 
Moreover, we adopted a max-pooling operation to decrease the dimension of features and 
speed up the convergence. And we call the component of combined Conv1D and Max1D 
as 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘 . As shown in Fig. 1, two 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘  components existed at each scale of 
MSFFCNN. We formalized this process for UTSC, as shown in Eqs. (9)-(11). The filter 
numbers of convolution layers in 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘 are 16 and 32, and the pooling size is 2. After 
getting multi-scale local feature representation, we concatenate them on the x-axis for the 
next process. Therefore, extracted features keep their local characteristic simultaneously 
have connected with different weights; it could be written as Eq. (12). For the 
three-source time series, three concatenated features in this sub-step are symbolized as 
𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐1, 𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐2, and 𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐3.  
𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑚𝑚𝑠𝑠1 = 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘(𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘�𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠�)                                   (9) 

𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑚𝑚𝑠𝑠2 = 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘(𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘�𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠�)                                  (10) 

𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑚𝑚𝑠𝑠2 = 𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘(𝐵𝐵𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘�𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑠𝑠𝑡𝑡𝑠𝑠�)                                  (11) 
𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 = 𝐶𝐶𝑇𝑇𝑛𝑛𝐵𝐵𝑎𝑎𝑡𝑡𝑇𝑇𝑛𝑛𝑎𝑎𝑡𝑡𝑇𝑇(𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑚𝑚𝑠𝑠1,𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑚𝑚𝑠𝑠2,𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑚𝑚𝑠𝑠3)           (12) 
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3.2.3 Global feature learning and feature fusion 
The precious sub-step already extracted multi-local rich feature representations. We utilized 
global convolution and max-pooling layers to capture global representations. We named 
this sub-step as 𝑆𝑆𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝐵𝐵_𝑏𝑏𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘, in which the filter size is 4, and the filter number is 64. The 
extracted global features for UTSC are defined as Eq. (13). For MTSC, we need to 
concatenate multiple time series together on the 𝑥𝑥-axis. Then concatenated representations 
are processed by 𝑆𝑆𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝐵𝐵_𝑏𝑏𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘, as shown in Eq. (14).  
𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑠𝑠𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑆𝑆𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝐵𝐵_𝑏𝑏𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘(𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐)                                (13) 
𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑚𝑚𝑠𝑠𝑔𝑔𝑐𝑐𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑆𝑆𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝐵𝐵_𝑏𝑏𝐵𝐵𝑇𝑇𝐵𝐵𝑘𝑘(𝐶𝐶𝑇𝑇𝑛𝑛𝐵𝐵𝑎𝑎𝑡𝑡𝑇𝑇𝑛𝑛𝑎𝑎𝑡𝑡𝑇𝑇(𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐1,𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐2,𝐹𝐹𝑇𝑇𝑎𝑎𝑡𝑡𝐹𝐹𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐3))       (14) 

3.2.4 Classification 
The aforementioned steps capture rich multi-scale and global feature representations; the 
above features are fed into two fully connected layers to extract deeper and more abstract 
representations. Besides, we employed a dropout layer to overcome overfitting and 
convergent the networks, and we set the rate of dropout layer is 0.5, it will select half of 
the neural nodes in the networks randomly to die when training the model. After full 
connection, the features could be more abstract and representative and are fed into the 
output layer. Output nodes depend on applications, that is how many statuses of time 
series have. The 𝑇𝑇𝑇𝑇𝑓𝑓𝑡𝑡𝑚𝑚𝑎𝑎𝑥𝑥 function [Liu, Wen, Yu et al. (2017)] is employed to generate 
the probability of each class for time series; the class corresponding to the maximum 
probability is the predicted label of time series. The proposed MSFFCNN only needs the 
raw time series for classification, as described in Eq. (15) for UTSC and Eq. (16) for 
MTSC. Where 𝑀𝑀𝑆𝑆𝐹𝐹𝐹𝐹𝐶𝐶𝑀𝑀𝑀𝑀() is the trained deep model. 
𝑈𝑈𝑇𝑇𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑆𝑆𝐹𝐹𝐹𝐹𝐶𝐶𝑀𝑀𝑀𝑀(𝑈𝑈𝑇𝑇)                                               (15) 
𝑀𝑀𝑇𝑇𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑆𝑆𝐹𝐹𝐹𝐹𝐶𝐶𝑀𝑀𝑀𝑀(𝑀𝑀𝑇𝑇) = 𝑀𝑀𝑆𝑆𝐹𝐹𝐹𝐹𝐶𝐶𝑀𝑀𝑀𝑀({𝑈𝑈𝑇𝑇1,𝑈𝑈𝑇𝑇2, … ,𝑈𝑈𝑇𝑇𝑚𝑚})                 (16) 
The more configurations of our proposed MSFFCNN are given as follows: The activation 
function we applied is ReLU, we defined cross-entropy as loss function to update the 
networks, and “Adam” [Kingma and Ba (2014)] is adopted as an optimizer to tuning the 
loss of MSFFCNN. 

4 Experiment verification 
The platform we used in this study has an operating system of ubuntu 16.0.4 with memory 
23.4 GB, Intel (R) i7-700 CPU, and processing speed 3.6 GHz. 

4.1 UTSC verification 
4.1.1 Data introduction  
We adopted ten data sets from UCR [Chen, Keogh, Hu et al. (2016)] for UTSC 
verification, which consists of binary classification and multiple classification problems, 
the more detailed description of UCR data sets as shown in Tab. 2. As we can see from 
Tab. 2, six data sets belong to binary classification problems, and four data sets are 
multiple classifications problems. The training case is used to train the model, and the 
testing case is for verification. The biggest challenging thing is that the data used for 
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training is much less. Additionally, different from Cui’s et al. [Cui, Chen and Chen 
(2016) ], Guennec’s et al. [Guennec, Malinowski and Tavenard (2016)], and Jiang’s et al. 
methods [Jiang, He, Yan et al. (2018)], we only use raw time series without any data 
augmentation technologies to train, verify the proposed deep model. As we mentioned in 
3.2.1, we set the hyperparameter of wide convolution operation filter size as 64 in 
MSFFCNN, the reason for that is the shortest length of time series is 65 in 
SonyAIBRobot2.  

Table 2: The selected UCR univariate time series archives  
Data Training Case Testing case Length Classes 
Wafer 1000 6164 152 2 
TwoPatterns 1000 4000 128 4 
SyntheticControl 300 300 60 6 
Lightning2 60 61 637 2 
Powercons 180 180 144 2 
UMD 36 144 150 3 
Trace 100 100 275 4 
FordA 3601 1320 500 2 
FordB 3636 810 500 2 
SonyAIBRobot2 27 953 65 2 

4.1.2 Comparative results and analysis 
To verify the effectiveness and priority of our proposed MSFFCNN for UTSC problem, we 
compare it with other excellent CNN-based methods: MCNN [Cui, Chen and Chen (2016)], 
FCNN, MLP, ResNet [Wang, Yan and Oates (2017)], Classical CNN [Zhao, Lu, Chen et al. 
(2017)] and MSCNN [Jiang, He, Yan et al. (2018)]. MSCNN has been proven that it is more 
potent than MCNN, and we implemented MSCNN (2) due to it obtained the best 
performance for wind turbine gearbox diagnosis. The structure of MSCNN (2) as given in 
Tab. 3. We also give the structure of classic CNN; the hyperparameter of classic CNN we 
set is the best in the author’s paper. For FCNN, MLP, and ResNet, we adopted the authors’ 
code to run. The term “raw” denotes original time series, and “mean (2)” means we adopted 
an overlapped method to generate the mean value of time series with stride 2. The format of 
convolutional operation is 𝐶𝐶𝑇𝑇𝑛𝑛𝐶𝐶1𝐷𝐷(𝑓𝑓𝑖𝑖𝐵𝐵𝑡𝑡𝑇𝑇𝑇𝑇_𝑛𝑛𝐹𝐹𝑚𝑚𝑏𝑏𝑇𝑇𝑇𝑇𝑇𝑇, 𝑇𝑇𝑡𝑡𝑇𝑇𝑖𝑖𝑠𝑠𝑇𝑇𝑇𝑇); the default 𝑇𝑇𝑡𝑡𝑇𝑇𝑖𝑖𝑠𝑠𝑇𝑇𝑇𝑇 is 1. 
The format of max-pooling operation is 𝑀𝑀𝑎𝑎𝑥𝑥1𝐷𝐷 (𝑝𝑝𝑇𝑇𝑇𝑇𝐵𝐵𝑖𝑖𝑛𝑛𝑝𝑝_𝑇𝑇𝑖𝑖𝑠𝑠𝑇𝑇), and “AveragePool” 
means average pooling operation. Term of “classes” is the number of time series statues. 
We adopted accuracy as the evaluation metric, and we run our proposed methods at 10 
times to overcome the impact of randomness, the result is averaged accuracy on each data. 
The other methods’ results are the best they reported could be found from Tab. 4. “Win” 
means the solver wined times on all those data sets, “Average Accuracy” means the 
averaged accuracy on those ten data sets, and we adopted standard deviation to evaluate 
the stability of each method. It is worthy to notice that we did not give all results of 
MCNN, because the author did not give all configuration information of networks, we 
adopted they reported values.  
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The findings indicate that our proposed MSFFCNN wined six best ranks and got the 
highest averaged accuracy on ten data sets. Even though ResNet wined the same best 
ranks to MSFFCNN, the averaged accuracy is only 0.9257, which is much lower than 
0.9803 of the proposed method. Moreover, the standard deviation shows our proposed 
MSFFCNN outperforms others except for MSCNN, it is a little worse than MSCNN by 
comparing their standard deviation. However, MSFFCNN does not need any 
preprocessing operations before modelling. On the contrary, the MSCNN needs to 
calculate the mean values of each time series at different levels, which costs too much 
time and computing-resources. As a summary, our proposed MSFFCNN could predict 
the label of univariate time series accurately and stably without any preprocessing 
operations by directly inputting the original time series. 
To quantify the difference between the proposed method and other leading methods listed 
in Tab. 4, we compute the 𝑝𝑝-value of the 𝑡𝑡-test, as shown in Tab. 5. The results show 
that all those methods are the same distributions at a confidence level of 95%. The reason 
of that is we selected methods already act as a leading role for UTSC. Moreover, the 
proposed method and MSCNN could be divided into the first group for UTSC because 
the 𝑝𝑝-value of them is near to 1 and average accuracy of them is too much similar around 
0.98; Zhao’s CCNN and ResNet could be divided into the second group because their 
𝑝𝑝-values are higher than 0.2. MLP and FCN could be divided into the last group. 

Table 3: The configurations of comparative CNN-based methods for UTSC  

Method Description 

MSCNN [Jiang, He, Yan 
et al. (2018)] 

Three inputs: 𝐼𝐼𝑛𝑛𝑝𝑝𝐹𝐹𝑡𝑡(𝑇𝑇𝑎𝑎𝑟𝑟,𝑚𝑚𝑇𝑇𝑎𝑎𝑛𝑛(2),𝑚𝑚𝑇𝑇𝑎𝑎𝑛𝑛(3)) 
Sub1: 
Raw-Conv1D(16)-Max1D(2)-Conv1D(32)-Max1D(2)-Conv1D(64)
-Max1D(2) 
Sub2: 
Mean(2)-Conv1D(16)-Max1D(2)-Conv1D(32)-Max1D(2)-Conv1D
(64)-Max1D(2) 
Sub3: 
Mean(3)-Conv1D(16)-Max1D(2)-Conv1D(32)-Max1D(2)-Conv1D
(64)-Max1D(2) 
Output: Concatenate(Sub1, Sub2,Sub3)-Dense(100)-Dense(classes) 
Activation function is “ReLU” and optimizer is “Adam”, loss 
function is “cross-entropy”. 

Classical CNN [Zhao, 
Lu, Chen et al. (2017)] 

Raw-Conv1D(7,6)-AveragePool(3)-Conv1D(7,12)-AveragePool(3)
-Dense(classes) 
Activation function is “ReLU” and optimizer is “Adam”, Loos 
function is Mean Square Error.  
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Table 4: Testing accuracy and averaged accuracy on 10 UCR sensor-related data sets 
 Proposed CCNN MCNN MLP FCN ResNet MSCNN 
Wafer 1.0 0.9970 0.9980 0.9960 0.9970 0.9970 1.0 
TwoPatterns 0.9996 0.9650 0.9980 0.8860 0.8970 1.0 0.9979 
SyntheticControl 0.9886 0.9730 0.9970 0.9500 0.9900 1.0 0.9950 
Lightning2 1.0 1.0 0.8360 0.7210 0.8030 0.7540 1.0 
Powercons 1.0 1.0 - 0.9722 0.5056 0.8778 0.9990 
UMD 0.9700 0.9653 - 0.9722 0.5833 0.5694 0.9800 
Trace 1.0 0.6400 1.0 0.9200 1.0 1.0 0.9700 
FordA 1.0 1.0 - 1.0 1.0 1.0 1.0 
FordB 1.0 1.0 - 1.0 1.0 1.0 1.0 
SonyAIBRobot2 0.8448 0.8279 0.9300 0.7270 0.9680 0.9850 0.8400 
Win (Best ranks) 6 4 - 2 3 6 5 
Averaged 
Accuracy (AVG) 

0.9803± 
0.0461 

0.9368 
±0.1107 

- 0.9138 
±0.1013 

0.8744 
±0.1763 

0.9257 
±0.1350 

0.9801 
±0.0453 

Table 5: The 𝒑𝒑-value of comparison results using 𝒕𝒕-test 

 CCNN MLP FCN ResNet  MSCNN  
Proposed 0.281 0.093 0.098 0.222 0.925 

4.1.3 Feature extraction capacity validation 
To explore and validate MSFFCNN’s features extraction capacity. Firstly, we have 
visualized the activated output of the convolutional layer in MSFFCNN using t-SNE 
technology for reducing the dimension of extracted feature maps, as shown in Fig. 2. The 
data we adopted is SyntheticControl. From Fig. 2, we can see feature representations in (a) 
are mixed, difficult to identify, inseparable, and none-linear. After one-dimensional 
convolution with a large size filter, the feature expressions are becoming separable, 
which could be found from (b). After the multi-feature extraction process, learned feature 
repressions are discriminable, and independent as shown in (c), which satisfies the 
principle of classification: the maximum differences in an interclass, minimum variation 
in the same class. Additionally, the global feature learning step ensures more abstract and 
vibrant feature expressions are extracted from the preceding layer. The comprehensive 
feature representations, as shown in (d). The results indicate our proposed method could 
capture most of the useful representations for accurately predicting time series label with 
a cascading structure of CNN. 
Secondly, we have analyzed the inside feature maps to confirm the productive feature 
extraction capacity of our proposed method again. The visualization results using one 
sample from the SyntheticControl, as shown in Fig. 3. We can see the original time series 
oscillate with time stamp, and the range is from -2 to 2, as shown in Fig. 3(a). The short 
time feature map is obtained by one wide convolution operation, as shown in Fig. 3(b), it 
decreases from 2.0 to 1.75, the reason of that is the original time series consists of some 
noisy data points. Additionally, the reason that only positive values occurred in the feature 
map is converting the values of time series into RGB representations. Most of the parts in 
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Fig. 3(b) are blue, which donates detailed information. The range of multi-scale feature 
maps increased from 1.75 of the short-time gap feature into 2.5, which can be seen in Fig. 
3(c). It is easier to identify each time series through a multi-scale feature map because the 
values of the feature map increase a lot. Through the global feature learning process, the 
feature map is clear and identifiable, because it increased some lager values and decreased 
some white points with a lower value, which could be found from Fig. 3(d). 

 
Figure 2: Feature visualization via t-SNE technology reduced from MSFCNNs using 
SyntheticControl data. (a) raw signals. (b) one-dimensional convolution results after a 
short time gap convolutional operation. (c) the result after multi-local convolution 
operations. (d) combined multi-local and global feature repressions 
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Figure 3: Feature map visualization. (a) one raw time series. (b) extracted short-time gap 
feature map using wide convolution technology. (c) learned multi-scale feature map. (d) 
combined multi-local feature and global feature as one comprehension fusion feature map, 
we reshape the original feature map with 100 into 10 × 10 to better display 

4.1.4 The influence of different scale 
The above analysis is based on three-scale MSFFCNN. Different scales may influence 
the performance of classification. We have compared two-scale MSFFCNN (MSFFCNN 
(2)) and four-scale MSFFCNN (MSFFCNN (4)) to explore the influence of scale-level. 
The configuration of MSFFCNN (2) and MSFFCNN (4) are the same as MSFFCNN (3) 
we give in Fig. 1 expect for the scale level. We designed MSFFCNN (2) with 1 × 2 and 
1 × 3 convolution operations, and MSFFCNN (4) with 1 × 2, 1 × 3, 1 × 4, and 1 × 5 
convolution operations. The results as shown in Tab. 6. The findings show the accuracy 
increased with increasing of the scale level, and it is more stable when we apply more 
scales. We did the significance test using the 𝑡𝑡-test, which indicates that there is no 
significant difference between these three methods. The pairwise 𝑝𝑝-value of MSFFCNN 
(2) and MSFFCNN (3) is 0.962, MSFFCNN (4) and MSFFCNN (3) is 0.920, respectively. 
Another creditable phenomenon is that it is more stable with the increasing of scale level, 
which can be seen from the standard deviation in Tab. 6. It is worthy to notice that as the 
scale level increases, it needs more time to train and test. Therefore, we adopted 
MSFFCNN (3) for UTSC to balance the time resource while simultaneously keeping the 
high performance.  
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Table 6: Comparison results of three different models on 10 UCR sensor-related data sets 

 MSFFCNN (2) MSFFCNN (3) MSFFCNN (4) 
Wafer 1.0 1.0 1.0 
TwoPatterns 0.9998 0.9996 1.0 
SyntheticControl 0.9900 0.9886 0.9900 
Lightning2 1.0 1.0 1.0 
Powercons 1.0 1.0 1.0 
UMD 0.9722 0.9700 0.9861 
Trace 0.9900 1.0 1.0 
FordA 1.0 1.0 1.0 
FordB 1.0 1.0 1.0 
SonyAIBRobot2 0.8405 0.8448 0.8488 
AVG 0.9793±0.0470 0.9803±0.0461 0.9824±0.0448 

4.2 MTSC verification 
The above analysis has confirmed the effectiveness and priority of MSFFCNN for UTSC. 
We also designed a concise experiment to verify the progressiveness of MSFFCNN for 
the MTSC problem as follows. 

4.2.1 Data introduction  
Two data sets we adopted to validate the effectiveness of MSFFCNN for the MTSC 
problem, they are WISDM v1-split and WISDM v.2, which is same to Yazdanbakhsh’s et 
al. paper [Yazdanbakhsh and Stick (2019)]. WISDM v1-spilt consists of accelerometer 
data collected from 36 users regarding their daily six activities, including walking, 
jogging, upstairs, downstairs, sitting, and standing. WISDM v.2 consists of accelerometer 
data collected from 56 users while walking, jogging, stairs, sitting, standing, and lying 
down. 41279 samples are generated as the training part and 13162 samples as a testing 
part in WISDM v1-split, respectively. For WISDM v.2, giving 10396 training samples 
and 4456 testing samples. The detailed description of data sets and generation method 
could be found from Yazdanbakhsh’s et al. paper [Yazdanbakhsh and Stick (2019)].  

4.2.2 Comparative analysis  
The evaluation metric for MTSC is F-1 scores of each label, and we compared our 
method to dilated CNN [Yazdanbakhsh and Stick (2019)], MCDCNN(2) [Zheng, Liu, 
Chen et al. (2014)], one feature-based method [Ravi, Wong, Lo et al. (2017)] named 
Ravelet, and classic CNN. We implement multiple classic CNN for MTSC based on 
Zhao’s et al. method [Zhao, Lu, Chen et al. (2017)]. The comparison results are 
summarized in Tabs. 7 and 8.  
The findings from Tab. 7 indicate our proposed method outperforms other CNN-based 
methods, and a little lower than the feature-based method by comparing the averaged 
accuracy. We did a 𝑡𝑡-test to quantify this difference between the proposed method and 
Ravelet’s method. The result indicates there is no significant difference due to the 𝑝𝑝-value 
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(0.624) is much higher than 0.05. Moreover, our proposed method does not need any feature 
selection operation. By contraries, Ravelet’s method needs. All those methods perform well 
on WISDM v1-spilt data, whose averaged accuracies are higher than 90.0%.  
The findings from Tab. 8 indicate our proposed method outperforms others, its averaged 
accuracy up to 92.8%. It has many improvements compared to other state-of-the-art 
methods with metric of averaged accuracy. It improved 3.5% compared to classic CNN 
[Zhao, Lu, Chen et al. (2017)], 30% to MCDCNN (2) [Zheng, Liu, Chen et al. (2014)], 4% 
to dilated CNN [Yazdanbakhsh and Stick (2019)], respectively. Moreover, it shows our 
method could accurately predict all kinds of labels over accuracy of 93% except for the 
activity of “Sitting.” MCDCNN (2) almost cannot predict the labels of “sitting” and 
“standing.” In summary, our proposed method can accurately handle the MTSC problem 
without any preprocessing and feature selection operations. 

Table 7: The result of WISDM v1-split based on F1 score 
 Proposed Classic CNN MCDCNN(2)  Dilated CNN  Ravelet 
Walking 98.0% 98.8% 98.4% 97.4% 99.3% 
Jogging 99.5% 98.3% 99.3% 98.3% 99.5% 
Upstairs 93.3% 89.5% 93.5% 86.4% 95.3% 
Downstairs 90.0% 91.9% 81.3% 80.5% 95.1% 
Sitting 99.2% 98.9% 96.9% 98.0% 98.2% 
Standing 99.5% 97.8% 98.4% 94.9% 97.6% 
Average 96.4% 95.9% 94.63% 92.58% 97.5% 

Table 8: The result of WISDM v2 based on F1 score 
 Proposed Classic CNN MCDCNN (2)  Dilated CNN  Ravelet 
Walking 97.9% 95.9% 95.6% 96.6% 97.2% 
Jogging 98.9% 94.0% 90.6% 96.9% 97.9% 
Upstairs 93.5% 90.7% 96.0% 63.1% 79.3% 
Downstairs 94.7% 87.5% 82.9% 91.2% 88.2% 
Sitting 75.2% 53.3% 2.2% 87.2% 82.1% 
Standing 96.3% 84.6% 4.7% 90.7% 87.2% 
Average 92.8% 89.3% 62.0% 87.6% 88.7% 

5 Discussion 
We have proposed a novel deep model named MSFFCNN to extract productive and 
robust feature representations of raw sensor-related time series for predicting their labels 
automatically and accurately. Predicting the label of time series could be expressed as 
one TSC problem including UTSC and MTSC. The difficulty of UTSC is that training 
samples is much less than testing samples, as shown in Tab. 2, which requires the model 
could extract rich and robust feature representations from rare training samples. Besides, 
some CNN-based method still performs worse than feature-based method. Therefore, we 
designed one novel CNN-based deep model to capture multi-scale and global fusion 



 
 
 
558                                       CMC, vol.65, no.1, pp.543-561, 2020 

features to overcome the above issues, as shown in Fig. 1. 
We have compared our proposed method with other excellent deep learning-based 
models on ten UCR sensor-related data sets, as shown in Tab. 4, it indicates our proposed 
MSFFCNN is most competitive by using averaged accuracy, and also it is stable by 
comparing it to others in terms of standard deviation. To quantify this difference, we have 
calculated the 𝑝𝑝-value of the 𝑡𝑡-test, the results confirmed our proposed model belongs to 
the first class for UTSC, as shown in Tab. 5. 
As can be seen from Fig. 2, we have analyzed the feature learning capacity of the 
proposed MSFFCNN using t-SNE technology. It explained that wide convolution 
technology could extract more robust feature maps through raw time series, multi-scale 
feature learning sub-process could learn features at the multi-scale level. Also, fusion 
features are robust. The feature extracting capacity of our proposed model has been 
proven. Also, we have analyzed the interior feature to confirm the feature extraction 
capacity again, as shown in Fig. 3.  
We designed three models at different scale levels to analyze the impact of scale level, as 
shown in Tab. 6. The findings show the accuracy increases with the scale level, and it is more 
stable when we apply more scales. And we have proven that there is no significant difference 
when we utilize our model at different scale levels by computing the 𝑝𝑝-value of the 𝑡𝑡-test. 
Therefore, our proposed structure is stable and has a good generalization ability. 
As shown in Tabs. 7 and 8, we have designed, trained, and evaluated our proposed MSFFCNN 
for MTSC. The results indicate that our proposed model has state-of-the-art performance for 
MTSC without any preprocessing and handcrafted feature selection operations. 

6 Conclusion  
In conclusion, we have proposed a new, accurate, and stable approach for time series 
classification based on CNN. After a set of the feature extraction process in the proposed 
MSFFCNN, we could obtain multi-scale, global, and robust fusion feature 
representations. Our experiments show that our proposed method could predict the label 
of both univariate and multivariate time series accurately and automatically without any 
handcrafted feature engineering by using less training data set. In addition, the proposed 
framework is very stable, which is not sensitive to the scale levels.  
We already tested the effectiveness and priority of the proposed method for time series 
classification problem. In the future, we will utilize the proposed MSFFCNN to process 
the Job Scheduling Problem (JSP), in which we consider JSP as one classification 
problem, MSFFCNN would deal with JSP as well. 
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