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Abstract: The ordinary least square (OLS) method is commonly used in regression 
analysis. But in the presence of outlier in the data, its results are unreliable. Hence, the 
robust regression methods have been suggested for a long time as alternatives to the OLS 
to solve the outliers problem. In the present study, new ratio type estimators of finite 
population mean are suggested using simple random sampling without replacement 
(SRSWOR) utilizing the supplementary information in Bowley’s coefficient of skewness 
with quartiles. For these proposed estimators, we have used the OLS, Huber-M, Mallows 
GM-estimate, Schweppe GM-estimate, and SIS GM-estimate methods for estimating the 
population parameters. Theoretically, the mean square error (MSE) equations of various 
estimators are obtained and compared with the OLS competitor. Simulations for skewed 
distributions as the Gamma distribution support the results, and an application of real data 
set containing outliers is considered for illustration. 
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1 Introduction  
The OLS scheme is widely used in estimating the parameter of a linear regression model, 
which has a wide range of applications in real-life provided that the OLS assumptions are 
satisfied. In many cases, these assumptions may be violated due to the nature of the data 
under consideration, especially of the occurrence of an outlier. Therefore, several robust 
regression methods are suggested to overcome this problem.   
Some of the commonly known robust regression methods are the least absolute 
deviations method, where the Least Absolute Deviations (LAD) regression is the first 
step for robust regression methods [Nadia and Mohammad (2013)]. The least median 
squares method is suggested and improved by Rousseeuw et al. [Rousseeuw and Leroy 
(1987)]. The least trimmed squares method, the Huber-M plan, is introduced by Huber 
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[Huber (1973)]. The Hampel-M method is suggested by Hampel [Hampel (1971)], the 
Tukey-M method is proposed by Tukey [Tukey (1977)], and the Huber-MM method by 
Yohai [Yohai (1987)].  
In this study, we considered the following generalized M methods. The Mallows GM-
estimator which was proposed by Mallows [Mallows (1975)], the Schweppes GM-
estimate method that was introduced by Handschin et al. [Handschin, Kohlas, Fiechter et 
al. (1975)], the SIS GM-estimate method which was submitted by Coakley et al. 
[Coakley and Hettmansperger (1993)], with illustrations given in the next section. 
However, the Huber-M was adopted by Subzar et al. [Subzar, Bouza, Maqbool et al. 
(2019a)] in the case of outliers, and was compared with the OLS method. It was shown 
that the Huber-M estimation performs better than the OLS method. In the current study, 
we have adopted the generalized case of M-estimation methods and compared it with the 
OLS and Huber-M estimation. Suppose that Y is a study variable, and X is an auxiliary 
variable that is correlated with Y. Also, let the population means of Y and X, respectively, 
are Y  and X , with variances 2

Yσ  and 2
Xσ , and let the correlation coefficient between Y 

and X is XY

X Y

σρ
σ σ

= , where XYσ  is the covariance between X and Y. The usual simple 

random sampling (SRS) ratio estimator of the population mean of Y is given by 
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respectively. Based on Cochran [Cochran (1977)], the mean squared error of ŷ  is given 
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( ) ( )( )[ ],Cov X Y E X X Y Y= − − . Al-Omari et al. [Al-Omari, Ibrahim and Jemain 
(2009)] have suggested ratio-type estimators of the population mean using SRS as 
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= , where, 1Q  and 3Q  are the first and 

third quartiles of the auxiliary variable X, respectively. Al-Omari et al. [Al-Omari, Jaber, 
Ibrahim (2008)] have suggested ratio-type estimators of the mean using an extreme 
ranked set sampling technique. Additionally, Al-Omari [Al-Omari (2012)] proposed ratio 
estimators of population mean using auxiliary information based on simple random 
sampling and median ranked set sampling. Al-Omari et al. [Al-Omari and Bouza (2015)] 
investigated some ratio estimators of the population mean with missing values using 
ranked set sampling. Al-Omari et al. [Al-Omari and Al-Nasser (2018)] considered the 
problem of ratio estimation using multistage median ranked set sampling. Zeinalova et al. 
[Zeinalova, Huseynov and Sharghi (2018)] considered A Z-Number valued regression 
model. Subzar et al. [Subzar, Maqbool, Raja et al. (2019)] introduced a new ratio 
estimator as an alternative to the regression estimator using auxiliary information. 
Moreover, Subzar et al. [Subzar, Maqbool, Raja et al. (2018)] introduced ratio estimators 
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for the population mean in simple random sampling using supplemental information. For 
more details about ratio and regression estimators, see Jemain et al. [Jemain, Al-Omari 
and Ibrahim (2008); Krasker (1980); Krasker and Welsch (1982); Subzar, Bouza and Al-
Omari (2019b); Bouza, Al-Omari, Santiago et al. (2017); Yu and Yao (2017)].  
The rest of this paper is prepared in seven sections and subsections. The robust regression 
techniques are illustrated in Section 2, while the suggested ratio estimators are presented 
with their main properties in Section 3. In Section 4, efficiency comparisons of the OLS 
method with the robust regression techniques are presented. Numerical illustrations are 
provided in Section 5, and in Section 6, an application of real data is supported. Finally, 
the paper is concluded in Section 7. 

2 Robust regression techniques 
In this section, we summarized the main robust regression methods considered in this study. 

2.1-Huber-M estimation function 
The M-Estimator is a well-known estimator advocated by Huber [Huber (1973)]. The M-
Estimator is given by 

( ) 21 for
2

H Z Z Z Qδ
= ≤

 and 21 for , is small
2

Z Q Z Q Q
− > 

.

               

(1) 

The influence function is determined by taking the derivative of this function as 

( ) }{ for , for andH Z q Z Q Z Z Q Q for Z Qψ = > ≤ − <− ,                                           (2) 

where the tuning constant Q  defines the center and tails.    

2.2 Generalized M estimation function 
The generalized M-Estimate (GM-estimate) is proposed to provide reliable results. The 
general GM class of estimators is defined by 
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where ψ  is the certain function, as in the case of M-estimate. 

2.3 Mallows GM estimation function 
Mallows [Mallows (1975)] proposed Mallows GM-estimate to M-estimate resistant to 
high leverage outliers. The Mallows GM-estimate is defined by 
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where ( ) ( )e eρ′ℜ =  and 1i iw l= −  with il  being the leverage of the ith  observation. 
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The weight iw  ensures that the observations with high leverage receive less weight than 
observations with small leverage. 

2.4 Schweppe GM estimation function 
The Schweppe GM-estimate is suggested by Handschin et al. [Handschin, Kohlas, 
Fiechter et al. (1975)] to be the solution of the equation 

1

ˆ
0

ˆ

n
i

i i
i i

rw x
w
β
σ=

  ℜ = 
  

∑ ,                                                                                                         (5) 

which adjusts the leverage weights according to the size of the residual ir .  

2.5 SIS GM estimation function 
Coakley et al. [Coakley and Hettmansperger (1993)] proposed Schweppe one step (SIS) 
estimate, which extended from the original Schweppe estimator. The SIS estimator is 
defined as 

1

0 0
0

1 1

ˆ ˆˆ ˆ ˆ
ˆ ˆ

n n
i i

i i i i
i ii i

r rx x w x
w w
β β

β β σ
σ σ

−

= =

    
′= + ℜ × ℜ          

∑ ∑ ,                        (6) 

where the weight iw  is defined in the same way as Schweppe’s GM-estimate. 

3 Suggested estimators  
In this section, the proposed ratio estimators are presented. The suggested estimators are 
suggested based on the supplementary information of Bowley’s coefficient of skewness 
with quartiles. For estimating the parameters, we considered the OLS method, Huber M-
estimate, Mallows GM-estimate, Schweppe’s GM-estimate and SIS GM-estimate 
method. The proposed estimators are as follows. 

3.1 Using the OLS method 
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where the Bowley’s coefficient of skewness is defined as 3 1 2

3 1

2
k

Q Q QS
Q Q
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−

and iQ  is 

the ith quartile. The mean squared error expressions for the above estimators can be 
derived as follows. For the estimator given in Eq. (7), the mean squared error equation 
can be obtained as  
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, ,
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where 1
ˆ( , )h x y R=  and ( , ) .h X Y R=  As shown in Wolter [Wolter (1985)], Eq. (10) can 

be applied to the proposed estimator to obtain its MSE as follows:  

( )

( )

1
1 ,

1

1
,

1

(( ( )) / ( )ˆ | ( )

(( ( )) / ( ) | ( )

K
X Y

K

K
X Y

K

y b X x xS QR R x X
xS Q

y b X x xS Q y Y
yS Q

∂ + − +
− ≅ −

∂ +

∂ + − +
+ −

∂ +

 

1
, ,2 2

1 1 1

( ) 1| ( ) | ( ).
( ) ( )

K K
X Y X Y

K K K

yS b XS Q x X y Y
xS Q xS Q xS Q

 + ≅ − + − + −  + + + 
 

Squaring both sides of the last equation and taking the expectation to obtain 
2

2 1 1
1 4 3 2

1 1 1

( ( )) 2( ( )) 1ˆ( ) ( ) ( , ) ( )
( ) ( ) ( )

K K

K K K

Y B XS Q Y B XS QE R R V x Cov x y V y
XS Q XS Q XS Q

+ + + +
− ≅ − +

+ + +
2

1 1
2 2

1 1 1

( ( )) 2( ( )1 ( ) ( , ) ( )
( ) ( )

K K K K

K K K

YS B XS Q YS B XS QV x Cov x y V y
XS Q XS Q XS Q

 + + + +  ≅ − +  + + +  
 

where 2 2 .xy x y y

x x x

s s s s
B

s s s
ρ ρ

= = =  Note that we omit the difference of ))(( BbE − . Hence, 

2 2
1 1 1

2
1 1

2
1 1

ˆ( ) ( ) ( )

( ( )) 2( ( ))( ) ( , ) ( )
( )

K

K K K K

K K

MSE y XS Q E R R
YS B XS Q YS B XS QV x Cov x y V y

XS Q XS Q

= + −

+ + + +
≅ − +

+ +

 

2 2 2
1 1 1

2
1 1

2 ( ) ( ) 2 2 ( )( ) ( , ) ( )
( )

K K K K K

K K

Y S B XS Q Y B XS Q YS B XS QV x Cov x y V y
XS Q XS Q

+ + + + + +
≅ − +

+ +
2

2 2 2
2

1 1 1

2 21 2
( )

K K K
x xy y

K K K

Y S BYS YSf B S B S S
n XS Q XS Q XS Q

    −     ≅ + + − + +        + + +    
. 

Therefore, 

( )2 2 2 2 2 2
1 1 1 1

1ˆ( ) 2 2 2x x x xy xy y
fMSE Y R S BR S B S R S BS S

n
−

≅ + + − − + .                                 (11) 

Similarly, the MSEs of Eqs. (8)-(9) are  
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3.1 Using the Huber M-estimation  
The suggested estimators based on the Huber M-estimation are given by 

( )
4 2

2

( )ˆ ( ),rob Huber
k

k

y b X x
Y XS Q

xS Q
+ −

= +
+  

                                                                           (14) 

( )
5 2

2

( )ˆ ( ),rob Huber
k

k

y b X x
Y XS Q

xS Q
+ −

= +
+

                                                                            
 
(15) 

( )
6 3

3

( )ˆ ( )rob Huber
k

k

y b X x
Y XS Q

xS Q
+ −

= +
+

,                                                                            (16) 

with respective MSE's defined as 
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3.3 Using the Mallows GM-estimate 
The suggested estimators based on the Mallows GM-estimate method with their mean 
squared error expressions are provided here as  
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with respective MSE's given by 
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2 2 2 2 2
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3.4 Using the Schweppe GM-estimate 
The Schweppe GM-estimate is used to suggest the following estimators as 
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The MSE for the Eqs. (26)-(28), respectively, are 
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3.5 Using the SIS GM-estimate 
The suggested ratio estimators using the SIS GM-estimate are given by 
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 with the following MSE equations defined as 
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4 Efficiency comparison of the OLS method with robust regression techniques 
In this section, a theoretical comparison between the OLS method with the robust 
regression methods is presented for the estimators considered in this study. Let  
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where lrobB )(  indicates the robust regression techniques (Huber M-estimate, Mallows 
GM-estimate, Schweppe GM-estimate, and SIS GM-estimate) used to the ratio estimators 
proposed in the present study. Let 
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Similarly, for ( ) 0,rob lB B− <  that is ( ) :rob lB B< , and hence ( ) 2rob l jB B R> − . 

Consequently, we have the following conditions:    

( )0 2rob l jB B R< − <                                                                                                          (38) 

or 

( )2 0.j rob lR B B− < − <                                                                                                      (39) 

If one of the conditions (38) or (39) is satisfied, the proposed estimators using the 
mentioned robust regression methods are more efficient than the usual ratio estimators 
based on the OLS method. 

5 Numerical illustration 
For numerical illustration, a real data set is selected from Division of Agricultural 
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Statistics, Faculty of Horticulture Shalimar in which the data of apple production amount 
(as an interest of variate) and the number of apple trees (as an auxiliary variate) in 499 
villages of District Baramulla of Jammu and Kashmir from 2010 to 2011. (Source: RCM 
project, pilot survey for estimation of cultivation and production of apple in District 
Baramulla, RCM approved project). First, we have stratified the data by area wise and 
from each stratum (region), and the samples (villages) have been selected randomly. 
Here, we have taken the sample size to 170. We joined two areas, then chose four strata 
where each one contains three blocks (as 1: Zaniger, Boniyar, Tangmarg; 2: Wagoora, 
Sopore, Baramulla; 3: Uri, Pattan, Rohama; 4: Rafiabad, Kunzer, Singapore) for this data. 
However, in the present study, we have used only the data of Uri, Pattan, Rohama of 
district Baramulla of Jammu and Kashmir, due to the interest in simple random sampling. 
We have applied our proposed ratio estimators on the data of apple production amount 
and number of apple trees in 117 villages of Uri, Pattan, Rohama of district Baramulla of 
Jammu and Kashmir, in which the apple production (in tons) is denoted by Y (study 
variable), and the number of apple trees is denoted by X (auxiliary variable, 1 unit = 100 
trees). The characteristics of the data set are given in the Tab. 1, and the statistical 
analysis of the suggested estimators is carried in Tab. 2. Tab. 3 provides the % RE of the 
proposed estimators using the OLS method with the suggested estimators using Mallows 
GM-estimate, Schweppe GM-estimate, and SIS GM-estimate. Similarly, Tab. 4 presents 
the % RE of suggested estimators using Huber M-estimates with the proposed estimators 
using Mallows GM-estimate, Schweppe GM-estimate, and SIS GM-estimate. 

Table 1: Description of apple trees data set 
Population (Apple Data 2010-2011) 

117 0.9728 3Q = 701.0 

40 235.5 B = 3.19 

1263 0.7395 ( )rob HuberB = 2.16 

560.0 =kS 0.6654 ( )rob MallowsB = 1.01 

0.987 =1Q 300.1 ( )rob SchweppeB = 0.96 

862 =2Q 600.6 ( )rob SIS GMB = 0.85 

Table 2: Statistical analysis of the suggested estimators 

Estimators Constant OLS 
method 

Huber M 
estimate 

Mallows GM 
estimate 

Schweppe 
GM estimate 

SIS GM 
estimate 

1 2.155 37014.83 27755.01 20278.93 20022.39 19478.11 

2 1.490 30756.43 23061.56 17332.77 17152.20 16775.05 

3 1.350 29567.41 22202.09 16841.23 16676.66 16334.70 
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Table 3: The % RE of the estimators using OLS with the estimators using Mallows GM, 
Schweppe GM and SIS GM estimates 

Estimators OLS/Mallows 
GM estimate 

OLS/Schweppe 
GM estimate 

OLS/SIS GM 
estimate 

1 182.53 184.87 190.03 
2 177.45 179.31 183.35 
3 175.57 177.30 181.01 

Table 4: The % RE of the estimators using Huber M estimation with the estimators using 
Mallows GM, Schweppe GM, and SIS GM estimates 

Estimators Huber M/Mallows 
GM estimate 

Huber M /Schweppe 
GM estimate 

Huber M /SIS 
GM estimate 

1 136.87 138.62 142.49 
2 133.05 134.45 137.48 

3 131.83 133.13 135.92 

The empirical results in Tab. 2, show that the proposed estimators using Huber M-
estimate, Mallows GM-estimate, Schweppe GM-estimate, and SIS GM-estimate are more 
efficient than the suggested estimators based on the OLS methods due to the smallest 
mean square error values. However, from Tab. 3, one can conclude that, the suggested 
estimators based on the SIS GM-estimate are more efficient than other robust methods 
considered in this study.  Similarly, Tab. 4 indicates that the suggested estimators using 
the SIS GM-estimate are superior to other estimators in the current study. 

6 Simulation study 
To investigate the usefulness of the proposed estimators relative to the OLS, Huber-M, 
Mallows GM-estimate, Schweppe GM-estimate, and SIS GM-estimate in the case of 
skewed distributions, the Gamma distribution as an example, a simulation study is carried 
out. Five thousand samples are generated using the SRSWOR method. Then, the values 
of ˆ

iY  are calculated for 5000 times from the 5000 samples. The mean squared error 
values are obtained as follows 

( )25000

1

1 ˆ
5000 i

i
MSE Y Y

=
= −∑ ,                                                                                               (40) 

where ˆ
iY  represents the estimated mean squared error for 1,2, ,5000i =   and Y is the 

population mean. Different sample sizes such as 20,30,40,50,60n =  are considered in 
this study to investigate  performance of the suggested estimators using Mallows GM-
estimate, Schweppe GM-estimate and SIS GM-estimate compared to the estimators using 
the OLS and Huber-M. The relative efficiency is defined by  



 
 
 
The Robust Regression Methods for Estimating of Finite Population                      135 

( ) ( )
( )

( )
( , ,

( , ,

ˆ
ˆ 100

ˆ
p OLS

p MAllows Schweppe SIS

p MAllows Schweppe SIS

MSE Y
RE Y

MSE Y
= ×                (41) 

and 

( ) ( )
( )

( )
( , ,

( , ,

ˆ
ˆ 100

ˆ
p Huber M

p MAllows Schweppe SIS

p MAllows Schweppe SIS

MSE Y
RE Y

MSE Y
= ×                                               (42) 

The results are summarized in Tab. 5. It turns out that while using the OLS method, the 
estimators do not rely on the precise results in case of outliers. Then, by adopting the 
above-mentioned robust regression techniques, the suggested estimators perform better, 
and as the sample size increasing, these estimators seem to be much better. Also the 
Mallows GM-estimate, Schweppe GM-estimate, and SIS GM-estimate are better than the 
Huber-M estimate. Moreover, as the sample size increases, these techniques give precise 
results in the presence of outliers.  

Table 5: The % RE of the estimators (Est.) using OLS, Huber-M estimation with the 
estimators using Mallows GM, Schweppe GM, and SIS GM-estimates 

N Est. 
OLS/ 

Mallows 
GM  

OLS/ 
Schweppe 

GM  

OLS/ 
SIS  
GM  

Huber M/ 
Mallows GM  

Huber M/ 
Schweppe 

GM  

Huber M/ 
SIS  
GM  

20 1 121.78 123.67 130.67 115.08 117.89 120.08 

 2 118.92 121.89 127.03 113.67 115.78 118.76 

 3 115.01 119.98 125.98 111.76 112.03 116.08 

30 1 126.67 130.76 134.45 118.56 121.06 125.90 

 
2 123.47 128.07 132.33 117.01 119.67 123.56 

3 119.07 126.05 130.97 115.67 117.74 121.82 

40 

1 131.78 135.98 139.41 120.54 124.31 128.90 

2 128.90 132.69 137.97 119.07 122.76 127.32 

3 125.67 130.56 136.01 117.89 120.09 125.92 

50 

1 133.68 139.99 144.78 123.09 127.89 130.54 

2 132.45 137.87 142.37 121.67 125.04 129.05 

3 131.09 134.87 140.90 120.79 123.21 128.21 

60 1 141.09 143.89 148.78 125.67 129.06 133.89 

 
2 139.56 141.69 145.87 123.89 128.42 131.34 

3 136.08 139.99 144.03 122.03 127.08 129.67 

 
7 Conclusion 
The results of this study revealed that by adopting the robust methods, Mallows GM-
estimates, Schweppe GM-estimates, and SIS GM-estimates, the proposed estimators of 



 
 
 
136                                                                              CMC, vol.65, no.1, pp.125-138, 2020 

the population mean perform better than their competitors based on the OLS and Huber-
M methods. Hence, we strongly recommend considering the suggested estimators using 
Mallows GM-estimates, Schweppe GM-estimates, and SIS GM-estimate to estimate the 
population parameters as compared to the OLS and Huber-M estimation methods in the 
presence of outliers. The suggested estimators in this paper can be modified using other 
sampling methods as ranked set sampling and median ranked set sampling methods. See 
for illustration [Haq, Brown, Moltchanova et al. (2016a, 2016b); Al-Omari and Haq 
(2019); Haq, Brown, Moltchanova et al. (2015); Al-Nasser and Al-Omari (2018); Jemain, 
Al-Omari and Ibrahim (2007); Zamanzade and Al-Omari (2016)]. 
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