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Abstract: The present work emphasizes the significance of oscillatory mixed convection 
stratified fluid and heat transfer characteristics at different stations of non-conducting 
horizontally circular cylinder in the presence of thermally stratified medium. To remove 
the difficulties in illustrating the coupled PDE’s, the finite-difference scheme with 
efficient primitive-variable formulation is proposed to transform dimensionless equations. 
The numerical simulations of coupled non-dimensional equations are computed in terms 
velocity of fluid, temperature and magnetic field which are computed to examine the 
fluctuating components of skin friction, heat transfer and current density for various 
emerging parameters. The governing parameters namely, thermally stratification 
parameter 𝑆𝑆𝑡𝑡 , mixed-convection parameter 𝜆𝜆 , Prandtl number Pr, magnetic force 
parameter 𝜉𝜉 and magnetic-Prandtl number 𝛾𝛾 are displayed graphically at selected values 
for velocity and heat transfer mechanism. It is computed that heat transfer attains 
maximum amplitude and good variations in the presence of thermally stratified parameter 
at each position 𝛼𝛼 = 𝜋𝜋 6⁄ ,  𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋  around the surface of non-conducting 
horizontally cylinder. The velocity of fluid attains certain height at station 𝛼𝛼 = 𝜋𝜋 6⁄  for 
higher value of stratification parameter. It is also found that the temperature gradient 
decreases with stratification parameter 𝑆𝑆𝑡𝑡, but it increases after a certain distance 𝑌𝑌 from 
the cylinder. The novelty of the current work is that due to non-conducting phenomena 
the magnetic effects are strongly observed far from the surface but exact at the surface 
are zero for each position. 
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Nomenclature 
𝑢𝑢, 𝑣𝑣       Velocity along 𝑥𝑥𝑥𝑥-direction    m s -1                        𝑇𝑇∞  Ambient-temperature (K)                     
𝐻𝐻𝑥𝑥, 𝐻𝐻𝑦𝑦  Magnetic velocities in 𝑥𝑥𝑥𝑥-direction (Tesla)             𝑅𝑅𝑒𝑒𝐿𝐿     Renolds number 
𝜈𝜈           Kinematic-viscosity                        m 2 s -1               𝐺𝐺𝑟𝑟𝐿𝐿      Grashof number 
𝜎𝜎           Electrical conductivity                   s m -1                  𝐶𝐶𝑝𝑝    Specific-heat J kg -1 K -1 
𝜇𝜇           Dynamic viscosity              kg m -1 s -1                      Greek Letters 
𝜌𝜌           Density                               kg m -3                            𝜏𝜏   Shearing stress (P a) 
𝑔𝑔           Gravitational-acceleration          m s -2                      𝜉𝜉   Magnetic force number 
𝛽𝛽           Thermal-expansion                     K -1                        𝜆𝜆   Mixed convection number 
𝜈𝜈𝑚𝑚         Magnetic-permeability           H m -1                       𝜃𝜃   Dimensionless temperature  
𝛼𝛼           Thermal-diffusivity                m 2 s -1                       Pr  The Prandtl number                                            
T           Fluid Temperature                  (K)                            𝛾𝛾   Magnetic Prandtl number 

1 Introduction 
In theoretical and practical point of view, the analysis of MHD mixed convection flow with 
thermal stratification medium is very important in engineering and industrial environments. 
The fluid with thermally stratification is the deposition of layers which arises due to 
variations in temperature. Good applications in thermal stratification mechanism are 
refrigeration and air conditioning, closed containers, environmental heated walls chambers, 
petroleum industries, boundary layer controls, insulation of buildings and heat exchange 
between soil and atmosphere. Ali et al. [Ali and Hussain (2017)] presented the numerical 
and experimental phenomena on natural convection heat transfer along a heated plate in the 
presence of thermally stratification medium. Ashraf et al. [Ashraf, Ahmad and Chamkha 
(2019)] computed a computational mechanism of natural convection flow around a curved 
surface with exothermic catalytic chemical reaction. Ashraf et al. [Ashraf, Chamkha, Iqbal et 
al. (2016); Ashraf and Fatima (2018); Ashraf, Fatima and Gorla (2017); Ashraf, Iqbal, 
Ahmad et al. (2017)] have explored different heat transfer cases around magnetized shapes 
numerically. Ashraf et al. [Ashraf, Khan and Gorla (2019)] constructed boundary layer 
phenomena of natural convection flow by means of plume numerically. Recently, Ashraf et 
al. [Ashraf and Ullah (2020)] discussed oscillatory heat and fluid flow mechanism around 
the surface of horizontally non-conducting circular cylinder numerically. Deka et al. [Deka 
and Neog (2009)] illustrated the transient behavior of natural convection flow along an 
accelerated vertical plate immersed in thermally stratified medium. A heat transfer 
phenomena in magnetic nano-dispersion filled in cubical cavity to check numerical results 
for free-convection flow by applying magnetic field effects numerically by Dixit et al. [Dixit 
and Pattamatta (2020)]. Gireesha et al. [Gireesha, Venkatesh, Shashikumar et al. (2017)] 
proposed a numerical model on dusty-fluid around a stretched surface situated in thermally 
stratification porous medium with uniform heat source theoretically. They found an increase 
in temperature field due to increasing values of radiation parameter. The Burger’s fluid flow 
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mechanism around stretched sheet in a thermally stratified medium with 
magnetohydrodynamics effects has been illustrated numerically by Hayat et al. [Hayat, Asad 
and Alsaedi (2016)]. A technical mechanism of mixed convection Oldroyd-B fluid in a 
doubly stratified medium with thermal radiation and chemical reaction has been computed in 
Hayat et al. [Hayat, Muhammad, Shehzad et al. (2015)]. Hayat et al. [Hayat, Saeed, Asad et 
al. (2016)] performed a physical problem on heat and mass transfer characteristics around 
stretching cylinder numerically. They noted that the temperature gradient is reduced due to 
stratification parameter. Hayat et al. [Hayat, Waqas, Khan et al. (2016); Hayat, Waqas, 
Shehzad et al. (2016)] developed a numerical mechanism of magnetohydrodynamic mixed 
convection flow of thixotropic nanomaterial and Burger’s nanofluids in the presence of 
thermally stratified medium. Hussain et al. [Hussain and Raheem (2013)] performed a 
natural convection heat transfer mechanism over a plane wall in the presence of thermally 
stratified porous medium. Ishak et al. [Ishak, Nazar and Pop (2008)] studied the stable 
stratified medium effects on mixed convection boundary layer flow along a vertical surface 
numerically. The effect of thermally stratification on mixed convection flow of micro polar 
fluid over a stretching surface by taking thermal radiation effects has been explored 
analytically by Mahmoud et al. [Mahmoud and Waheed (2013)]. Makinde et al. [Makinde 
and Reddy (2019)] investigated a numerical simulation on electrically conducting peristaltic 
flow of Casson fluid in the presence of slip-velocity in a porous-channel numerically. They 
examined that the magnitude of pressure gradient reduced due to an increase in slip 
parameter. A generalized MHD flow and heat transfer model over an exponentially stretched 
sheet with thermally stratification effects has been studied in Mukhopadhyay 
[Mukhopadhyay (2013)]. The thermal boundary layer thickness decreases with the 
increasing stratification values. The physical mechanism on mixed convection flow around a 
stretched cylinder placed in thermally stratification medium has been examined numerically 
by Mukhopadhyay et al. [Mukhopandhyay and Ishak (2012)]. They obtained lower rate of 
heat transfer at the surface in thermally stratification medium compared to that of 
unsaturated medium. Rehman et al. [Rehman, Malik, Salahuddin et al. (2016)] considered a 
flow analysis with heat generation/absorption effects on mixed convection flow of Eyring-
Powell fluid around a stretching cylinder in the presence of double stratified medium 
numerically. A buoyant mechanism on natural convection flow along a vertical surface in a 
thermally stratified medium with thermal and mass diffusion effects has been considered 
theoretically by Saha et al. [Saha and Hossain (2004)]. A free convection heat transfer 
phenomena around a rotating sphere within the thermal stratification medium has been 
proposed numerically by Saikrishnan [Saikrishnan (2010)]. The ambient thermally 
stratification is found to decrease the local buoyancy levels that reduces the velocities and 
increases the concentrations. Ullah et al. [Ullah, Ashraf and Rashad (2020)] discussed 
oscillatory heat and fluid flow mechanism around the surface of horizontally non-conducting 
circular cylinder numerically. Vasu et al. [Vasu, Reddy, Murthy et al. (2017)] analyzed the 
significance of non-linear temperature density and entropy generation on thermally stratified 
fluid flow along a vertical plate embedded in a porous medium with thermal dispersion 
effects numerically. Vyas et al. [Vyas, Mishra and Srivastava (2020)] used a non-intrusive 
diagnostic technique to develop a heat transfer problem with experimental investigation 
around a square cylinder confined in a rectangular channel. A physical phenomena of mixed 
convection flow of nano-fluid in the presence of thermal stratification along a vertical 
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surface has been presented by Yasin et al. [Yasin, Arifin, Nazar et al. (2013)]. Zhang et al. 
[Zhang, Yin, Yang et al. (2017)] used spatial and spectral entropies with low scaling ratio on 
multi-scale images to detect image seam carving. Zhang et al. [Zhang, Li, Wang et al. (2018)] 
performed an ensemble learning method to check reliability of wireless multimedia device 
with a series of new threats and challenges. 
Taking idea form above literature review, it is addressed that the oscillatory mixed 
convection flow around a non-conducting horizontally circular-cylinder in thermally 
stratified medium has not been yet examined by any researcher. Taking idea from the 
following [Saha and Hossain (2004)], we obtained a numerical method for above 
oscillatory fluid flow phenomena around different stations of non-conducting horizontally 
cylinder under thermally stratified medium. We explore velocity of fluid, the fluid 
temperature and velocity of magnetic field which are computed to conclude oscillating 
quantities of skin friction, fluctuating heat transfer and oscillatory current density. 

2 The governing model and flow geometry 
Considering two dimensional boundary-layer fluid flow phenomena at different stations 
of non-conducting horizontally cylinder is considered. The Fig. 1 represents distance 
along the surface is 𝑥𝑥, the normal 𝑥𝑥-direction of the surface and the velocities 𝑢𝑢 and 𝑣𝑣 
along the 𝑥𝑥𝑥𝑥-direction. The 𝐻𝐻𝑥𝑥  is magnetic field at the cylinder surface, 𝐻𝐻𝑦𝑦  is taking 
normal to the cylinder surface, the wall temperature is 𝑇𝑇𝑤𝑤  and 𝑇𝑇∞,𝑥𝑥  is ambient fluid 
temperature and external fluid velocity is 𝑈𝑈(𝑥𝑥, 𝑡𝑡). Moreover, magnetic field intensity 
proceeds along the normal direction of non-conducting horizontally cylinder surface. The 
dimensionlized boundary-layer equations are given below: 

 
Figure 1: Non-conducting cylinder and flow geometry 
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The dimensionalized boundary conditions in which the dimensionless fluid temperature is 
�̅�𝜃 is written as 

�̅�𝜃 = 𝑇𝑇𝑤𝑤  −  𝑇𝑇∞,𝑥𝑥�
𝑇𝑇𝑤𝑤  −  𝑇𝑇∞,0

 =  1 − 𝑇𝑇∞,𝑥𝑥�  −  𝑇𝑇∞,0
𝑇𝑇𝑤𝑤  −  𝑇𝑇∞,0

                                                                                      (6) 

Since 𝑇𝑇∞, 𝑥𝑥�  is a linear function and ∆𝑇𝑇0 = 𝑇𝑇𝑤𝑤 − 𝑇𝑇∞,0 (𝑇𝑇∞,0 is constant), the dimensionless 
temperature can be written as 
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�̅�𝑥 = 1 − 𝑆𝑆𝑡𝑡�̅�𝑥                                                                                         (7) 

In linear form, the thermally stratification 𝑆𝑆𝑡𝑡 is considered to be constant but for other 
variation it may be characterized as a function of �̅�𝑥. Thus the boundary conditions are: 
𝑢𝑢� = 0,      �̅�𝑣 = 0,     ℎ�𝑦𝑦 = ℎ�𝑥𝑥 = 0,      �̅�𝜃 = 1 − 𝑆𝑆𝑡𝑡�̅�𝑥      𝑎𝑎𝑡𝑡      𝑥𝑥� = 0 
𝑢𝑢� → 𝑈𝑈�(𝜏𝜏),        �̅�𝜃 → 0,           h�𝑦𝑦 → 1       𝑎𝑎𝑠𝑠       𝑥𝑥� → ∞                                                       (8) 
In Eqs. (1)-(5) with boundary conditions in Eq. (8), 𝜉𝜉 is magnetic-force parameter, 𝜆𝜆 is 
the mixed convection parameter, 𝛾𝛾  is the magnetic Prandtl number, Pr is the Prandtl 
parameter, 𝑆𝑆𝑡𝑡  is thermally stratification parameter and 𝐻𝐻𝑜𝑜  is magnetic field intensity 
along normal to surface.  
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with appropriate boundary conditions: 
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𝑢𝑢𝑠𝑠 = 𝑣𝑣𝑠𝑠 = 0, ℎ𝑦𝑦𝑠𝑠 = ℎ𝑥𝑥𝑠𝑠 = 0,    𝜃𝜃𝑠𝑠 = 1 − 𝑆𝑆𝑡𝑡𝑥𝑥    𝑎𝑎𝑡𝑡    𝑥𝑥 = 0 
𝑢𝑢𝑠𝑠 → 1,     𝜃𝜃𝑠𝑠 → 0,       ℎ𝑦𝑦𝑠𝑠 → 1        𝑎𝑎𝑠𝑠       𝑥𝑥 → ∞                                                            (16) 
By considering the oscillating stokes conditions given in Eq. (17) to separate the unsteady 
part into real and imaginary parts. Using the Eq. (17), we concluded the separate form of 
real and imaginary equations: 
𝑢𝑢𝑡𝑡 = 𝑢𝑢1 + 𝑠𝑠𝑢𝑢2,    𝑣𝑣𝑡𝑡 = 𝑣𝑣1 + 𝑠𝑠𝑣𝑣2,    𝜃𝜃𝑡𝑡 = 𝜃𝜃1 + 𝑠𝑠𝜃𝜃2,   ℎ𝑥𝑥𝑡𝑡 = ℎ𝑥𝑥1 + 𝑠𝑠ℎ𝑥𝑥2,    ℎ𝑦𝑦𝑡𝑡 = ℎ𝑦𝑦1 +
𝑠𝑠ℎ𝑦𝑦2                                                                                                                                 (17) 
The real components of the given Eqs. (1)-(5) with boundary conditions in Eq. (8) are:  
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑣𝑣1
𝜕𝜕𝑦𝑦

= 0                                                                                                                  (18) 

−𝜔𝜔𝑢𝑢2 + 𝑢𝑢𝑠𝑠
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

+ 𝑢𝑢1
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑠𝑠
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑦𝑦

+ 𝑣𝑣1
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑦𝑦

= 𝜕𝜕2𝑢𝑢1
𝜕𝜕𝑦𝑦2

+ 𝜉𝜉 �ℎ𝑥𝑥𝑠𝑠
𝜕𝜕ℎ𝑥𝑥1
𝜕𝜕𝑥𝑥

+ ℎ𝑥𝑥1
𝜕𝜕ℎ𝑥𝑥𝑠𝑠
𝜕𝜕𝑥𝑥

+ ℎ𝑦𝑦𝑠𝑠
𝜕𝜕ℎ𝑥𝑥1
𝜕𝜕𝑦𝑦

+

ℎ𝑦𝑦1
𝜕𝜕ℎ𝑥𝑥𝑠𝑠
𝜕𝜕𝑦𝑦

�+  𝜆𝜆𝜃𝜃1𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼                                                                                                      (19)           
𝜕𝜕ℎ𝑥𝑥1
𝜕𝜕𝑥𝑥

+ 𝜕𝜕ℎ𝑦𝑦1
𝜕𝜕𝑦𝑦

= 0                                                                                                               (20) 

−𝜔𝜔ℎ2 + 𝑢𝑢𝑠𝑠
𝜕𝜕ℎ1
𝜕𝜕𝑥𝑥

+ 𝑢𝑢1
𝜕𝜕ℎ𝑠𝑠
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑠𝑠
𝜕𝜕ℎ1
𝜕𝜕𝑦𝑦

+ 𝑣𝑣1
𝜕𝜕ℎ𝑠𝑠
𝜕𝜕𝑦𝑦

− ℎ𝑥𝑥𝑠𝑠
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥

− ℎ𝑥𝑥1
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑥𝑥

− ℎ𝑦𝑦𝑠𝑠
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑦𝑦

− ℎ𝑦𝑦1
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑦𝑦

=
1
𝛾𝛾
𝜕𝜕2ℎ1
𝜕𝜕𝑦𝑦2

                                                                                                                                (21) 

−𝜔𝜔𝜃𝜃2 + 𝑢𝑢𝑠𝑠
𝜕𝜕𝜃𝜃1
𝜕𝜕𝑥𝑥

+ 𝑢𝑢1
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑠𝑠
𝜕𝜕𝜃𝜃1
𝜕𝜕𝑦𝑦

+ 𝑣𝑣1
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝑦𝑦

+ 𝑆𝑆𝑡𝑡𝑢𝑢1 = 1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜃𝜃1
𝜕𝜕𝑦𝑦2

                                          (22) 

along with boundary conditions: 
𝑢𝑢1 = 𝑣𝑣1 = 0,      ℎ𝑦𝑦1 = ℎ𝑥𝑥1 = 0,    𝜃𝜃1 = 1 − 𝑆𝑆𝑡𝑡𝑥𝑥    𝑎𝑎𝑡𝑡    𝑥𝑥 = 0 
𝑢𝑢1 → 1,         𝜃𝜃1 → 0,        ℎ𝑦𝑦1 → 1         𝑎𝑎𝑠𝑠   𝑥𝑥 → ∞                                                          (23) 
The imaginary components of the given Eqs. (1)-(5) with boundary conditions in Eq. (8) are: 
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑣𝑣2
𝜕𝜕𝑦𝑦

= 0                                                                                                                  (24)                                                                                                                              

𝜔𝜔(𝑢𝑢1 − 𝑈𝑈𝑜𝑜) + 𝑢𝑢𝑠𝑠
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥

+ 𝑢𝑢2
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑠𝑠
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑦𝑦

+ 𝑣𝑣2
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑦𝑦

= 𝜕𝜕2𝑢𝑢2
𝜕𝜕𝑦𝑦2

+ 𝜉𝜉 �ℎ𝑥𝑥𝑠𝑠
𝜕𝜕ℎ𝑥𝑥2
𝜕𝜕𝑥𝑥

+ ℎ𝑥𝑥2
𝜕𝜕ℎ𝑥𝑥𝑠𝑠
𝜕𝜕𝑥𝑥

+

ℎ𝑦𝑦𝑠𝑠
𝜕𝜕ℎ𝑥𝑥2
𝜕𝜕𝑦𝑦

+ ℎ𝑦𝑦2
𝜕𝜕ℎ𝑥𝑥𝑠𝑠
𝜕𝜕𝑦𝑦

� +  𝜆𝜆𝜃𝜃2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼                                                                                    (25) 
𝜕𝜕ℎ𝑥𝑥2
𝜕𝜕𝑥𝑥

+ 𝜕𝜕ℎ𝑦𝑦2
𝜕𝜕𝑦𝑦

= 0                                                                                                               (26) 

𝜔𝜔ℎ1 + 𝑢𝑢𝑠𝑠
𝜕𝜕ℎ2
𝜕𝜕𝑥𝑥

+ 𝑢𝑢2
𝜕𝜕ℎ𝑠𝑠
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑠𝑠
𝜕𝜕ℎ2
𝜕𝜕𝑦𝑦

+ 𝑣𝑣2
𝜕𝜕ℎ𝑠𝑠
𝜕𝜕𝑦𝑦

− ℎ𝑥𝑥𝑠𝑠
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑥𝑥

− ℎ𝑥𝑥2
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑥𝑥

− ℎ𝑦𝑦𝑠𝑠
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑦𝑦

− ℎ𝑦𝑦2
𝜕𝜕𝑢𝑢𝑠𝑠
𝜕𝜕𝑦𝑦

=
1
𝛾𝛾
𝜕𝜕2ℎ2
𝜕𝜕𝑦𝑦2

                                                                                                                                (27) 

𝜔𝜔𝜃𝜃1 + 𝑢𝑢𝑠𝑠
𝜕𝜕𝜃𝜃2
𝜕𝜕𝑥𝑥

+ 𝑢𝑢2
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑠𝑠
𝜕𝜕𝜃𝜃2
𝜕𝜕𝑦𝑦

+ 𝑣𝑣2
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝑦𝑦

+ 𝑆𝑆𝑡𝑡𝑢𝑢2 = 1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜃𝜃2
𝜕𝜕𝑦𝑦2

                                             (28) 

along with boundary conditions: 
𝑢𝑢2 = 𝑣𝑣2 = 0,     ℎ𝑦𝑦2 = ℎ𝑥𝑥2 = 0,     𝜃𝜃2 = 0   𝑎𝑎𝑡𝑡   𝑥𝑥 = 0 
𝑢𝑢2 → 0,        𝜃𝜃2 → 0,       ℎ𝑦𝑦2 → 0    𝑎𝑎𝑠𝑠     𝑥𝑥 → ∞.                                                             (29) 
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3 Computational analysis  
The above obtained dimensionless governing steady, real and imaginary coupled 
equations are discritized numerically by applying finite-difference scheme. Using the 
Primitive Transformation to obtained primitive form of coupled partial differential 
equation for further integration. For this purpose, we use the following transformation 
mentioned in Eq. (30) for steady part to convert into suitable form with both dependent 
and independent variables as:   

𝑢𝑢𝑠𝑠(𝑥𝑥,𝑥𝑥) = 𝑈𝑈𝑠𝑠(𝑋𝑋,𝑌𝑌),    𝑣𝑣𝑠𝑠(𝑥𝑥,𝑥𝑥) = 𝑥𝑥
−1
2 𝑉𝑉𝑠𝑠(𝑋𝑋,𝑌𝑌),        ℎ𝑦𝑦𝑠𝑠(𝑥𝑥, 𝑥𝑥) = 𝑥𝑥

−1
2 𝜑𝜑𝑦𝑦𝑠𝑠(𝑋𝑋,𝑌𝑌), 

ℎ𝑥𝑥𝑠𝑠(𝑥𝑥,𝑥𝑥) = 𝜑𝜑𝑥𝑥𝑠𝑠(𝑋𝑋,𝑌𝑌),          𝜃𝜃𝑠𝑠(𝑥𝑥,𝑥𝑥) = 𝜃𝜃𝑠𝑠(𝑋𝑋,𝑌𝑌),            𝑌𝑌 = 𝑥𝑥
−1
2 𝑥𝑥,         𝑋𝑋 = 𝑥𝑥             (30)  

The primitive form of steady equations in Eqs. (11)-(16), by using Eq. (30), we have 

𝑋𝑋 𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝜕𝜕

− 𝑌𝑌
2
𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌

+ 𝜕𝜕𝑉𝑉𝑠𝑠
𝜕𝜕𝑌𝑌

= 0                                                                                                   (31) 

𝑋𝑋𝑈𝑈𝑠𝑠
𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝜕𝜕

+ �𝑉𝑉𝑠𝑠 −
𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌

= 𝜕𝜕2𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌2

+ 𝜉𝜉 �𝑋𝑋𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑌𝑌

+ �𝜑𝜑𝑦𝑦𝑠𝑠 −
𝑌𝑌
2
𝜑𝜑𝑥𝑥𝑠𝑠�

𝜕𝜕𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑌𝑌

� + 𝜆𝜆𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼    (32) 

𝑋𝑋 𝜕𝜕𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝜕𝜕

− 𝑌𝑌
2
𝜕𝜕𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑌𝑌

+ 𝜕𝜕𝜑𝜑𝑦𝑦𝑠𝑠
𝜕𝜕𝑌𝑌

= 0                                                                                             (33) 

𝑋𝑋𝑈𝑈𝑠𝑠
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝜕𝜕

+ �𝑉𝑉𝑠𝑠 −
𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝑌𝑌

− 𝑋𝑋𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌

− �𝜑𝜑𝑦𝑦𝑠𝑠 −
𝑌𝑌
2
𝜑𝜑𝑥𝑥𝑠𝑠�

𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌

= 1
𝛾𝛾
𝜕𝜕2𝜑𝜑𝑠𝑠
𝜕𝜕𝑌𝑌2

                            (34) 

𝑋𝑋𝑈𝑈𝑠𝑠
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝜕𝜕

+ �𝑉𝑉𝑠𝑠 −
𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝑌𝑌

+ 𝑆𝑆𝑡𝑡𝑋𝑋𝑈𝑈𝑠𝑠 = 1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜃𝜃𝑠𝑠
𝜕𝜕𝑌𝑌2

                                                                  (35) 

with boundary conditions as:  
𝑈𝑈𝑠𝑠 = 𝑉𝑉𝑠𝑠 = 0,     𝜑𝜑𝑦𝑦𝑠𝑠 = 𝜑𝜑𝑥𝑥𝑠𝑠 = 0,      𝜃𝜃𝑠𝑠 = 1 − 𝑆𝑆𝑡𝑡𝑋𝑋    𝑎𝑎𝑡𝑡    𝑌𝑌 = 0 
𝑈𝑈𝑠𝑠 → 1,        𝜃𝜃𝑠𝑠 → 0,       𝜑𝜑𝑦𝑦𝑠𝑠 → 1    𝑎𝑎𝑠𝑠   𝑌𝑌 → ∞.                                                               (36) 
The primitive form of real equations in Eqs. (18)-(23), by using Eq. (37), we have  

𝑢𝑢1(𝑥𝑥, 𝑥𝑥) = 𝑈𝑈1(𝑋𝑋,𝑌𝑌),    𝑣𝑣1(𝑥𝑥,𝑥𝑥) = 𝑥𝑥
−1
2 𝑉𝑉1(𝑋𝑋,𝑌𝑌),      ℎ𝑦𝑦1(𝑥𝑥,𝑥𝑥) = 𝑥𝑥

−1
2 𝜑𝜑𝑦𝑦1(𝑋𝑋,𝑌𝑌), 

ℎ𝑥𝑥1(𝑥𝑥,𝑥𝑥) = 𝜑𝜑𝑥𝑥1(𝑋𝑋,𝑌𝑌),       𝜃𝜃1(𝑥𝑥,𝑥𝑥) = 𝜃𝜃1(𝑋𝑋,𝑌𝑌),   𝑌𝑌 = 𝑥𝑥
−1
2 𝑥𝑥,         𝑋𝑋 = 𝑥𝑥                       (37) 

Using Eq. (37) in Eqs. (18)-(23), the reduced system of primitive equations 

𝑋𝑋 𝜕𝜕𝑈𝑈1
𝜕𝜕𝜕𝜕

− 𝑌𝑌
2
𝜕𝜕𝑈𝑈1
𝜕𝜕𝑌𝑌

+ 𝜕𝜕𝑉𝑉1
𝜕𝜕𝑌𝑌

= 0                                                                                                   (38) 

𝑋𝑋 �𝑈𝑈𝑠𝑠
𝜕𝜕𝑈𝑈1
𝜕𝜕𝜕𝜕

+ 𝑈𝑈1
𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝜕𝜕
� + �𝑉𝑉𝑠𝑠 −

𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝑈𝑈1
𝜕𝜕𝑌𝑌

+ �𝑉𝑉1 −
𝑌𝑌
2
𝑈𝑈1�

𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌

− 𝜔𝜔𝑋𝑋𝑈𝑈2 = 𝜕𝜕2𝑈𝑈1
𝜕𝜕𝑌𝑌2

+

𝜉𝜉 �𝑋𝑋 �𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝜑𝜑𝑥𝑥1
𝜕𝜕𝑥𝑥

+ 𝜑𝜑𝑥𝑥1
𝜕𝜕𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑥𝑥

� + �𝜑𝜑𝑦𝑦𝑠𝑠 −
𝑌𝑌
2
𝜑𝜑𝑥𝑥𝑠𝑠�

𝜕𝜕𝜑𝜑𝑥𝑥1
𝜕𝜕𝑌𝑌

+ �𝜑𝜑𝑦𝑦1 −
𝑌𝑌
2
𝜑𝜑𝑥𝑥1�

𝜕𝜕𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑌𝑌

� + 𝜆𝜆𝜃𝜃1𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼 (39) 

𝑋𝑋 𝜕𝜕𝜑𝜑𝑥𝑥1
𝜕𝜕𝜕𝜕

− 𝑌𝑌
2
𝜕𝜕𝜑𝜑𝑥𝑥1
𝜕𝜕𝑌𝑌

+ 𝜕𝜕𝜑𝜑𝑦𝑦1
𝜕𝜕𝑌𝑌

= 0                                                                                             (40) 

𝑋𝑋 �𝑈𝑈𝑠𝑠
𝜕𝜕𝜑𝜑1
𝜕𝜕𝜕𝜕

+ 𝑈𝑈1
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝜕𝜕
� + �𝑉𝑉𝑠𝑠 −

𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝜑𝜑1
𝜕𝜕𝑌𝑌

+ �𝑉𝑉1 −
𝑌𝑌
2
𝑈𝑈1�

𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝑌𝑌

− 𝜔𝜔𝑋𝑋𝜑𝜑2 �𝑋𝑋 �𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑈𝑈1
𝜕𝜕𝑥𝑥

+

𝜑𝜑𝑥𝑥1
𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑥𝑥
� + �𝜑𝜑𝑦𝑦𝑠𝑠 −

𝑌𝑌
2
𝜑𝜑𝑥𝑥𝑠𝑠�

𝜕𝜕𝑈𝑈1
𝜕𝜕𝑌𝑌

+ �𝜑𝜑𝑦𝑦1 −
𝑌𝑌
2
𝜑𝜑𝑥𝑥1�

𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌
� = 1

𝛾𝛾
𝜕𝜕2𝜑𝜑1
𝜕𝜕𝑌𝑌2

                                      (41) 

𝑋𝑋 �𝑈𝑈𝑠𝑠
𝜕𝜕𝜃𝜃1
𝜕𝜕𝜕𝜕

+ 𝑈𝑈1
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝜕𝜕
� + �𝑉𝑉𝑠𝑠 −

𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝜃𝜃1
𝜕𝜕𝑌𝑌

+ �𝑉𝑉1 −
𝑌𝑌
2
𝑈𝑈1�

𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝑌𝑌

− 𝜔𝜔𝑋𝑋𝜃𝜃2 + 𝑆𝑆𝑡𝑡𝑋𝑋𝑈𝑈1 = 1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜃𝜃1
𝜕𝜕𝑌𝑌2

     (42) 

with boundary conditions as:  
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𝑈𝑈1 = 𝑉𝑉1 = 0,      𝜑𝜑𝑦𝑦1 = 𝜑𝜑𝑥𝑥1 = 0,      𝜃𝜃1 = 1 − 𝑆𝑆𝑡𝑡𝑋𝑋  𝑎𝑎𝑡𝑡   𝑌𝑌 = 0 
𝑈𝑈1 → 1,          𝜃𝜃1 → 0,        𝜑𝜑𝑌𝑌1 → 1    𝑎𝑎𝑠𝑠   𝑌𝑌 → ∞                                                            (43) 
The primitive form of real equations in Eqs. (24)-(29), by using Eq. (44), we have  

𝑢𝑢2(𝑥𝑥,𝑥𝑥) = 𝑈𝑈2(𝑋𝑋,𝑌𝑌),    𝑣𝑣2(𝑥𝑥, 𝑥𝑥) = 𝑥𝑥
−1
2 𝑉𝑉2(𝑋𝑋,𝑌𝑌),         ℎ𝑦𝑦2(𝑥𝑥,𝑥𝑥) = 𝑥𝑥

−1
2 𝜑𝜑𝑦𝑦2(𝑋𝑋,𝑌𝑌), 

ℎ𝑥𝑥2(𝑥𝑥,𝑥𝑥) = 𝜑𝜑𝑥𝑥2(𝑋𝑋,𝑌𝑌),       𝜃𝜃2(𝑥𝑥,𝑥𝑥) = 𝜃𝜃2(𝑋𝑋,𝑌𝑌),   𝑌𝑌 = 𝑥𝑥
−1
2 𝑥𝑥,         𝑋𝑋 = 𝑥𝑥                       (44)  

Using Eq. (44) in Eqs. (24)-(29), the reduced system of primitive equations 

𝑋𝑋 𝜕𝜕𝑈𝑈2
𝜕𝜕𝜕𝜕

− 𝑌𝑌
2
𝜕𝜕𝑈𝑈2
𝜕𝜕𝑌𝑌

+ 𝜕𝜕𝑉𝑉2
𝜕𝜕𝑌𝑌

= 0                                                                                                   (45) 

𝑋𝑋 �𝑈𝑈𝑠𝑠
𝜕𝜕𝑈𝑈2
𝜕𝜕𝜕𝜕

+ 𝑈𝑈2
𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝜕𝜕
� + �𝑉𝑉𝑠𝑠 −

𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝑈𝑈2
𝜕𝜕𝑌𝑌

+ �𝑉𝑉2 −
𝑌𝑌
2
𝑈𝑈2�

𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌

+ 𝜔𝜔𝑋𝑋(𝑈𝑈1 − 𝑈𝑈𝑜𝑜) = 𝜕𝜕2𝑈𝑈2
𝜕𝜕𝑌𝑌2

+

𝜉𝜉 �𝑋𝑋 �𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝜑𝜑𝑥𝑥2
𝜕𝜕𝑥𝑥

+ 𝜑𝜑𝑥𝑥2
𝜕𝜕𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑥𝑥

� + �𝜑𝜑𝑦𝑦𝑠𝑠 −
𝑌𝑌
2
𝜑𝜑𝑥𝑥𝑠𝑠�

𝜕𝜕𝜑𝜑𝑥𝑥2
𝜕𝜕𝑌𝑌

+ �𝜑𝜑𝑦𝑦2 −
𝑌𝑌
2
𝜑𝜑𝑥𝑥2�

𝜕𝜕𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑌𝑌

� + 𝜆𝜆𝜃𝜃2𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼 (46) 

𝑋𝑋 𝜕𝜕𝜑𝜑𝑥𝑥1
𝜕𝜕𝜕𝜕

− 𝑌𝑌
2
𝜕𝜕𝜑𝜑𝑥𝑥1
𝜕𝜕𝑌𝑌

+ 𝜕𝜕𝜑𝜑𝑦𝑦1
𝜕𝜕𝑌𝑌

= 0                                                                                             (47) 

𝑋𝑋 �𝑈𝑈𝑠𝑠
𝜕𝜕𝜑𝜑2
𝜕𝜕𝜕𝜕

+ 𝑈𝑈2
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝜕𝜕
� + �𝑉𝑉𝑠𝑠 −

𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝜑𝜑2
𝜕𝜕𝑌𝑌

+ �𝑉𝑉2 −
𝑌𝑌
2
𝑈𝑈2�

𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝑌𝑌

+ 𝜔𝜔𝑋𝑋𝜑𝜑1 − �𝑋𝑋 �𝜑𝜑𝑥𝑥𝑠𝑠
𝜕𝜕𝑈𝑈2
𝜕𝜕𝑥𝑥

+

𝜑𝜑𝑥𝑥2
𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑥𝑥
� + �𝜑𝜑𝑦𝑦𝑠𝑠 −

𝑌𝑌
2
𝜑𝜑𝑥𝑥𝑠𝑠�

𝜕𝜕𝑈𝑈2
𝜕𝜕𝑌𝑌

+ �𝜑𝜑𝑦𝑦2 −
𝑌𝑌
2
𝜑𝜑𝑥𝑥2�

𝜕𝜕𝑈𝑈𝑠𝑠
𝜕𝜕𝑌𝑌
� = 1

𝛾𝛾
𝜕𝜕2𝜑𝜑2
𝜕𝜕𝑌𝑌2

                                      (48) 

𝑋𝑋 �𝑈𝑈𝑠𝑠
𝜕𝜕𝜃𝜃2
𝜕𝜕𝜕𝜕

+ 𝑈𝑈2
𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝜕𝜕
� + �𝑉𝑉𝑠𝑠 −

𝑌𝑌
2
𝑈𝑈𝑠𝑠�

𝜕𝜕𝜃𝜃2
𝜕𝜕𝑌𝑌

+ �𝑉𝑉2 −
𝑌𝑌
2
𝑈𝑈2�

𝜕𝜕𝜃𝜃𝑠𝑠
𝜕𝜕𝑌𝑌

+ 𝜔𝜔𝑋𝑋𝜃𝜃1 + 𝑆𝑆𝑡𝑡𝑋𝑋𝑈𝑈2 = 1
𝑃𝑃𝑟𝑟

𝜕𝜕2𝜃𝜃2
𝜕𝜕𝑌𝑌2

    (49) 

with boundary conditions as:  
𝑈𝑈2 = 𝑉𝑉2 = 0,     𝜑𝜑𝑦𝑦2 = 𝜑𝜑𝑥𝑥2 = 0,    𝜃𝜃2 = 0    𝑎𝑎𝑡𝑡     𝑌𝑌 = 0 
𝑈𝑈2 → 0,         𝜃𝜃2 → 0,       𝜑𝜑𝑦𝑦2 → 0    𝑎𝑎𝑠𝑠    𝑌𝑌 → ∞                                                             (50) 
The primitive form of equations given in Eqs. (31)-(50) is carried out by applying the 
finite-difference scheme. The numerical results of transformed algebraic expressions with 
unknown variable 𝑈𝑈,𝑉𝑉, 𝜃𝜃 and 𝜑𝜑 which can be solved in tri-diagonal matrix form by using 
the Gaussian-elimination scheme for these unknown variables. The Eq. (51) addresses the 
obtained results of oscillating skin friction components 𝜏𝜏𝑤𝑤, heat transfer 𝑞𝑞𝑤𝑤 and current 
density 𝑗𝑗𝑤𝑤 at various stations of  non-conducting horizontally cylinder, where 𝐴𝐴𝑠𝑠, 𝐴𝐴𝑡𝑡 and 
𝐴𝐴𝑚𝑚 are amplitudes while, 𝛼𝛼𝑠𝑠, 𝛼𝛼𝑡𝑡 and 𝛼𝛼𝑚𝑚 are phase angles. 

𝜏𝜏𝑤𝑤 = �
𝜕𝜕𝑈𝑈
𝜕𝜕𝑌𝑌
�
𝑦𝑦=0

+ 𝜀𝜀|𝐴𝐴𝑠𝑠|𝐶𝐶𝐶𝐶𝑠𝑠(𝜔𝜔𝑡𝑡 + 𝛼𝛼𝑠𝑠),   𝑞𝑞𝑤𝑤 = �
𝜕𝜕𝜃𝜃
𝜕𝜕𝑌𝑌
�
𝑦𝑦=0

+ 𝜀𝜀|𝐴𝐴𝑡𝑡|𝐶𝐶𝐶𝐶𝑠𝑠(𝜔𝜔𝑡𝑡 + 𝛼𝛼𝑡𝑡),  

𝑗𝑗𝑤𝑤 = �𝜕𝜕𝜑𝜑
𝜕𝜕𝑌𝑌
�
𝑦𝑦=0

+ 𝜀𝜀|𝐴𝐴𝑚𝑚|𝐶𝐶𝐶𝐶𝑠𝑠(𝜔𝜔𝑡𝑡 + 𝛼𝛼𝑚𝑚)                                                                           (51) 

where, 𝐴𝐴𝑠𝑠 = (𝑢𝑢12 + 𝑢𝑢22)
1
2, 𝐴𝐴𝑡𝑡 = �𝜃𝜃12 + 𝜃𝜃22�

1
2, 𝐴𝐴𝑚𝑚 = (𝜑𝜑𝑥𝑥12 + 𝜑𝜑𝑥𝑥22)

1
2,  

𝛼𝛼𝑠𝑠 = tan−1�𝑢𝑢2 𝑢𝑢1� � , 𝛼𝛼𝑡𝑡 = tan−1 �𝜃𝜃2 𝜃𝜃1� � , 𝛼𝛼𝑚𝑚 = tan−1�𝜑𝜑𝑥𝑥2 𝜑𝜑𝑥𝑥1� �. 

4 Results and discussions 
The thermally stratification effects on magnetohydrodynamic mixed convection 
oscillatory flow around three stations 𝛼𝛼 = 𝜋𝜋 6⁄ , 𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋 of horizontally non-
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conducting circular cylinder has been presented in this work. In given transformed 
computed analysis, the numerical outcomes for dimensionless primitive formed equations 
are displayed graphically at given boundary conditions. The emerging parameters, such 
as thermal stratification parameter 𝑆𝑆𝑡𝑡 , Prandtl number Pr, magnetic force 𝜉𝜉 , mixed 
convection parameter 𝜆𝜆 and magnetic prandtl number 𝛾𝛾 on oscillatory stratified flow and 
heat transfer characteristics are computed in details. The addition of thermal stratification 
showed a good perfection in oscillatory heat transfer from the surface.  
In Fig. 2(a) the velocity plots are shown at different positions for three selected values of 
stratification parameter 𝑆𝑆𝑡𝑡. The fluid velocity attained certain height at position 𝛼𝛼 = 𝜋𝜋 6⁄  
and asymptotically approaches to given boundary condition. Due to thermal stratification, 
fluid velocity shows good variations at each position and maximum value for 𝑆𝑆𝑡𝑡 = 0.9. In 
Fig. 2(b) temperature profiles decreases at each position with thermally stratification 
parameter 𝑆𝑆𝑡𝑡, but increases after a certain distance 𝑌𝑌 from the cylinder. Since an increase 
in 𝑆𝑆𝑡𝑡 means decrease in surface temperature or increase in free-stream temperature. The 
thermal boundary-layer thickness is also decreased due to increase in 𝑆𝑆𝑡𝑡  values and 
similar behavior at 𝛼𝛼 = 𝜋𝜋 6⁄  station. The buoyancy term (𝑇𝑇𝑤𝑤 − 𝑇𝑇∞) within the boundary 
layer reduces due to increase in stratification parameter 𝑆𝑆𝑡𝑡. Fig. 2(c) demonstrates the 
velocity of magnetic field at three stations 𝛼𝛼 = 𝜋𝜋 6⁄ ,  𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋  with 
stratification 𝑆𝑆𝑡𝑡  and examine a good variations at each position. The magnetic-field 
effects are observed far from the surface in good form and exact at the surface are zero 
which yields non-conducting phenomena. Fig. 3(a) presented for velocity profiles at 
selected values of Pr. The fluid velocity attains maximum value but showed small 
variations at each position for Pr. The temperature profile behavior for Pr is displayed in 
Fig. 3(b). The thermal boundary layer thickness is reduced due to increase in Pr. The 
fluid temperature is decreased with similar behavior at each position due to thermal 
stratification. In Fig. 3(c), the effect of Pr on magnetic field profiles is plotted against 
three stations. The magnetic profile increases far from the surface as Pr decreases at 𝛼𝛼 =
𝜋𝜋 6⁄  position and showed similar behavior at each station. Due to non-conducting 
mechanism the magnetic effects are appeared far from the surface and exact at the surface 
are zero presenting good phenomena. This phenomena is valid because due to Lorentz 
forces the velocity of fluid decreases and low Prandtl value of fluids possess higher 
thermal conductivities. Figs. 4(a)-4(c) demonstrate the mixed convection parameter 𝜆𝜆 
effects for fluid velocity, temperature and magnetic velocity at three stations 𝛼𝛼 = 𝜋𝜋 6⁄ , 
𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋  with thermal stratification. Fig. 4(a) depicted that fluid velocity 
attains maximum height at 𝛼𝛼 = 𝜋𝜋 6⁄  position for higher values of 𝜆𝜆 . Velocity plots 
showed good variations at each position in the existence of thermal stratification and 
satisfying given boundary conditions. In Fig. 4(b) the fluid temperature decreases as 𝜆𝜆 
increases and good variations for 𝛼𝛼 = 𝜋𝜋 3⁄ ,𝜋𝜋 stations. It is observed that for 𝑆𝑆𝑡𝑡 = 0.3 the 
values of fluid temperature are obtained negative form within the boundary layer. Due to 
this reason the temperature difference between the ambient and surface is zero for 𝑆𝑆𝑡𝑡 =
0.3. But fluid is coming up to the given boundary condition from below by temperature 
buoyant force which is less than surface or ambient temperature. Fig. 4(c) is plotted for 
magnetic field at three selected values of 𝜆𝜆. The velocity of magnetic field increases as 𝜆𝜆 
increases at position 𝛼𝛼 = 𝜋𝜋 6⁄  and good variations are observed at each position. The 
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most prominent and favorable position for magnetic-velocity is 𝛼𝛼 = 𝜋𝜋 6⁄ . Because, larger 
values of 𝜆𝜆  correspond to stronger buoyancy forces which leads to increase the 
acceleration of fluid flow. Due to non-conducting phenomena the magnetic effects are 
strongly observed far from the surface but exact at the surface are zero for each position.   
Figs. 5(a)-5(c) are plotted to represent the numerical results of oscillating skin friction 
𝜏𝜏𝑤𝑤, fluctuating heat transfer rate 𝑞𝑞𝑤𝑤 and 𝑗𝑗𝑤𝑤 is the current density at selected values of 
stratification parameter 𝑆𝑆𝑡𝑡  at three stations 𝛼𝛼 = 𝜋𝜋 6⁄ ,  𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋  of non-
conducting horizontally cylinder. In Fig. 5(a) the oscillations in skin friction are 
examined at each position but maximum for 𝑆𝑆𝑡𝑡 = 0.01 at 𝛼𝛼 = 𝜋𝜋 3⁄  position. A significant 
increase in amplitude of heat transfer is claimed for large values of stratification 𝑆𝑆𝑡𝑡 and 
good variations at both 𝛼𝛼 = 𝜋𝜋 3⁄  and 𝜋𝜋 positions in Fig. 5(b). This is due to fact that 
amplitude of heat transfer would be boosted significantly if the thermal stratification 
effect is taken into account. The effect of thermal stratification increases the oscillatory 
current density at each position and showed maximum amplitude at 𝛼𝛼 = 𝜋𝜋 position for 
lower value of 𝑆𝑆𝑡𝑡 = 0.01 in Fig. 5(c). The most favorable position for oscillations is 
observed at 𝛼𝛼 = 𝜋𝜋 3⁄ . This phenomena is physically correct due to magnetic force which 
induced a Lorentz force on viscous incompressible fluids. This force resists the fluid 
velocity which increase the oscillating skin friction 𝜏𝜏𝑤𝑤 as well as heat transfer 𝑞𝑞𝑤𝑤 at each 
position. The Figs. 6(a)-6(c) are plotted for oscillatory behavior at selected values of 
Prandtl number Pr. The amount of oscillatory 𝜏𝜏𝑤𝑤  is noted maximum at 𝛼𝛼 = 𝜋𝜋 3⁄  and 
good oscillating behavior is found at each position in Fig. 6(a). The considerable 
oscillating response is noted in heat transfer for larger value of Pr and highest amplitude 
is found at 𝜋𝜋 position in Fig. 6(b). Physically, it is claimed that the amplitude of heat 
transfer increases and thermal boundary layer decreases due to higher value of Pr. The 
Fig. 6(c) is displayed for oscillating current density with thermal stratification. The 
similar fluctuating response is observed at 𝛼𝛼 = 𝜋𝜋 for each value of Pr. A good amplitude 
is noted in current density on other both positions for larger Pr. A small fluctuation in 
heat transfer is examined for lower Pr. The Figs. 7(a)-7(c) are displayed oscillatory 
mechanism for 𝜏𝜏𝑤𝑤, 𝑞𝑞𝑤𝑤 and amplitude of 𝑗𝑗𝑤𝑤 at 𝛼𝛼 = 𝜋𝜋 6⁄ , 𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋 positions for 
selected values of 𝜆𝜆. The amplitude of oscillations in skin friction increases as 𝜆𝜆 increases 
in Fig. 7(a). Good oscillations in skin friction are obtained at each position with thermal 
stratification. The highest range in oscillation for heat transfer is plotted at 𝜋𝜋 position in 
Fig. 7(b). The most prominent and favorable position for 𝜆𝜆 is 𝜋𝜋 but similar response is 
checked on other both positions. The Fig. 7(c) shows highest range in amplitude of 
current density at 𝛼𝛼 = 𝜋𝜋  as 𝜆𝜆  is increased. This phenomena is valid because the 
maximum value of 𝜆𝜆 induced a stronger buoyancy force which leads to increase more 
fluctuations in fluid flow. It is also clear the skin friction increases due to resistive force 
which opposes the flow.              
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Figure 2: The geometrical profiles for (a) velocity 𝑢𝑢 (b) temperature 𝜃𝜃 and (c) magnetic 
field 𝛷𝛷  at positions 𝛼𝛼 = 𝜋𝜋 6⁄ ,  𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋  with three choice of thermally 
stratification parameter 𝑆𝑆𝑡𝑡 = 0.1, 0.4,0.9 where others are 𝛾𝛾 = 0.8, Pr= 7.0, 𝜉𝜉 = 0.2 and 
𝜆𝜆 = 6.0 

Figure 3: The geometrical profiles for (a) velocity 𝑢𝑢 (b) temperature 𝜃𝜃 and (c) magnetic 
field 𝛷𝛷 at positions 𝛼𝛼 = 𝜋𝜋 6⁄ , 𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋 at selected values of Pr = 0.1, 1.0 and 
7.0 while 𝛾𝛾 = 0.8, 𝜉𝜉 = 0.8, 𝜆𝜆 = 5.1, and 𝑆𝑆𝑡𝑡 = 0.3 

 
Figure 4: The geometrical profiles for (a) velocity 𝑢𝑢 (b) temperature 𝜃𝜃 and (c) magnetic 
field 𝛷𝛷  at positions 𝛼𝛼 = 𝜋𝜋 6⁄ ,  𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋  at selected values 𝜆𝜆 = 0.1, 2.0 , 5.0 
where others are 𝑆𝑆𝑡𝑡 = 0.3, 𝜉𝜉 = 0.7, Pr= 7.0, and 𝛾𝛾 = 0.8 
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Figure 5: The geometrical profiles of (a) 𝜏𝜏𝑤𝑤 (b) 𝑞𝑞𝑤𝑤 and (c) 𝑗𝑗𝑤𝑤 at positions 𝛼𝛼 = 𝜋𝜋 6⁄ , 𝛼𝛼 =
𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋  with three choice of thermally stratification parameter 𝑆𝑆𝑡𝑡 =
0.01, 0.03, 0.05 where other parameters 𝛾𝛾 = 0.01, 𝜉𝜉 = 0.2, Pr= 7.0, and 𝜆𝜆 = 1.1 

  
Figure 6: The geometrical profiles of (a) 𝜏𝜏𝑤𝑤 (b) 𝑞𝑞𝑤𝑤 and (c) 𝑗𝑗𝑤𝑤 at positions 𝛼𝛼 = 𝜋𝜋 6⁄ , 𝛼𝛼 =
𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋 with three choice of Pr= 1.0, 4.0, 7.0 where other parameters 𝛾𝛾 = 0.01, 
𝜉𝜉 = 0.2, 𝜆𝜆 = 1.1, and 𝑆𝑆𝑡𝑡 = 0.1 

Figure 7: The geometrical profiles of (a) 𝜏𝜏𝑤𝑤 (b) 𝑞𝑞𝑤𝑤 and (c) 𝑗𝑗𝑤𝑤 at positions 𝛼𝛼 = 𝜋𝜋 6⁄ , 𝛼𝛼 =
𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋 with three choice of 𝜆𝜆 = 1.0, 1.5, 2.0 where other parameters 𝛾𝛾 = 0.01, 
𝜉𝜉 = 0.8, 𝑆𝑆𝑡𝑡 = 0.15, and Pr= 7.0 are constant 

 

 

τ

τ s

0.0 10.0 20.0 30.0 40.0 50.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 0.01

0.03
0.05
0.01
0.03
0.05
0.01
0.03
0.05

St
α = π/6

α = π/3
α = π

(a) τ
τ t

0.0 10.0 20.0 30.0 40.0 50.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2 0.01

0.03
0.05
0.01
0.03
0.05
0.01
0.03
0.05

St
α = π/6

α = π/3
α = π

(b) τ

τ m

0.0 10.0 20.0 30.0 40.0 50.0
0.090

0.095

0.100

0.105

0.110

0.115

0.120 0.01
0.03
0.05
0.01
0.03
0.05
0.01
0.03
0.05

St
α = π/6

α = π/3
α = π

(c)

τ

τ s

0.0 10.0 20.0 30.0 40.0 50.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7 1.0
4.0
7.0
1.0
4.0
7.0
1.0
4.0
7.0

Pr
α = π/6

α = π/3
α = π

(a) τ

τ t

0.0 10.0 20.0 30.0 40.0 50.0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7

1.0
4.0
7.0
1.0
4.0
7.0
1.0
4.0
7.0

Pr
α = π/6
α = π/3
α = π

(b) τ

τ m

0.0 10.0 20.0 30.0 40.0 50.0
0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120
1.0
4.0
7.0
1.0
4.0
7.0
1.0
4.0
7.0

Pr
α = π/6

α = π/3
α = π

(c)

τ

τ t

0.0 10.0 20.0 30.0 40.0 50.0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

1.0
1.5
2.0
1.0
1.5
2.0
1.0
1.5
2.0

λ
α = π/6

α = π/3
α = π

(b) τ

τ s

0.0 10.0 20.0 30.0 40.0 50.0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55 1.0

1.5
2.0
1.0
1.5
2.0
1.0
1.5
2.0

λ
α = π/6
α = π/3

α = π

(a) τ

τ m

0.0 10.0 20.0 30.0 40.0 50.0
0.08

0.09

0.10

0.11

0.12
1.0
1.5
2.0
1.0
1.5
2.0
1.0
1.5
2.0

λ
α = π/6

α = π/3
α = π

(c)



Computational Analysis of the Oscillatory Mixed Convection Flow                        121 

5 Conclusions 
The effects of thermal stratification on magnetohydrodynamic mixed convection oscillatory 
flow around three stations 𝛼𝛼 = 𝜋𝜋 6⁄ , 𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋 of horizontally non-conducting 
circular cylinder has been presented in this work. The coupled non-linear PDE’s are 
transformed into suitable form by applying finite-difference scheme with primitive variable 
formulation to check the accuracy of results. The numerical results of computed analysis at 
selected values of emerging parameters are displayed graphically around three positions of 
𝛼𝛼 = 𝜋𝜋 6⁄ , 𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋  of non-conducting horizontally cylinder. Due to thermal 
stratification, fluid velocity shows good variations at each position and attains maximum 
height for 𝑆𝑆𝑡𝑡 = 0.9. The fluid temperature is decreased at each position with thermally 
stratification. Due to non-conducting phenomena the magnetic effects are strongly observed 
far from the surface but exact at the surface are zero for each position. Since increase in 
stratification parameter means decrease in surface temperature or increase in free-stream 
temperature. For Pr the fluid temperature is decreased with similar behavior at each 
position due to thermal stratification. A significant increase in amplitude of heat transfer is 
observed for large values of stratification parameter 𝑆𝑆𝑡𝑡 and showed good variations at two 
stations 𝛼𝛼 = 𝜋𝜋 3⁄  and 𝛼𝛼 = 𝜋𝜋. The highest range in amplitude is claimed for current density 
at 𝛼𝛼 = 𝜋𝜋 position as 𝜆𝜆 is increased. 
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