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Abstract: In this study, we examined the efficacy of a deep convolutional neural network 
(DCNN) in recognizing concrete surface images and predicting the compressive strength 
of concrete. A digital single-lens reflex (DSLR) camera and microscope were 
simultaneously used to obtain concrete surface images used as the input data for the 
DCNN. Thereafter, training, validation, and testing of the DCNNs were performed based 
on the DSLR camera and microscope image data. Results of the analysis indicated that 
the DCNN employing DSLR image data achieved a relatively higher accuracy. The 
accuracy of the DSLR-derived image data was attributed to the relatively wider range of 
the DSLR camera, which was beneficial for extracting a larger number of features. 
Moreover, the DSLR camera procured more realistic images than the microscope. Thus, 
when the compressive strength of concrete was evaluated using the DCNN employing a 
DSLR camera, time and cost were reduced, whereas the usefulness increased. 
Furthermore, an indirect comparison of the accuracy of the DCNN with that of existing 
non-destructive methods for evaluating the strength of concrete proved the reliability of 
DCNN-derived concrete strength predictions. In addition, it was determined that the 
DCNN used for concrete strength evaluations in this study can be further expanded to 
detect and evaluate various deteriorative factors that affect the durability of structures, 
such as salt damage, carbonation, sulfation, corrosion, and freezing-thawing. 
 
Keywords: Deep convolutional neural network (DCNN), non-destructive testing (NDT), 
concrete compressive strength, digital single-lens reflex (DSLR) camera, microscope. 

1 Introduction 
Concrete is a commonly used construction material that comprises water, cement, sand, 
gravel, and various other admixtures. It has been used for several centuries to ensure the 
integrity of structures. Considering the lower cost and advantages of concrete, it is 
difficult to find suitable alternative materials [Chahal, Siddique and Rajor (2012); Maia 
and Fiquieras (2012)]. The compressive strength of concrete, which is a vital element of 
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structural design, is one of the most important mechanical properties characterizing the 
quality of concrete. Several other properties of concrete, such as impermeability, modulus 
of elasticity, and resistance to weathering agents, are directly or indirectly related to the 
compressive strength of concrete [Nematzadeh and Naghipour (2012)]. 
Traditionally, methods for evaluating the compressive strength of concrete are based on 
destructive testing. However, these methods require a considerable amount of time and 
cost, and their applicability in testing materials/structures in active use is limited [Sbartai, 
Breysse, Larget et al. (2012); Alwash, Breysse and Sbartai (2015)]. To address these 
issues, various non-destructive techniques have been developed, such as the impact 
hammer method, ultrasonic velocity method, pull-out test, penetration methods, as well 
as magnetic and radioactive methods [Basyig˘it, Çomak, Kılınçarslan et al. (2012)]. 
These methods for evaluating the compressive strength of concrete are typically used 
separately; however, they can be combined depending on requirements. These methods 
also involve a wide range of errors (4-15%) [Sbartai, Breysse, Larget et al. (2012); 
Bogas, Gomes and Gomes (2013)]. Additionally, researchers have been evaluating the 
potential of image processing as a method for recognizing concrete characteristics such as 
aggregate dispersion [Soroushian, Elzafraney and Nossoni (2003); Kabir, Rivard, He et 
al. (2009); Barbosa, Beaucour, Farage et al. (2011)]. Typically, empirical formulas are 
used when evaluating concrete characteristics through non-destructive techniques and 
image processing. As a result, these methods have a limited ability of interpreting image 
data obtained from a wide range of actual scenarios [Basyig˘it, Çomak, Kılınçarslan et al. 
(2012); Cha, Choi and Buyukozturk (2017)]. Considering the importance of the strength 
characteristics of concrete used for structural support, studies on evaluating the 
compressive strength of concrete have focused on realizing faster, more accurate, and 
more practical methods [Dogan, Arslan and Ceylan (2017)]. 
Researchers from a variety of fields have employed machine learning for the evaluation 
of phenomena recognized via image processing, under real-world conditions [Jahanshahi, 
Masri, Padgett et al. (2013); O’Byrne, Ghosh, Schoefs et al. (2014); Alwasel, Sabet, 
Nahangi et al. (2017); Dawood, Zhu and Zayed (2017)]. However, typical machine 
learning methods such as support vector machines (SVMs) and artificial neural networks 
(ANNs) only utilize one or two layers; hence, they have a limited ability of reflecting the 
complexity of images required to evaluate the strength characteristics of concrete [Zhang, 
Wang, Li et al. (2017)]. 
Recently, deep learning has attracted significant interest worldwide, owing to the rapid 
developments in big data processing and computing technology. Deep learning employs a 
multi-layer neural network structure based on the artificial neural network theory, thereby 
enabling machines to extract and process feature data to produce analytical results 
[Hinton, Osindero and Teh (2006)]. In particular, deep convolutional neural networks 
(DCNNs) are well-suited for recognizing complex images of objects [Barat and Ducottet 
(2016); Shi, Bai and Yao (2016); Zhang, Wang, Li et al. (2017)]. Therefore, current 
studies in the field of civil engineering have employed DCNNs for applications such as 
crack detection and aggregate shape evaluation [Zhang, Wang, Li et al. (2017); 
Gopalakrishnan, Khaitan, Choudhary et al. (2017); Cha, Choi and Buyukozturk (2017); 
Tong, Gao and Zhang (2017)]. 
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In this study, we propose, examine, and demonstrate the usefulness of DCNN in 
recognizing concrete surface images and evaluating the compressive strength of concrete. 
In particular, this study employed a commercially available digital single-lens reflex 
(DSLR) camera and a microscope for recognizing the concrete surface images. The 
performance of the proposed DCNN model was evaluated with respect to the image 
capturing method. Moreover, the performance of the proposed model was evaluated in 
terms of accuracy and the ease of use.  
The remainder of this paper is organized as follows. Section 2 provides a literature review 
of related research approaches and the limitations of existing studies. Section 3 describes 
the proposed DCNN architecture. Section 4 presents details regarding the calculations and 
results of DCNN training using concrete surface image data captured via a DSLR camera 
and a microscope. This section also provides the results of the testing using different data 
and includes a discussion of the performance and potential of the proposed DCNN 
architecture. Finally, the conclusions of this research are summarized in Section 5. 

2 Literature review 
Image processing has been extensively used to analyze concrete characteristics such as 
pore structure and aggregate dispersion. Soroushian et al. [Soroushian, Elzafraney and 
Nossoni (2003)] developed specimen preparation and image processing and analysis 
techniques for the automated quantitative microstructural investigation of concrete, 
focusing on the micro-cracks and voids in concrete. Kabir et al. [Kabir, Rivard, He et al. 
(2009)] evaluated various edge-detection algorithms, as well as transform and statistical-
based methods, for their effectiveness in assessing the damage in a concrete dam, based 
on digital borehole imagery obtained using an acoustic televiewer. Barbosa et al. 
[Barbosa, Beaucour, Farage et al. (2011)] proposed an image processing-based technique 
for evaluating the uniformity of aggregate distribution in lightweight concrete. Basyig˘it 
et al. [Basyig˘it, Çomak, Kılınçarslan et al. (2012)] assessed the compressive strength 
values of different concrete classes by using the image processing technique. Dogan et al. 
[Dogan, Arslan and Ceylan (2017)] used Artificial Neural Networks (ANN) and Image 
Processing (IP) together to determine the mechanical properties of concrete, such as the 
compressive strength, modulus of elasticity and maximum deformation, at a certain 
success rate. As these characteristics of concrete influence the strength of the material, it 
can be inferred that the surface characteristics and strength of concrete can be determined 
through image processing. In addition to simple image capturing, a majority of these 
studies also employed empirical formulas to assess concrete characteristics, using 
captured images. However, the ability of this approach to interpret image data captured 
under real-world conditions is limited.  
Machine learning can be used as a solution for resolving this limitation. Therefore, 
studies have utilized machine learning, instead of standardized empirical formulas, to 
predict the strength of concrete, under a variety of actual scenarios. Yan et al. [Yan and 
Shi (2010)] used an SVM to predict the elastic moduli of normal- and high-strength 
concrete and compared the elastic moduli predicted by the SVM using experimental data 
with that of other prediction models. Castelli et al. [Castelli, Vanneschi and Silva (2013)] 
proposed an intelligent system based on genetic programming for predicting the strength 
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of high-performance concrete. Chou et al. [Chou, Tsai, Pham et al. (2014)] performed a 
comprehensive comparison of various learning techniques used individually and in 
combination, for executing simulations of the compressive strength of concrete, based on 
multi-nation datasets with diverse additive materials. Additionally, researchers in the 
field of civil engineering have proposed a variety of analysis techniques that combine 
image processing and machine learning for crack detection and the motion analysis of 
workers. Jahanshahi et al. [Jahanshahi, Masri, Padgett et al. (2013)] introduced a contact-
less, remote-sensing crack detection and quantification methodology based on three-
dimensional (3D) scene reconstruction via computer vision, image processing, and SVM. 
O’Byrne et al. [O’Byrne, Ghosh, Schoefs et al. (2014)] proposed an image analysis-based 
damage detection technique to supplement and strengthen existing visual inspection 
methods as a quick and convenient source of quantitative information. Alwasel et al. 
[Alwasel, Sabet, Nahangi et al. (2017)] proposed and validated an SVM-supervised 
machine learning algorithm to classify the poses of masonry workers, based on expertise. 
Dawood et al. [Dawood, Zhu and Zayed (2017)] developed an integrated model based on 
image processing techniques and machine learning to automate consistent spalling 
detection and the numerical representation of distress in subway networks. Although 
these studies have established machine learning methods, they are limited by 
inappropriate feature extraction during image processing as well as optimization 
problems due to image complexity. 
Deep learning is a method devised by Hinton et al. [Hinton, Osindero and Teh (2006)] for 
resolving the optimization problems associated with existing ANNs. The DCNN has 
attracted considerable research attention in a variety of fields because it has achieved 
impressive results for feature extraction from image data. Consequently, studies have 
examined the efficacy of DCNNs in evaluating a variety of features, using structural image 
data. Zhang et al. [Zhang, Wang, Li et al. (2017)] proposed an efficient network 
architecture based on the convolutional neural network (CNN), for pavement crack 
detection on 3D asphalt surfaces with complete consideration of the pixel perfect accuracy. 
Gopalakrishnan et al. [Gopalakrishnan, Khaitan, Choudhary et al. (2017)] employed a 
DCNN trained on the “big data” ImageNet database, which contains millions of images, 
and transferred this learning to automatically detect cracks in the images of Hot-Mix 
Asphalt and Portland Cement Concrete surfaced pavement including a variety of non-crack 
anomalies and defects. Cha et al. [Cha, Choi and Buyukozturk (2017)] proposed a vision-
based method employing a deep architecture of CNNs to detect concrete cracks without 
calculating defect features. Tong et al. [Tong, Gao and Zhang (2017)] employed the 3D-
CNN method to provide an appropriate model for automatically evaluating aggregate 
angularity with respect to time, based on digital images. 
This study examines the efficacy of a DCNN in evaluating the compressive strength of 
concrete, using concrete surface images as the input data for the DCNN.  

3 Research methodology 
In this study, we employed a DCNN, which is a deep neural network specialized for 
image recognition. Previous studies have improved the performance of neural network 
structures by deeply processing image data in a layered manner. The concept of DCNN 
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was well-developed by the 1980s and 1990s [LeCun, Boser, Denker et al. (1990)]. When 
AlexNet was developed in 2012, DCNN was considered to be unparalleled in the field of 
image processing [Krizhevsky, Sutskever and Hinton (2012)]. A DCNN is composed of 
two main components: (1) a feature extraction component, which extracts features from 
input images and comprises the convolution layer and the pooling layer, and (2) a 
classification component based on the fully-connected layer. 

3.1 Overall architecture 
In this study, an analysis was performed based on the previously mentioned AlexNet 
structure. Fig. 1 depicts the proposed DCNN architecture, and Tab. 1 lists the dimensions 
of each layer and operator.  

 

Figure 1: Overall architecture [Krizhevsky, Sutskever and Hinton (2012)] 

The DCNN used in this study comprises five convolution layers and three fully-
connected layers. The first layer is an input layer with a pixel resolution of 224×224×3, 
which has 3 RGB components. A feature map is created as the input data moves through 
each layer, and ultimately a feature map with a resolution of 6×6×256 is created by the 
convolution (C5) and pooling (P3) layers. The final feature map is constructed in the 
three fully-connected layers and delivered as a single result in the final output layer 
(L11). Generally, a DCNN uses a softmax function in the final output layer, which is an 
activation function focusing on classification without a regression function. However, in 
this study, the goal was to identify the correlation between the surface images and 
compressive strength of concrete; hence, the Euclidean loss function expressed in Eq. (1) 
was used in the final output layer instead of a softmax function.  

loss functioin =
1
𝑁𝑁
�(𝑜𝑜𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖

 (1) 

where N is the total number of data, oi is the output of the DCNN (i.e., the predicted 
compressive strength), and yi is the actual compressive strength. Regarding the weights of 
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the DCNN, training was performed using a backpropagation algorithm to minimize the 
loss function. 
Additionally, a rectified linear unit (ReLU) as used as the nonlinear activation function 
related to the input and output of the five convolutional layers-L1, L3, L5, L6, and L7-
and two fully-connected layers-L9 and L10). Furthermore, a dropout (add reference) was 
used in the fully-connected layers (i.e., L9 and L10) to minimize overfitting. 

Table 1: Dimensions of layers and operations 

Layer Height Width Depth Operator Height Width No. Stride 
Input 224 224 3 C1 11 11 96 4 
L1 55 55 96 P1 3 3  2 
L2 27 27 96 C2 5 5 256 1 
L3 27 27 256 P2 3 3  2 
L4 13 13 256 C3 3 3 384 1 
L5 13 13 384 C4 3 3 384 1 
L6 13 13 384 C5 3 3 256 1 
L7 13 13 256 P3 3 3  2 
L8 6 6 256 fc6     
L9 1 1 4096 fc7     
L10 1 1 4096 fc8     
L11 1 1 1      

3.2 Convolution and pooling layers 
The convolution layers create a new feature map that highlights unique features in the 
input image. In addition, these convolution layers can share weights in the same feature 
map, to reduce the number of parameters; hence, the correlations of features in nearby 
areas can be learned.  
As shown in Fig. 2, the convolution calculations employed for computer vision are used 
in the convolution layer [Lecun, Bottou, Bengio et al. (1986)]. Thus, the feature map is 
determined according to the values of convolution filters. The filter weights, which are 
learned in the CNN, are element values of the filter. Generally, an odd number is used for 
the filter size; however, this attribute can vary depending on user preference. Stride refers 
to the size of the pixel that moves the filter, and the output map is determined by the 
number of filters [Lecun, Bottou, Bengio et al. (1986)]. In this study, five convolution 
layers were arranged. The first convolutional layer had a filter size of 11×11, a stride of 
4, and created 96 feature maps. The final fifth convolutional layer had a filter size of 3×3, 
a stride of 1, and created 256 feature maps. Subsequently, these feature maps proceed 
through the pooling layer and the fully-connected layer to produce the final output. 
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Figure 2: Convolution example 

As observed in Fig. 3, the pooling layer subsamples the output of the convolution layer. 
Pooling is implemented to refine the results of feature extraction via convolution. 
Numerous features are extracted if only convolution is performed; hence, pooling is 
implemented during the convolution process because it retains stronger features and 
discards weak features. Pooling methods include mean pooling, which extracts the mean 
value, and max pooling, which extracts the largest value; among the two, max pooling 
yields superior performance [Scherer, Muller and Behnke (2010)]. Therefore, in this 
study, the convolution layers-C1, C2, and C5-and the pooling layers-P1, P2, and P3-were 
arranged together, and a max pooling method with a filter size of 3×3 and a stride of 2 
was employed. 

 
Figure 3: Pooling example 

3.3 Activation function 
In a neural network (NN), the function that converts input signals into output signals is 
called the activation function. In a normal ANN, the logistic sigmoid function and the 
hyperbolic-tangent function are among the most commonly used activation functions for 
imparting nonlinearity. However, these functions are encumbered by their slow learning 
rates. For a small-sized NN, this problem is not severe; however, a considerably large 
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NN, such as a DCNN, is significantly affected by the low learning rates of these 
functions [Glorot, Bordes and Bengio (2012)]. To resolve this problem, the ReLU was 
used as the nonlinear activation function [Nair and Hinton (2010)]. Fig. 4 illustrates the 
different types of nonlinear activation functions. Although other nonlinear functions are 
bounded to the output values, such as positive and negative ones and zeros, ReLU has no 
bounded outputs, except for its negative input values. Intuitively, the gradients of ReLU 
are always zeros and ones. Therefore, ReLU is relatively simple and requires fewer 
calculations; moreover, ReLU is a fast learner and yields more accurate results than other 
nonlinear activation functions [Cha, Choi and Buyukozturk (2017)]. Therefore, in this 
study, the ReLU activation function was used as the input–output activation function of 
the neuron. 

 
Figure 4: Nonlinear activation function 

3.4 Methods for reducing overfitting 
Overfitting refers to a situation where a NN becomes overly accustomed to training data 
and cannot appropriately handle other data, leading to poor validation and testing results. 
Overfitting mainly occurs because the training data is insufficient for the number of 
parameters to be learned. To resolve this problem of overfitting, augmentation and 
dropout methods were employed in this study. 
The data augmentation used in this study included random crop and horizontal flipping 
methods, as illustrated in Fig. 5. Random crop is a method in which images are randomly 
cropped or scaled. In this study, a random seed was created in the 18×18 area at the top-
left of the 112×112 reduced images. This point was then used as the top-right coordinate 
to create 84×84 image data. The images were also rotated by 180° along the x-axis to 
increase the amount of data. 
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Furthermore, dropout was used to minimize overfitting. In addition to data augmentation, there 
are other methods for preventing overfitting; these methods reduce the network structure to 
reduce the number of parameters. Currently, the dropout method is typically used. This method 
does not train the entire NN; instead, it randomly selects a part of the NN and trains it 
according to a certain dropout rate [Srivastava, Hinton and Krizhevsky et al. (2014)]. 

  
(a) (b) 

Figure 5: Examples of data augmentation: (a) random crop and (b) horizontal flipping 

4 Experimental study 
This study used a DCNN to predict concrete compressive strength based on concrete 
surface image features. A DSLR camera and a microscope were used simultaneously to 
capture concrete surface images. The DSLR camera was portable and could easily 
capture wide ranges at high resolution. However, the DSLR camera experienced certain 
difficulties when shooting with high magnification. In contrast, the microscope, which is 
designed to shoot higher magnification images, captured detailed concrete surface image 
characteristics; however, the microscope images had a relatively narrow range. To 
examine the characteristics of this imaging equipment, DCNNs that used the images 
captured by the DSLR camera and microscope as input data were implemented, and the 
analysis results were evaluated. The AlexNet model was used as the network architecture 
for training the DCNNs to use each type of image data. Finally, the performance of the 
DCNN models was indirectly analyzed by comparing the accuracy of models to that of 
models which evaluate concrete compressive strength through existing non-destructive 
testing (NDT) methods. In this study, a workstation equipped with four GPUs was 
employed to perform the analysis (CPU: Intel Xeon E5-2620 v4 @ 2.1 GHz with 64 GB 
RAM and four Nvidia GTX 1080 Ti GPUs). 

4.1 Data preparation 
The DCNN model for evaluating concrete strength were created in advance. At 28 days, 
the concrete specimens had a mixture of strengths, including 18 MPa, 24 MPa, and 40 
MPa, as listed in Tab. 2. The specimens of each strength were categorized according to 
their material age in days, and strength tests were performed. The results provided in the 
table constitute the output data. 
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Table 2: Overview of output data 

Design strength 
(MPa) 

Real strength (MPa) 
3 days 7 days 28 days 

18 8.89 10.84 18.83 
 10.29 10.57 17.09 
24 16.77 18.08 20.27 
 17.29 17.73 27.97 
40 25.96 34.99 40.59 
 27.58 33.83 41.48 

The images were obtained by capturing the surfaces of concrete specimens with a DSLR 
camera and a microscope. The DSLR camera captured a total of 332 images at a 
resolution of 4,096×2,160 pixels. The microscope captured 300 images at a resolution of 
1,920×1,080 pixels. The distance between the imaging equipment and the concrete 
surface was approximately 1.0-1.5 cm. Random crop and horizontal flipping were 
performed on the captured images, as shown in Fig. 6, and the images were resized to 
84×84 pixels resolution. Finally, 4,709 and 3,846 image data were created in DSLR and 
microscope categories, respectively, shown in Tab. 3. The data were distributed randomly 
in the learning, validation, and testing processes. 

Table 3: Overview of input data 

Category Learning Validation Testing Sum 
DSLR 3,601 515 593 4,709 
Microscope 2,804 401 641 3,846 

 

  
(a) (b) 

Figure 6: Examples of input image data: (a) DSLR image; (b) Microscope image 

4.2 Training 
The DCNN model for evaluating concrete compressive strength based on concrete 
surface images was trained via stochastic gradient descent (SGD) backpropagation 
algorithm delineated in Eq. (2), where i is the iteration index, v is the momentum 

variable, 𝜖𝜖 is the learning rate, and �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜔𝜔𝑖𝑖

�
𝐷𝐷 𝑖𝑖

 is the average over the ith batch 𝐷𝐷𝑖𝑖 of the 
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derivative of the objective with respect to 𝜔𝜔 , evaluated at 𝜔𝜔𝑖𝑖. 

 
(2) 

  
The total DCNN training and validation images that were captured by DSLR camera 
were 3,601 and 515, respectively, and 2,804 DCNN training images and 401 validation 
images were captured using the microscope. The minibatch size for both the models was 
the same, i.e., 128. The initial learning rate, weight decay, and momentum parameters 
were set at 0.01, 0.0005, and 0.9, respectively. The convolution layer C1 and convolution 
layers C2-C5 had a stride size of 4 and 1, respectively. The pooling layers P1-P3 had a 
stride size of 2. After setting the dropout rate to 0.5, the analysis was conducted. 
Fig. 7 shows the DCNN learning curves for the DSLR camera and microscope data. As 
can be seen in Fig. 7, the learning and validation loss both decreased as the iterations 
increased, and as a result overfitting did not occur. The results demonstrated that the 
image data from both the DSLR camera and the microscope contain patterns which can 
predict compressive strength, and that these patterns can be learned by the DCNN. 

  
(a) (b) 

  
(c) (d) 

Figure 7: Learning curve: (a) Training loss of DSLR, (b) Validation loss of DSLR, (c) 
Training loss of Microscope, and (d) Validation loss of Microscope 

4.3 Testing 
After training, performance tests were conducted to assess the efficacy of the DCNN for 
evaluating concrete compressive strength. The box plots in Fig. 8 illustrates the 
calculated error rates of the DCNN for each level of compressive strength using images 
captured by the DSLR camera and the microscope. As observed in Fig. 8, although there 
were cases where the maximum value of the error rate was extremely high, most of the 
values between the first and third quartiles were close to the median value. When 
comparing the error rates by level of strength, it was observed that as the design strength 
increased, not only did the maximum value of the error rate decrease, but also the 
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thickness of the box gradually narrowed, indicating increased accuracy. 

 
(a) DSLR camera 

 
(b) Microscope 

Figure 8: Box plots of deep convolutional neural network (DCNN) error rate according 
to strength 
On examining each DCNN in terms of the DSLR camera and microscope images, we 
found that the DCNN accuracy was higher for the images captured by the DSLR camera. 
When Figs. 8(a) and 8(b) are compared, the box thickness for most strengths is found to 
be relatively thin for the DCNN which uses DSLR images compared to those derived 
from the microscope dataset. This means that the error rate was concentrated on the 
median value. Thus, it is observed that the DCNN performance was relatively better for 
DSLR camera images compared to the microscope images. 
This analysis is supported by further analysis provided in Tab. 4. The root-mean-square 
error (RMSE) and mean absolute percentage error (MAPE) of the DCNN that used 
DSLR images were relatively low. This was because the images captured by the DSLR 
included a relatively wide range. This showed that, inclusive images with a wider range 
were better-suited for extracting more features. 

Table 4: Overview of input data 

Classification 
Statics 
RMSE MAPE 

DSLR 3.779 12.25% 
Microscope 4.875 18.31% 

Fig. 9 compares the concrete compressive strength prediction accuracy of the DCNNs 



 
 
 
Predicting Concrete Compressive Strength Using Deep Convolutional                     13 

proposed in this study with those of existing NDT methods. The two commonly used 
NDTs for evaluating concrete strength are the rebound test and the ultrasonic pulse 
velocity (UPV) test. Many existing studies have predicted the concrete compressive 
strength by inserting the rebound values and ultrasonic pulse velocities obtained from 
these methods into empirical formulas. In fact, most of the literature on non-destructive 
testing uses these empirical formulas and compares them with the existing empirical 
formulas. Therefore, to assess the performance of the proposed DCNNs, we consulted the 
literature evaluating the performance of existing empirical formulas, and indirectly 
compared the prediction performance of the empirical formulas to that of the proposed 
DCNNs. For a comprehensive evaluation of the prediction performance of existing 
empirical formulas refer to Kim et al. [Kim, Oh and Oh (2016)]. Fig. 9 shows the graphs 
of the indirect comparison of the prediction performance of the evaluation results and the 
proposed DCNNs. As can be observed from the figure, the prediction performance of the 
DCNNs was relatively high in terms of RMSE. Therefore, we assert that the minimum 
DCNN prediction performance is acceptable. 

 
Figure 9: Comparison of RMSE between NDT methods and the proposed DCNN 

5 Conclusion 
Concrete strength evaluations are extremely important because concrete plays a major 
role in supporting structures. Non-destructive methods for concrete strength evaluation is 
gradually attracting more attention because these techniques maximize the efficiency. 
Deep learning technology is also attracting increasing interest owing to the growth of big 
data technology. This study proposed, examined, and demonstrated the usefulness of a 
deep convolutional neural network (DCNN) for recognizing concrete surface images and 
evaluating concrete compressive strength. 
The analysis showed that the DCNN which used the DSLR camera image data had 
relatively high accuracy compared to that of the microscope image data. This higher 
accuracy was because the DSLR camera captured a wider range compared to the 
microscope, thus making it better-suited for extracting more features. These results also 
indicate that the DCNN is an effective tool for image-based analysis. When compared to 
the microscope, the DSLR camera was much easier to use in the field, as it reduces time 
and expense losses which further strengthens its usefulness. When the accuracy of the 
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proposed DCNN approach was indirectly compared to the existing non-destructive 
methods for evaluating concrete compressive strength, the proposed DCNN exhibited 
improved concrete compressive strength prediction performance compared to other 
approaches. Although more data must be collected and evaluated, and a more detailed 
analysis should be conducted, this study still establishes the potential of DCNNs as non-
destructive testing methods to evaluate concrete compressive strength. 
To ensure the durability of structures, it is necessary to develop a method for detecting 
and evaluating not only the concrete compressive strength, but several other concrete 
deterioration factors such as salt damage, carbonation, sulfation, corrosion, and freezing-
thawing. Most methods for evaluating these concrete deterioration factors have limited 
practicality because they rely on empirical formulas. In this study, the main aim of 
DCNN was to evaluate the concrete compressive strength, but this could be expanded to 
include additional deterioration factors as well. 
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