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Abstract: Granite is generally composed of quartz, biotite, feldspar, and cracks.
The changes in digital parameters of these compositions reflect the detail of the
deformation process of the rock. Therefore, the estimation of the changes in digi-
tal parameters of the compositions is much helpful to understand the deformation
and failure stages of the rock. In the current study, after dividing the frames in the
video images photographed during the axial compression test into four parts (or,
the upper left, upper right, lower left, and lower right ones), the digital parameters
of various compositions in each part were then extracted. Using these parameters
as input dataset, a long short-term memory (LSTM) based neural network was
then established for exploring the changes of various compositions. After dividing
the deformation process into four stages based on the stress-strain curve and using
the digital parameters of various compositions as the dataset, the LSTM-based
neural network for estimating the rock deformation stage was also established.
The root mean squared error (RMSE) and goodness of fit (R2) and the average
accuracy (ACC) were used to evaluate the efficiencies of these two LSTM-based
neural networks. The influences of variables (such as the number of hidden layers,
maximum epoch, learning rate, minimum batch size and train ratio) on efficien-
cies of the LSTM-based neural networks were thereafter explored. It shows that
the super parameters have a great influence on the efficiency of the established
LSTM-based neural network for estimating digital parameter changes of various
compositions; the estimations were relatively good if the number of hidden layers,
maximum epoch, learning ratio, minimum batch size, and train ratio is 2, 150,
0.005, 10, and 0.8, respectively; the compositions with the greater percentage
have a greater accuracy using the neural network; the great-small sequence of
ACC is biotite, feldspar, crack, and quartz, if the LSTM-based architecture for
estimating deformation stages was used. These results may be referable both
for investigating the availably of the established LSTM-based architectures and
for exploring the deformation process of the rock materials.
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1 Introduction

Rock is a typical material composed of various compositions. For example, granite is generally
composed of quartz, biotite, and feldspar. The changes of these compositions reflect the deformation
stages of the rock. Therefore, it is much important to determine the composition changes and the rock
deformation stages in investigating the rock properties. The conventional technique is much focused on
the whole deformation of the rock. There are few works, as we know, in exploring the detailed
movements of various compositions at different deformation stages. Because each composition may be
represented by the digital parameters, the estimation of the instant digital parameters at the corresponding
deformation stage is much important in understanding the failure process of the rock under external load.
In this study, we will establish two long short-term memory (LSTM) based neural networks to
respectively estimate the composition digital parameters and the rock deformation stages.

The image processing techniques have been utilized to compute the instant digital parameters of each
composition. To investigate the changes of various compositions in a rock by the use of the image
processing techniques, Xu et al. [1] obtained the lengths and areas of the compositions in granite under
axial load. Rigopoulos et al. [2] examined the details in crack initiation and propagation, Lin et al. [3]
measured the related displacements in a rock, Akesson et al. [4] explored the locations of the newly-
generated cracks, and Han et al. [5] track the movement of crack by taking crack as tracking targets.

In recent years, many researchers tried to use the LSTM-based neural networks to solve the problems in
the field of civil engineering. In construction engineering, Zhong et al. [6] combined the conditional random
field and bidirectional LSTM to automatically extract the qualitative construction procedural constraints in
Chinese regulations after recognizing the named entities; Qu et al. [7] proposed practical quantitative indexes
to evaluate the concrete dam deformation based on rough set (RS) theory and a LSTM-based network; Zhang
et al. [8] established a two-level structure with LSTM-based network respectively to improve signal quality
and to build crack signal for detecting the acoustic emission signals of rail cracks; Rashid et al. [9] presented a
LSTM-based RNN (recurrent neural network) for construction equipment activity recognition using the
synthetic time-series training data; Tang et al. [10] proposed a forecast model for rail transit based on
LSTM-based network by combining spatio-temporal parameters as the input; Sagheer et al. [11] proposed
a deep long-short term memory (DLSTM) architecture using the production data of two actual oilfields;
Khatir et al. [12] assessed the combination use of artificial neural network with particle swarm
optimization for the damage quantification of laminated composite plates. In bridge engineering,
Mangalathu et al. [13] utilized the LSTM algorithm to classify building damages based on the textual
descriptions recorded after an earthquake; Guo et al. [14] found that the LSTM-based neural network is
effective for the deflection estimation of the bridge health state; Tran-Ngoc et al. [15] employs the cuckoo
search algorithm to improve the training parameters in the artificial neural network for the numerical
models of a steel beam and a large-scale truss bridge; Khatir et al. [16] combined the transmissibility
functions with the artificial neural network to conduct the damage detection in a girder bridge. In
underground works, Gao et al. [17] used the traditional recurrent neural (RNN) networks, LSTM-based
networks and gated recurrent unit (GRU) networks to conduct the real-time estimation of operating
parameters in tunnel boring machines (TBM); Yang et al. [18] presented the coal gangue recognition
results by comparing LSTM and other learning algorithms based on the collision vibration signal between
the coal gangue and metal plate; Zhou et al. [19] presented a neural network, containing a wavelet
transform noise filter, convolutional neural network feature extractor, and LSTM estimator, for
determining the attitude and position of the shield machine. In geotechnical engineering, Do et al. [20]
combined the LSTM algorithm and multi-layer neural network to forecast the crack propagation in risk
assessment of engineering structures without analysis tools; Nguyen et al. [21] applied the LSTM method
and the multi-layer neural networks to predict fracture growth rates of a concrete specimen in the
permeable porous media; Xu et al. [22] and Xie et al. [23] presented a dynamic model to estimate
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landslide displacement both by decomposing the displacement into the trend and periodic components and
by using the empirical mode decomposition and LSTM-based method; Yang et al. [24] utilized the time
series theory and a LSTM-based neural network to estimate the transient landslide displacement; Geng
et al. [25] adopted a dilated causal temporal convolution network (DCTCNN) and a CNN-LSTM hybrid
model to forecast seismic events; Zhang et al. [26] proposed two schemes of the LSTM-based network
for nonlinear structural seismic responses after clustering the seismic inputs using dynamic K-means
clustering approach.

An LSTM-based architecture may make full use of dynamic digital parameters to automatically explore
features at various deformation stages, and perform well in the studies related to long distance dependencies
(especially for the time-series data). This architecture can also reduce the noise signals caused by the
surroundings and be much suitable for the real-time detection application. Nevertheless, few works, as we
know, were conducted in using the LSTM-based neural networks for estimating the instant composition
digital parameters during the rock deformations. Temporal parameters in the video image are linked to the
deformation stages and can be extracted at each instant. These sequential data may be used to develop a
data-driven model to investigate the multistage features of the rock deformations. The deformation
evolution of the rock specimen is a complex nonlinear dynamic process, in which the deformation
conditions at one time may affect the stability conditions at the next time. Therefore, the LSTM-based
architecture may be used to investigate the granite deformation process under axial load. In this study,
using the video image photographed during the laboratory compression test and cropping each frame in
the video image into different parts, the threshold technique was then used to determine the types and
locations of various compositions. The composition digital parameters were thereafter extracted and used
as the dataset to establish two LSTM-based neural networks respectively for exploring the changes in
composition digital parameters and for determining the deformation stage of whole specimen. The
influences of various variables on the efficiencies of the established LSTM-based neural networks are
furthermore examined.

2 Establishment of Digital Parameter Dataset for Various Compositions

2.1 Processing of Granite Test Video Image under Axial Load
The granite blocks used in this study are located in the Besishan area, Yumen city, Gansu Province,

China. After slicing the blocks into a cuboid with the size of 50 mm × 50 mm × 100 mm and polishing
into the specimen with the section flatness smaller than 0.02 mm, the camera with a type of Canon 600D
was stably set on the front of the specimen with a distance of around 100 cm. The uniaxial compression
test was then conducted using the serving machine with the maximum load of 2.0 MN. The test process
was photographed to obtain the video image with a MOV format.

From the video image, the crack appeared at 256 s. All of the frames with the size of 25 mm × 50 mm
from this instant were then extracted from the video image. Two frames per second (or, the total of 700
frames) were extracted to conduct the following analysis. Each frame was evenly divided into four parts,
or, the upper left, upper right, lower left, and lower right parts, to explore the changes in digital
parameters at various parts. By using the conventional identification and point-selection technique, the
types of various compositions at various locations were determined and labelled. Fig. 1 shows an original
frame. Fig. 2 is the cropped images at various locations in Figs. 1 and 3 is the corresponding labelled
image of Fig. 2b.

It should be noted that the composition type and change on a frame were herein determined by the color
and traditional naked-eye technique. The composition changes may be also modeled by using the phase field
models (PFMs). It is useful to apply the PFMs in characterizing these changes in the future work. As for the
use of the phase field model, the fracture propagation was investigated in poroelastic media based on the
classical Biot poroelasticity theory (Zhou et al. [27]), the crack propagation, branching and coalescence in
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a rock may be simulated (Zhou et al. [28]), the fluid-driven dynamic crack propagation in poroelastic media
can be also explored (Zhou et al. [29]), related computations for quasi-static and dynamic crack propagation
was also implemented on a general finite element software (Zhou et al. [30]). The modified PFM can be used
to simulate the compressive-shear fractures in rock-like materials by constructing a driving force in the
evolution equation (Zhou et al. [31]).

2.2 Establishment of Feature Dataset for Various Compositions
Taking the above-mentioned 700 images during the test, the digital parameters (including the long-axis

length L and the area A) of various compositions at various locations and instants were then computed.

Fig. 4 shows the changes with time in the long-axis length L.

As for the length L changing with time of various compositions in Fig. 4, it can be seen that:

(a) as for cracks (see Fig. 4a), the length on the upper left parts increase obviously into 240 pixel, first
followed by the maintenance of the length, then followed by the appearance of the cracks on the lower parts
and no new crack appeared on the upper left parts; the changes in the length are much similar to those in the
area, implying that the most changes in the crack area are distributed to the changes in the length;

(b) as for biotite (see Fig. 4b), most of the changes appeared on the lower left parts, and there are small
changes on the upper parts; the lengths on the upper right parts are obviously greater than those on the upper
left part; the lengths on the lower parts increased obviously at the instants of 120 and 600 s; the changes in the
length are similar to those in the area;

(c) as for feldspar (see Fig. 4c), the lengths increased obviously at around 120 s; the lengths at upper left
and lower right parts are stable at about 450 pixel, whereas the lengths at upper right part decrease slowly;
there are many differences between the changes in lengths and in areas, implying that the length changes in
the feldspar are related both to the long-axis length and to the short-axis length;

(d) as for quartz (see Fig. 4d), the change trends are similar at the upper left and lower right parts,
whereas a relatively great difference appears at the lower left and upper right parts; most changes in the
areas are attributed to the changes in the lengths.

Figure 1: An original frame of granite under axial load
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Figure 3: Labelled image for each composition in Fig. 2b

Figure 2: Cropped granite images at various parts from Fig. 1 (a) Upper left (b) Upper right (c) Lower left
(d) Lower right
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As a whole, under axial load, for crack and biotite, the change trends in the long-axis length are relatively
similar to those in the area, most area changes are attributed to the changes in the long-axis lengths; for
feldspar, there is a great difference between the changes in the long-axis length and area; for quartz, there
is a small difference between the change trend in the long-axis length and area at the upper left and lower
right parts, whereas the area changes are dependent both on the long-axis length and on the short-axis
length. Fig. 5 shows the changes with time in the area A.

As for the area A changing with the time of various compositions in Fig. 5, it can be seen that:

(a) as for cracks (see Fig. 5a), none appears at the upper left part, whereas the earliest ones appear at the
upper right part. During the crack propagation, new cracks generated gradually at the lower left and lower
right parts; the areas increased quickly at around 120 s and increased slowly later until the specimen
destructed. The crack area approached into the maximum at around 682 s and was then stable until the
specimen destructed; most of the cracks appeared at the upper left part with a maximum of around 1600
mm2; the changes in crack areas are relatively the same at around 500 mm2 between those at the lower
left part and those at the lower right part whereas the former changes more quickly;

(b) as for biotite (see Fig. 5b), most of the areas at the lower left part fluctuated, which may be induced by
more identification errors of small cracks; the areas at lower left and lower right parts increased obviously at
around 120 s and 600 s; the areas fluctuates smaller at the lower left, upper right, and lower right parts;

Figure 4: Length changes with time of various compositions (a) Crack (b) Biotite (c) Feldspar (d) Quartz
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(c) as for feldspar (see Fig. 5c), the area is usually decreased; the greater one appears at the lower left
part, whereas the smallest one appears at the lower right part; those on the upper parts are stable, whereas
those on the lower parts decrease obviously with a relatively great speed;

(d) as for quartz (see Fig. 5d), the area is stable; the great-small area order of the locations is lower
right, lower left, and upper right; the areas at the upper right part has a decreasing trend and smaller
than those of feldspar as the cracks increased quickly at 120 s; the areas at the lower parts slowly
decreased followed by an increase.

As a whole, under axial load, most cracks appear on the feldspar parts; areas of biotite, feldspar, and
quartz are increased, decreased, and stable, respectively, and this change sequence agrees with the small-
great hardness of the compositions.

3 Establishment of LSTM-Based Architecture for Estimation of Digital Parameter Changes of
Granite Compositions

3.1 Foundation of LSTM-Based Neural Network
Now we use the LSTM-based neural network to investigate the earlier-mentioned digital parameters of

various compositions in the granite under axial load.

The LSTM-based neural network is a deep learning algorithm based on the modified recurred neural
network, in which the memory cell may selectively member the long or short input data and is much
suitable to conduct the temporal data.

Figure 5: Area changes with time of various compositions (a) Crack (b) Biotite (c) Feldspar (d) Quartz
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The conventional LSTM-based neural network composed of three layers, or input, hidden, and output
layers. The output is related both to the current input and to the hidden layer in the earlier layers and therefore
has the memory ability. The main difference between LSTM and RNN is that a “processor” is added in
LSTM to judge whether the data is useful. The structure of the processor is called LSTM memory cell. In
each cell, three gates (respectively called input, oblivion, and output ones) are set. As the data get into the
LSTM-based neural network, whether they are available depends on the pre-defined rules, only those met
the requirements are mentioned.

Fig. 6 shows the structure of LSTM memory cell.

In Fig. 6, input gate (it), forget gate (ft), output gate (ot), cell state (ct), and cell output (ht) are computed
relatively by

it ¼ rðWixxt þWihht�1 þWicct�1 þ biÞ (1)

ft ¼ rðWfxxt þWfhht�1 þWfcct�1 þ bf Þ (2)

ot ¼ rðWoxxt þWohht�1 þWocct�1 þ boÞ (3)

ct ¼ ft1ct�1 þ it1 tanhðWcxxt þWckht�1 þ bcÞ (4)

ht ¼ ot1 tanhðctÞ (5)

where xt 2 Rk , representing the input time series; r is the sigmoid function acting on three gates with the
output of [0,1], representing the passage degree (0 and 1 are no pass and pass respectively); tanh is the
tangent of the hyperbola; Wix, Wih, Wfx, Wfh, Wox, and Woh are the weight matrices initialized with
random values corresponding to various gates; bi, bf and bo are the biases to the corresponding weight
matrices; “1” represents the multiplication of the corresponding elements in the matrices; ct is the
expression of the storage unit at time t; ht is the outputs of LSTM unit at time t.

3.2 Design of LSTM-Based Architecture for Various Compositions on Granite
Following the conditions described earlier, the LSTM-based architecture for various compositions on

granite was established (shown in Fig. 7). The input layer, hidden layer, output layer, and net training are
included in the architecture.

Figure 6: Structure of LSTM memory cell
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The layers in Fig. 7 are described as follows:

(a) Input layer. Taking the above-mentioned time series as the original input data, in which earlier 80%
and later 20% were respectively set as the training and test sets. The time series are the long-axis length and
area of quartz, biotite, feldspar, and crack at each instant extracted from the above-mentioned 700 images. In
order both to avoid the anomaly and noise and to accelerate the training of the net, the original data were
standardized by

xb ¼ x� l
r

(6)

where xb is the standardized data; x is the original data; l and r are the mean and variance of the original data
x, respectively.

(b) Hidden layer. In the established LSTM architecture, the hidden layer is composed of two LSTM
layers, in which the hidden element is used to remember the information at corresponding time steps. In
the current study, the first and second LSTM nets are originally respectively set as a combination of 150
and 125 memory elements. In each layer, a dropout layer was added both to control the abandoned
probability of neural element and to avoid the over fitting of the net.

(c) Output layer. In the established LSTM-based architecture, the output layer is composed of a fully-
connected layer and a regression layer. A dropout layer was also added. The estimated time-series were
obtained from the output layer. The inverse standardization was conducted to compute the loss by
comparing the estimated time-series and actual ones. Herein, a fully-connected layer multiplies the input
by a weight matrix and then adds a bias vector to make the output values more exact, a regression layer
computes the mean absolute error loss at each instant and can be used to obviously display the
differences between the estimated and actual values. Therefore, these two layers were composed in the
output layer both to reduce the errors of the estimated digital parameters and to visually display these
errors in the later sections.

(d) Training parameters in the architecture. The parameters conclude the selection of optimizer, learning
ratio, minimum batch size, and maximum epoch. In this study, the Adam algorithm is set as the optimizer; the
leaning ratio is set as 0.0 to 1.0 to update weights; the minimum batch size represents the number of specimen
during the training and may affect the optimization and training speed; the epoch is the training number
where all the training set are used.

3.3 Accuracy Measurement of LSTM-Based Architecture
Root mean squared error (or RMSE) and goodness of fit (or R²) were used as the criteria for evaluation to

measure efficiency of the established LSTM-based architecture, and computed by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi � ŷiÞ2
s

(7)

Figure 7: Estimation architecture of granite compositions based on LSTM network
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R2 ¼ 1�
P
i
ðyi � ŷiÞ2P

i
ðyi � �yiÞ2

(8)

where yi is the actual value; ŷi is the estimated value; �yi is the mean of the actual value; n is number of the
time-series data.

Root mean squared error (RMSE) represents the error between the estimated and actual values. The
smaller the RMSE, the closer is the estimated value to the actual one. Goodness of fit (R²) is a
dimensionless coefficient in the interval of [0,1]. If R² is closer to 1, the estimated values approach more
to the actual ones, and vice versa.

3.4 Training of LSTM-Based Architecture
In the current study, the original training parameters are set as follows: the number of the hidden layer is

1; the ratio of the training to test sets is 0.8; the leaning ratio is 0.003; the minimum batch size is 10; and the
maximum epoch is 100.

Taking the area changes with time of feldspar at upper right parts as the input data (see Fig. 2b), the
estimated area (see Fig. 8) and the corresponding locally-enlarged figure were obtained (see Fig. 9).

From Fig. 9, it can be seen that the results are not satisfactory; there is a relatively great error of 200 mm2.

3.5 Exploration of Parameters in LSTM-Based Architecture
To improve the established LSTM-based neural network in estimating the digital parameters of the

compositions included in the granite under axial load, we now explored the effects of the above-
mentioned training parameters on the estimation accuracies.

(1) Number of hidden layers

Tab. 1 shows the computed results of the estimation accuracies with various numbers of hidden layers. It
can be seen that RMSE and R2 approach their smallest and greatest ones if the number of hidden layers is set

Figure 8: Estimation results of feldspar area
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Figure 9: Enlargement and error of estimation for feldspar area
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at 2; but the over fitting appears and the accuracies decreased if the number of hidden layers is greater than 2,
implying that it is not always to improve accuracy if the number of hidden layers increases.

(2) Super parameters

Now we determine the available learning ratio and minimum batch size. To approach this, we first
draw the changes of RMSE and R2 with the maximum epochs at various learning ratios (respectively see
Figs. 10a and 10b).

In Fig. 10, the number of hidden layers is 2, the maximum epoch is 50, 100, 150, 200, 250, 300 and 350,
respectively, whereas the learning ratios are set at 0.001, 0.003, 0.005, and 0.010, respectively. It can be seen
that R2 approaches the maximum (0.9814) at a learning ratio of 0.005. Coincidentally, at this learning ratio,
RMSE also approaches to the minimum value (31.4129). Therefore, the best estimation of the digital
parameters may be obtained if the learning ratio is set at 0.005.

The computed RMSE and R2 at various batch sizes were listed at Tab. 2. In Tab. 2, the minimum batch
sizes are set at 5, 10, 15, 20, 25, and 30, respectively, whereas the learning ratios are set at 0.001, 0.003,
0.005, and 0.010, respectively. It is coincidental again that RMSE and R2 simultaneously approach to the
maximum (0.9814) and minimum (30.6670).

(3) Train ratio

Now we determine the available train ratio using the above-mentioned number of hidden layers and
super parameters. Here, the train ratio is defined as the percentage of the training set in total of the
dataset where the total of the feldspar area is used. The accuracy may be unstable and unavailable if a
greater train ratio is used. Nevertheless, the fidelity may be decreased if a smaller train ratio is used.

Table 1: RMSE and R² with various numbers of hidden layers

Numbers of Hidden layers RMSE (mm2) R²

1 56.8051 0.9012

2 31.4129 0.9814

3 46.7714 0.9361

4 73.3695 0.8296

Figure 10: Computed RMSE and R2 at various maximum epoch (a) RMSE (b) R2
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Using above-mentioned LSTM-based architecture (see Section 3.2), the number of hidden layers (see
Section 4.1), and super parameters (see Section 4.2), we obtained the total of the feldspar area at different
instants at various training rates (see Fig. 11). In Fig. 11, the train ratios are set at 0.5, 0.6, and 0.8,
respectively. It can be seen that the accuracies are greater if the train ratio increased. Considering the
balance between the input dataset and training-consumed time, we set the train ratio at 0.8 in the
following sections.

(4) Measurements of accuracy

Using the above-mentioned parameters, we may estimate the changes in the digital parameters in
describing various compositions at various locations on the granite specimen under axial load. Due to the
limited space, the results related to the area are presented herein.

Tab. 3 lists the estimation accuracies of various compositions at various locations by using the updated
LSTM-based architecture. It can be seen that the mean RMSE and mean R2 of biotite areas are 23.144 and
0.809, respectively, whereas those of quartz areas are 44.902 and 0.912, respectively. In total, the errors are
relatively small and the established architecture may reflect the area changes of various compositions at
various locations.

Table 2: RMSE and R2 at various minimum batch sizes

Minimum batch size RMSE (mm2) R²

5 33.6115 0.9733

10 30.6670 0.9814

15 34.2734 0.9766

20 46.4322 0.9423

25 52.1221 0.9416

30 61.8720 0.9121

Figure 11: Total of feldspar area vs. instants at various training rates using established LSTM-based
architecture
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Fig. 12 shows the estimated and actual areas of various compositions at various instants using the
updated LSTM-based architecture. It can be seen that the errors of the estimated areas are about �100,
�150, �20 and �50 mm2, respectively for feldspar, quartz, biotite and crack. This order is coincident
with the great-small order of the percentages of the compositions included in the granite. That is to say,
the composition with a greater percentage may have a greater accuracy if the established architecture is used.

In total, there is a relatively small error if the established LSTM-based architecture is used to estimate the
digital parameters of various compositions included in granite under axial load.

4 LSTM-Based Architecture for Estimation of Granite Deformation Stage

4.1 Stage Division during Granite Deformation
Fig. 13 shows the stress-strain curve of granite under uniaxial compression load. It can be seen that the

deformation process of granite may be divided into the following four stages:

(a) Stage I. The time of duration is 0 to 80 s. No crack appeared on the specimen surface, the stress level
was very low, and the rock belongs to the compaction stage;

(b) Stage II. The time of duration is 81 to 256 s. There is no crack on the specimen surface whereas the
stress increased rapidly with a linear stress-strain relation, and the rock belongs to an elastic deformation stage;

(c) Stage III. The time of duration is 257 to 520 s. In this stage, most cracks appear on the specimen
surface whereas the stress increased almost with a linear stress-strain relation, and the rock belongs to an
elastic-plastic deformation stage;

Table 3: Estimation accuracies of various compositions at various locations*

Types of Compositions Locations RMSE
(mm2)

RMSE
(mean)

R2 R2

(mean)

Crack Upper left N/A

Upper right 46.8882 52.864 0.8631 0.8379

Lower left 83.2137 0.8004

Lower right 28.4900 0.8501

Biotite Upper left 11.9377 23.144 0.7224 0.809

Upper right 15.864 0.7923

Lower left 37.2989 0.8635

Lower right 27.4759 0.8577

Feldspar Upper left 31.5166 42.274 0.9760 0.973

Upper right 30.667 0.9814

Lower left 69.7811 0.9547

Lower right 57.1377 0.9806

Quartz Upper left 42.2584 44.902 0.9545 0.912

Upper right 49.9460 0.8896

Lower left 51.1036 0.8582

Lower right 36.2993 0.9447
*N/A means that there are no cracks in the upper left part of the specimen.
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Figure 12: (continued)
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Figure 12: (continued)
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Figure 12: (continued)
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Figure 12: Estimated and actual areas of various compositions at different instants. (a1) Areas at Upper
Right Part (a2) Errors at Upper Right Part (a3) Areas at Lower Left Part (a4) Errors at Lower Left Part
(a5) Areas at Lower Right Part (a6) Errors at Lower Right Part (a) Crack (b1) Areas at Upper Left Part
(b2) Errors at Upper Left Part (b3) Areas at Upper Right Part (b4) Errors at Upper Right Part (b5) Areas
at Lower Left Part (b6) Errors at Lower Left Part (b7) Areas at Lower Right Part (b8) Errors at Lower
Right Part (b) Biotite (c1) Areas at Upper Left Part (c2) Errors at Upper Left Part (c3) Areas at Upper
Left Part (c4) Errors at Upper Left Part (c5) Areas at Lower Left Part (c6) Errors at Lower Left Part (c7)
Areas at Lower Right Part (c8) Errors at Lower Right Part (c) Feldspar (d1) Areas at Upper Left Part (d2)
Errors at Upper Left Part (d3) Areas at Upper Right Part (d4) Errors at Upper Right Part (d5) Areas at
Lower Left Part (d6) Errors at Lower Left Part (d7) Areas at Lower Right Part (d8) Errors at Lower Right
Part (d) Quartz
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(d) Stage IV. The time of duration is 521 to 721 s. The stress drops rapidly and a great number of cracks
generated. The rock approaches to the complete destruction.

4.2 Establishment of LSTM-Based Architecture for Estimation of Granite Deformation Stage
For efficiently estimating the granite deformation stage using the LSTM-based architecture, the above-

established architecture for estimation of digital parameter changes of granite compositions was furthermore
modified and described as follows:

(a) Digital parameters. The digital parameters of an area in input layer are set as long-axis length, short-
axis length, perimeter, area, oblate degree, circularity, variance index and rectangularity.

(b) Accuracy measurement. The ACC (or average accuracy) is used as the criterion for evaluating the
accuracy of the LSTM-based architecture and computed by

ACC ¼ N 0

N
� 100% (9)

where N and N´ respectively represent the total and correctly-classified numbers in the time sequence data.

4.3 Accuracy of LSTM-Based Architecture
The established LSTM-based architecture was used to determine the granite deformation stages. The

estimation results are shown in Tab. 4 and Fig. 14. It can be seen that using the established LSTM-based
architecture in all of the deformation stages, ACCs of biotite, quartz, feldspar and crack are all greater
than 70% with a great-small order of biotite, feldspar, crack and quartz; the estimation accuracy is
relatively low (just greater than 70%) at stage I and greater (all greater than 80%) at stages II, III and IV.
Although ACCs are 70% to 80% at stage I and ACCs of quartz at stages II and III are 80% to 90%, other
ACCs are greater than 90%. This implies that more attentions should be paid for the compaction stage
and quartz in the further study. In total, the established LSTM-based architecture effectively estimate the
deformation stages of various compositions in granite under uniaxial load.

5 Conclusions

In this study, two LSTM-based architectures were established to respectively estimate the changes of the
composition digital parameters and the rock deformation stages of granite under axial compression load. The
influences of the training parameters on the availability of the architectures were also explored. The results
show that:

Figure 13: Stress-strain curve of granite under uniaxial compression load
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(a) Under axial load, the cracks on the granite specimen are first generated on the upper right region,
most area changes of crack and biotite are attributed to the long-axis length, whereas those of feldspar
and quartz are dependent on both the long-axis length and on the short-axis length.

(b) Using the modified LSTM-based architectures, the digital parameters are efficiently estimated if the
number of hidden layers, maximum epoch, learning ratio, minimum batch size, and train ratio are set to be 2,
150, 0.005, 10, and 0.8, respectively. The great-small order of the accuracy is biotite, feldspar, crack, quartz.

(c) In estimating the deformation stage using the established LSTM-based architecture, root mean
squared error at the compaction stage is relatively great while those at the later deformation stages are
relatively small.

Table 4: Estimation accuracies of various compositions at various stages

Types of compositions ACC at various stages ACC at all stages

I II III IV

Biotite 0.9240 0.9400 0.9447 1.0000 0.9477

Quartz 0.7080 0.8556 0.8369 1.0000 0.8312

Feldspar 0.7850 0.9029 0.9569 1.0000 0.9156

Crack 0.7525 0.9499 1.0000 1.0000 0.9088

Figure 14: Estimated and actual stages of various compositions at different instants (a) Biotite (b) Quartz (c)
Feldspar (d) Crack
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