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Abstract: This paper presents a novel approximating method to construct high-
precision single-patch representation of B-spline surface from a multi-patch repre-
sentation for isogeometric applications. In isogeometric analysis, multi-patch structure
is not easy to achieve high continuity between neighboring patches which will reduce
the advantage of isogeometric analysis in a sense. The proposed method can achieve
high continuity at surface stitching region with low geometric error, and this techni-
que exploits constructing the approximate surface with several control points are
from original surfaces, which guarantees the local feature of the surface can be
well-preserved with high precision. With the proposed approximating method,
isogeometric analysis results using the new single-patch can be obtained efficiently
compared with the original multi-patch structure. Several examples are presented
to illustrate the effectiveness, accuracy and efficiency of the proposed method.

Keywords: Isogeometric analysis; patch merging; multi-patch structure;
computational efficiency

1 Introduction

Digital representation of object in real world is one of the basic problems in the field of Computer-Aided
Design (CAD) and Computer Graphics (CG). Usually, we obtain the point clouds of real object through 3D
laser scanning technology, then reconstruct the object by mesh, spline surface or implicit surface. As a
standard representation in CAD industry, Non-Uniform Rational B-Splines (NURBS) or B-spline models
are suitable to represent geometries because local and intuitive modification is allowed on these models.
For objects with complex geometry, we usually use multi-patch representation to obtain approximate
results with small errors. However, for the geometry with multi-patches, some geometric constraints
should be added to achieve high-order continuity representation. Moreover, in the framework of
isogeometric analysis [1] with multi-patches, more computation and operations will be involved to
achieve the numerical simulation result over computational domain.

Interpolation and approximation of curves and surfaces through an array of points have been researched
very early [2–7]. The algorithm of merging several B-spline curves to one B-spline curve has been proposed
by Tai et al. [8]. They optimized the position of control points to merge two B-spline curves as precisely as
possible, and adjusted the knots to avoid superfluous knots. Harish et al. [9] proposed an algorithm of
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merging two or more B-spline surfaces which is suitable for virtual reality applications. It’s fast and robust, and
even more robust than the common NURBS-based modeling software tool, Rhino. More B-spline curves and
surfaces merging algorithms are referred in [10–13] and the references therein. The algorithm proposed in this
paper focus on two or more B-spline surfaces, which combines least square method to increase the continuity at
the stitching boundary and it is simpler than those existing methods. For surface approximation problem, least
square method using B-splines is a simple approximation method, but it is sensitive to noisy data which may
cause large errors. In order to reduce local error, Hoschek et al. [14] proposed an algorithm to construct a
surface to fit an arbitrary point cloud and free boundary curves. It is found that in some cases they will not
get the ideal fitting surface and might even fail, such as when the local density of sampling data points is
high, or use high order polynomial to approximate, or the number of sampled data points is less than the
number of control points of the B-spline. Weiss et al. [15] and Yang et al. [16] proposed weighted least
square method according to importance of the sampling data points. They gave different weight factor to
each different error term, and updated the weights by multiplying the resulted error on the weights in each
iteration, thus the approximation is improved gradually. The selection and correction of the parameter
during approximation is researched in [17–19]. Zhang et al. [20] optimized knot position to improve the
quality of fitting surface, and their method can preserve geometric features. But the method takes scattered
data points with parameterization as input. Shi et al. [21] proposed a scheme to construct G1 smooth
biquintic b-spline surfaces over arbitrary topology with interior single knots. This algorithm can deal with
complex geometry for multi-patch representation. In the same year, a local scheme to construct convergent
G1 smooth bicubic b-spline surfaces is presented by Shi et al. [22]. The difference of this method with
previous one is that the b-spline surfaces are not G1 continuity between adjacent bicubic b-spline surfaces,
but convergent to G1 smoothness as number of control points increase.

After isogeometric analysis is introduced, many algorithms using multi-patch b-spline surfaces to
represent geometry are proposed for isogeometric analysis [23–33]. Most of these methods consider the
analysis-suitable multi-patch structure without high continuity between adjacent patches. Xu et al. [31]
used global optimization to construct quadrilateral decomposition of the computational domain, and use
local optimization to improve the quality of parameterization which result a G1 continuous multi-patch
parameterization. Kapl et al. [32] optimized a quadratic optimization problem with linear constraints to
generate an analysis-suitable multi-patch parameterization.

In this paper, we propose a general approach to construct a high-accuracy single patch representation for
an uncomplicated multi-patch spline structure. Information on the original multi-patch structure is partially
kept in the final single-patch representation in order to keep as many geometric features as possible. In the
proposed method, Newton iteration is applied to find the optimal parameters, and the final single-patch
representation is obtained by using weighted least-square method with constraints. The results show that
our method can improve the merging accuracy and the interior continuity of the geometry.

The rest of the paper is organized as follows. In Section 2, we briefly review the definition of B-spline
surfaces. In Section 3, the procedure of our algorithm is described in details. Some experimental results and
comparisons are presented to show the effectiveness of the proposed method in Section 4. We conclude this
paper and describe the future work in Section 5.

2 B-Spline Surfaces

A tensor product B-spline surface is defined as follows:

Sðu; vÞ ¼
Xnu�1

i¼0

Xnv�1

j¼0

pijN
du
i ðuÞNdv

j ðvÞ (1)
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where du; dv represent degrees in u direction and v direction respectively, nu; nv are numbers of basis
functions in each direction, Ndu

i ; Ndv
j ði ¼ 0; 1; . . . nu � 1; j ¼ 0; 1; . . . nv � 1Þ are B-spline basis functions

determined by knot vectors U ¼ ½u0; u1; . . . ; unuþdu � and V ¼ ½v0; v1; . . . ; vnvþdv �; the control points of the
B-spline surface is denoted as pijði ¼ 0; 1; . . . ; nu � 1; j ¼ 0; 1; . . . ; nv � 1Þ. And the i-th B-spline basis
function Ni;kðuÞ of degree k is defined as

Ni;0ðuÞ ¼ 1 ui � u � uiþ1

0 otherwise

�

Ni;kðuÞ ¼ u� ui
uiþk � ui

Ni;k�1ðuÞ þ uiþkþ1 � u

uiþkþ1 � uiþ1
Niþ1;k�1ðuÞ:

B-spline surface in Eq. (1) can be rewritten in the following form:

Sðu; vÞ ¼
Xnu�1

i¼0

Xnv�1

j¼0

pijN
du
i ðuÞNdv

j ðvÞ ¼
Xn�1

k¼0

pkNkðu; vÞ (2)

where

n ¼ nu � nv; pk ¼ piðkÞjðkÞ; Nkðu; vÞ ¼ NiðkÞðuÞNjðkÞðvÞ; iðkÞ ¼ k

nv

� �
; jðkÞ ¼ k mod nv:

3 High-Accuracy Conversion from Multi-Patch Structure to Single Patch Representation

In the proposed method, the input geometry is a multi-patch structure, boundaries of geometry can be
accurately preserved or preserved with high precision in the final single patch representation. The goal of the
proposed algorithm is to construct one B-spline surface to approximate the original surface model as
precisely as possible. Given the boundary condition of the final single patch, number of control points of
the final surface is determined. We will represent the boundary with at least C1 continuity, and optimize
the interior control points with some conditions to preserve the features of surface.

3.1 Objective Function
In order to construct the single patch representation, knot vectors of two directions have to be set which

determines the number of control points, and boundary curves are chosen according to the original multi-
patch representation, which preserves the boundaries as much as possible. A B-spline surface is
determined by knot vectors, degrees and control points. In this paper, the control points will be optimized
by weighted least-square method, hence a number of scattered points which is more than the number of
unknown control points are sampled from the original surfaces. The objective function related to control
points in the optimization framework is

J ¼
Xm
t¼1

w2
t

Xn�1

k¼0

dkN
du;dv
k ðut; vtÞ � qt

�����
�����
2

¼ W ðND� QÞk k2 (3)

where qt; t ¼ 1; � � � ;m are sampling points and wt; t ¼ 1; � � � ; m are weights. ðut; vtÞ; t ¼ 1; � � � ; m are
parameters corresponding to qt; and selection of initial value of ðut; vtÞ will be described in the next

subsection. W ¼ diagðw1; w2; . . . ; wmÞ denotes the weight matrix, N ¼ ðNijÞn�m ¼ ðNdu;dv
i ðuj; vjÞÞn�m

denotes basis function matrix, D ¼ ðd0; d1; . . . ; dn�1ÞT and Q ¼ ðq1; q2; . . . ; qmÞT are the vectors of
control point and the sampled data points. This objective function is actually the sum of distance from
each sampled point to the approximate surface. By optimizing the objective function in Eq. (3), optimal
control points of the final B-spline surface will be obtained.
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The objective function is quadratic, so the optimization can be simplified to a system of linear equations.
By computing the derivatives with respect to control points, we get the following linear equations:

@y

@dl
¼ 2

Xm
t¼1

w2
t

Xn�1

k¼0

dkNkðut; vtÞ � qt

 !
Nlðut; vtÞ ¼ 0; l ¼ 0; 1; . . . ; n� 1

)
Xm
t¼1

Xn�1

k¼0

w2
t Nkðut; vtÞNlðut; vtÞdk ¼

Xm
t¼1

w2
t Nlðut; vtÞqt; l ¼ 0; 1; . . . ; n� 1 (4)

Then it can be simplified as follows by using matrix representation

ðWNÞT ðWNÞD ¼ ðWNÞTðWQÞ; D ¼ ððWNÞTðWNÞÞ�1ðWNÞTðWQÞ
Since the initial parameters ðut; vtÞ are not the best choices, we will modify them in each iteration until

the target precision and quality requirements are satisfied.

3.2 Parameter Modification
Since parametric domain of spline surface is a rectangle, we firstly divide the parametric domain into

n� n rectangular elements uniformly, which correspond to n� n quadrilaterals in the spline surface.

The nearest corner point si of quadrilaterals to the sample point qt is chosen as initial point of Newton
iteration. Vector qtsi

�! can be expressed as

ðqt � siÞ ¼ Suðui; viÞDuþ Svðui; viÞDvþ~nd (5)

where ðui; viÞ are parameters of si on surface Sðu; vÞ; ~n is the normal vector of Sðu; vÞ at ðui; viÞ, and d is the
distance from qt to si. In order to find si on Sðu; vÞ which is closest to qt and the corresponding parameters
ðui; viÞ, we can get ðDu;DvÞfrom Eq. (5),

Suðui; viÞSuðui; viÞDuþ Suðui; viÞSvðui; viÞDv ¼ ðq� siÞSuðui; viÞ
Suðui; viÞSvðui; viÞDuþ Svðui; viÞSvðui; viÞDv ¼ ðq� siÞSvðui; viÞ

�

Du
Dv

� �
¼ Suðui; viÞSuðui; viÞ Suðui; viÞSvðui; viÞ

Suðui; viÞSvðui; viÞ Svðui; viÞSvðui; viÞ
� ��1 ðq� siÞSuðui; viÞ

ðq� siÞSvðui; viÞ
� �

then parameters are updated by

uiþ1 ¼ ui þ Du; viþ1 ¼ vi þ Dv; (6)

and si will be substituted by Sðuiþ1; viþ1Þ in the next iteration. The iteration is terminated when Du < e and
Dv < e where e is a tolerance.

The procedure can be summarized as follows:

1. Given qt; t ¼ 1; . . . ;m and initial surface Sðu; vÞ.
2. Convert the surface Sðu; vÞ into a quad mesh with quadrilaterals.

3. Find the quadrilateral that closest to qt and set a corner point as initial point si.

4. Update the parameters of si which is closest to qt using Eq. (6).

3.3 Error Computing
The procedure of single patch construction from the input multi-patch structure will stop when the

merging error is small enough. The merging error is described by the distance between the sampling
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points qt and corresponding points on the approximating surface with respect to parameters obtained using
Newton iteration. We define the maximal distance Emax as follows,

Emax ¼ max
t¼1;...;m

Xn�1

k¼0

dkN
du;dv
k ðut; vtÞ � qt

�����
�����
2

: (7)

When Emax < e, the single-patch representation is obtained.

3.4 Parameter Combination
A quadratic B-spline surface is determined by knot vector and control points. If there is a common

boundary between two B-spline surfaces in one direction, suppose the V direction, then two surfaces can
be merged exactly where knot vector of U direction is merged as follows, suppose

U1 ¼ ½0; 0; 0; u1; u2; . . . ; un; 1; 1; 1�;
U 0

2 ¼ ½0; 0; 0; u01; u02; . . . ; u0n; 1; 1; 1�
are knot vectors of U direction of two adjacent surfaces, then the final knot vector after merging is

½0; 0; 0; u1
2
;
u2
2
; . . . ;

un
2
;
1

2
;
1

2
;
1þ u01

2
;
1þ u02

2
; . . . ;

1þ u0m
2

; 1; 1; 1�:

From this procedure, the continuity along the common boundary is only C0 on the merged surface. In
particular, in order to increase the continuity of the final surface, we eliminate the duplicated knots

~U ¼ ½0; 0; 0; u1
2
;
u2
2
; . . . ;

un
2
;
1

2
;
1þ u01

2
;
1þ u02

2
; . . . ;

1þ u0m
2

; 1; 1; 1�

In our algorithm, we will use this operation when we construct knot vectors for the final approximate
surface.

3.5 Algorithm Framework
The flowchart of the algorithm is summarized as follows.

1. Obtain a set of sampling data points from the input multi-patch structure.

2. Determine boundary control points and interior control points which will be preserved in one-patch
representation.

3. Parameterize the sampling data points using the method described in Section 3.2.

4. Compute the control points according to Eq. (4).

Figure 1: Distance model from point to surface in space. (a) quadrilaterals of spline surface and (b) Newton
iteration to find closest point of qt
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5. Compute the maximal distance between the sampling data points and the approximating surface. Stop if
the error is less than the given threshold; otherwise, return to Step 3.

In order to describe the method in details, we present the pseudo-code for the proposed framework.

4 Experimental Results

In this section, we will present some experimental results on single-patch approximation and two
dimensional IGA applications to illustrate the effectiveness of the proposed method. Quadratic spline
surfaces are used in every experiment. If there are more than two patches, they can be merged two by
two with the proposed method. Therefore, only two surfaces being merged are illustrated.

Algorithm 1 Framework of merging algorithm

Require: spline order k; knot vectors U , V; error tolerance e; max iteration niter;
Ensure: maxdist; avedist;
1: function ReconstructSurf (U , V , k, e, niter)
2: Sample points qi; i ¼ 1; . . . ;m from input surfaces.
3: Set boundary control points and initialize one-patch representation surface Sðu; vÞ;
4: Estimate the initial parameter values ðui; viÞ of sampling points qi; i ¼ 1; . . . ;m;
5: Determine interior control points which will be preserved;
6: for k ¼ 0 ! niter do
7: Calculate pre_maxdist and pre_avedist with surface Sðu; vÞ;
8: Compute unknown interior control points using Eq. (4);
9: Check accuracy with Eq. (7);
10: Update control points of Sðu; vÞ with new calculated control points;
11: Calculate maxdist and avedist with updated surface Sðu; vÞ;
12: if maxdist, e then
13: break;
14: end if
15: if maxdist > pre maxdist then
16: Resume control points of Sðu; vÞ with previous ones;
17: break;
18: end if
19: Update parameters ðui; viÞ of qi; i ¼ 1; . . . ;m;
20: end for
21: pre_maxdist ← maxdist
22: pre_avedist ← avedist
23: return Sðu; vÞ
24: end function

Symbol Description

maxdist the maximal distance between the approximate surface and the data points

avedist the average distance between the approximate surface and the data points

pre_maxdist the maximal distance computed with previous approximate surface

pre_avedist the average distance computed with previous approximate surface
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4.1 Single-Patch Approximation
Fig. 2 shows a single-patch approximation using the proposed method, in which control points close to

non-convex part of the input geometry boundary are preserved in the final single-patch representation. Better
results are achieved compared with the method only using the geometric boundary information.

In order to approximate the surface with given boundary information, we sampled 30 × 30 points on
each surface. Fig. 2g shows the approximation results by weighted least-square method without any other
constraints, in which some local self-intersections appear in the non-convex part. In our proposed
method, some control points are preserved around the non-convex region, then we can obtain a much
better result without self-intersection as shown in Fig. 2h, in which red control points are fixed points.
Fig. 3 presents the color maps of distance error corresponding to the surface determined by control points
shown in Figs. 2e and 2f after 20 iterations.

Tab. 1 lists the maximal and average distance between sampling points and the reconstructed single
patch surface. For each iteration, we compare the merging results of approach with only boundary control
points and the proposed method with boundary information and partial interior control points as
constraints. The experimental results show that with few fixed interior control points, the merging error is
reduced significantly.

The next experimental example is shown in Fig. 4. Two surfaces that can be merged exactly, while the
continuity on the common boundary is C0. If we use knot vector as shown in Eq. (8) to increase the
continuity, the boundary control points around the common boundary will be approximated, not exactly
preserved. The final iso-parametric curves of the merged surface are shown in Fig. 4h.

We also choose 30 × 30 points on each surface for weighted least-square method in this example. We
can find that the nose on the face is a sharp feature, hence if we only preserve the boundary control points,
there will be large merging error around this sharp region. In the proposed method, we fix some interior
control points around the sharp region, and the merging error can be reduced immediately. Fig. 5 shows
the color maps of the corresponding merging error after 20 iterations. The new proposed method
improved the merging accuracy significantly and the continuity of merged surface along the common
boundary is C1-continuity.

Tab. 2 lists the merging error for the 3D merging example in Fig. 5, and we can see that the maximal
merging error by our method is reduced more than 80% than the maximal merging error of fitting surface
by only fixing boundary curves. Furthermore, the average merging error is reduced more than 70%.

In the third example, we present a computational domain in which two patches can not be merged
exactly because one boundary curve meets two boundary curves of another patch along the common
boundary as shown in Fig. 6c. For this example, we use the knot vectors of the left patch as knot vectors
of final merged surface. In order to use more information of the right patch, we insert some knots along
the direction of common edge to increase the number of variables.

Tab. 3 shows that with the new proposed method, the merging error can be improved. Moreover, from
the iso-parametric curves shown in Figs. 6g and 6h, we can see that the iso-parametric curves are more
uniform by our merging method compared with the method only using boundary control points.

4.2 Application in Isogeometric Analysis
In this section, we apply the proposed merging method in isogeometric analysis. The input multi-patch

structure is merged into a single B-spline patch and the specified PDE problem is solved on the single patch.
Compared with the IGA method on the multi-patch structure, higher accuracy can be achieved with the
proposed single patch representation.
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Figure 2: Single-patch approximation: (a) a plane domain represented by two adjacent surfaces; (b)
approximate surface with single-patch representation; (c) control mesh of (a); (d) control mesh of (b); (e)
control mesh of approximate surface with given boundaries; (f) control mesh by our method; (g) iso-
parametric curves of surface with control mesh (e); (h) iso-parametric curves of surface with control mesh (f)
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Consider the following Poisson equation

�Dw ¼ f
w @� ¼ gj

�
(8)

the weak form of Eq. (8) is given as wðxÞ 2 H1ð�Þ; w @�j ¼ g; such that for all v 2 H1
0 ð�Þ,

aðw; vÞ ¼ f ðvÞ; (9)

where aðw; vÞ ¼ R�rwrvd�; f ðvÞ ¼ R� fvd�: Let u0 � g;and set w ¼ uþ u0: Then define
lðvÞ ¼ f ðvÞ � aðu0 � vÞ,

Eq. (9) is equivalent to find u0 2 H1
0 ð�Þ, such that aðu; vÞ ¼ lðvÞ; 8v 2 H1

0 ð�Þ.
In numerical approximation, infinite space H1

0 ð�Þ is approximated by a finite dimensional space Vh:
And Vh 	 H1

0 ð�Þ is defined by the basis functions of the B-splines that represent the computational
domain in isogeometric analysis. Suppose the computational domain � is represented as a B-spline surface

Figure 3: Error comparison: (a) distance error of surface with control mesh shown in Fig. 2g; (b) distance
error of approximated surface constructed by the proposed method

Table 1: Merging error comparison in Fig. 3

Iteration Method with boundary information Our method Error reduced ratio (%)

Max ave Max ave max ave

1 0.034784 0.004578 0.033790 0.003737 2.86 2.49

10 0.006971 0.000656 0.001900 0.000482 72.74 26.5

20 0.006971 0.000430 0.001264 0.000290 81.9 32.6
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Figure 4: 3D surface merging examples: (a) a 3D face model represented by two adjacent surfaces; (b)
merged surface with single-patch representation; (c) control mesh of (a); (d) the control mesh of (b); (e)
control mesh of approximate surface with given boundaries; (f) control mesh of our method; (g) iso-
parametric curves of surface with control mesh (e); (h) iso-parametric curves of surface with control mesh (f)
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Gðs; tÞ ¼
Xm
i¼1

PiNiðs; tÞ; ðs; tÞ 2 ½0; 1�2;

where Pi denotes the control points and Niðs; tÞ are B-spline basis functions. The finite dimensional function
space Vh can then be defined as

Vh ¼ spanfRiðx; yÞ; Riðx; yÞ �j ¼ 0; i ¼ 1; � � � ; ng; (10)

where Riðx; yÞ ¼ Ni 
 G�1ðx; yÞ and n is number of basis functions which are zero on the boundary of
domain �.

The weak form of the isogeometric approximation becomes: find uh 2 Vh; such that for all vh 2 Vh;

aðuh; vhÞ ¼ lðvhÞ: (11)

Due to finite dimension of Vh, the approximate solution can be written as uh ¼Pn
i¼1

uiRiðx; yÞ. And
Eq. (11) becomes a linear equation system,

AU ¼ b;

where A ¼ ðaijÞn�n; aij ¼ aðRiðx; yÞ; Rjðx; yÞÞ, b ¼ ðbiÞn�1; bi ¼ lðRiðx; yÞÞ, vector U ¼ ðu1; � � � ; unÞT.
If the computational domain � consists of a set of connected sub-domains �1; �2; � � � ; �s and each

sub-domain is represented as

Figure 5: Merging error comparison: (a) merging error of surface with control mesh shown in Fig. 4g; (b)
merging error of approximate surface with our method

Table 2: Merging error comparison in Fig. 4

Iteration Method with boundary information Our method Error reduced ratio (%)

Max ave Max ave max ave

1 0.036554 0.001781 0.004328 0.000520 88.1 70.8

10 0.029831 0.001199 0.004691 0.000355 84.3 70.4

20 0.027625 0.001161 0.004971 0.000334 82.0 71.2
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Figure 6: Merging example for the hand model: (a) a hand model represented by two adjacent B-spline
patches; (b) merged surface with single-patch representation; (c) control mesh of (a); (d) the control mesh of
(b); (e) control mesh of approximate surface with given boundaries; (f) control mesh of our method; (g) iso-
parametric curves of surface with control mesh (e); (h) iso-parametric curves of surface with control mesh (f)
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Giðs; tÞ ¼
Xmi

j¼1

PijNijðs; tÞ; i ¼ 1; 2; . . . ; s;

numerical solution uh on �i takes the form

uhi ¼
Xmi

j¼1

uijRijðx; yÞ; ðx; yÞ 2 �i;

where Rijðx; yÞ ¼ Nij 
 G�1
i ðx; yÞ;mi is number of basis in�i. On the common boundary Cii0 of two connected

sub-domain �i and �i0 , u
h
i and uhi0 are set to be identical to ensure that solution uh is continuous over �. And

Cii0 has the same representation for both sub-domains �i and �i0 .

From the above analysis, numerical solution space Vh of Poisson equation defined on� can be chosen as
Vh ¼ fRij; j 2 Ii; i ¼ 1; . . . ; s; Rij þ Ri0j; j 2 Kii0 ; for each pair of connected sub-domains �i and �i0g
Here, Ii is the index set such that Rijðx; yÞ is a basis function which is non-zero in the interior of �i for
each j 2 Ii. Kii0 is the index set such that for each j 2 Kii0 , Rijðx; yÞ and Ri0jðx; yÞ are basis functions of
interior boundary Cii0 in �i and �i0 respectively.

We implement the above framework on a two-dimensional surface shown in Fig. 2, where u has an exact
solution x2 þ y2 on the given domain. Fig. 9 shows the numerical error, the L2 error is 3.09214 × 10−4 with
DOF (Degree of Freedom) is 180 for the original multi-patch representation while the L2 error is 2.51835 ×
10−4 with DOF is 168 for the new single-patch representation.

Table 3: Merging error comparison in Fig. 7

Iteration Method with boundary information Our method Error reduced ratio (%)

Max ave Max ave max ave

1 0.028980 0.005944 0.024651 0.005581 14.9 6.1

10 0.023920 0.003002 0.015424 0.002618 87.4 12.7

20 0.015717 0.002464 0.015331 0.002051 2.4 16.7

Figure 7: Merging error comparison: (a) merging error of surface with control mesh shown in Fig. 6g; (b)
merging error of approximate surface with our method
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In summary, by the proposed patch-merging method, we can get more accurate numerical results with
the new single-patch compared with the original multi-patch structure for incomplicated domains.

5 Conclusion

In this paper, we propose a new surface-merging method to construct a single patch representation from
a multi-patch structure for isogeometric analysis. Besides the sampled points of geometry and the given
boundary information, part of interior B-spline information is also preserved to construct the final surface.
Compared with the method only using sampled points of geometry and boundary information, our
method can achieve high-accuracy merging results. The resulting single patch is suitable for isogeometric
analysis on the input 2D computational domain. On the other hand, the merged representation is C1

continuous in the interior part, which improved the merging result directly. But if the multi-patch
structure is very complex, such as many features need to be preserved, our algorithm may not produce a
one-patch representation as good as we expect. This is a major limitation that we need to improve.

Figure 8: Comparison of parameterization results: (a) iso-parametric curves of original surfaces shown in
Fig. 2; (b) iso-parametric curves of the final single-patch representation

Figure 9: Comparison of IGA error: (a) L2 IGA error of original surfaces shown in Fig. 2; (b) L2 IGA error
of final single-patch representation
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In the future, we will investigate on automatic selection of the fixed control points. The generalization to
trivariate volume-merging problem is also a part of future work [26,28,29].

Funding Statement: This research was supported by the National Nature Science Foundation of China
under Grant Nos. 61602138, 61772163 and 61761136010, the NSFC-Zhejiang Joint Fund for the
Integration of Industrialization and Informatization (Grant No. U1909210), and Zhejiang Provincial
Science and Technology Program in China (2018C01030).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact

geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39–41), 4135–
4195. DOI 10.1016/j.cma.2004.10.008.

2. Nielson, G. M. (1984). A locally controllable spline with tension for interactive curve design. Computer Aided
Geometric Design, 1(3), 199–205. DOI 10.1016/0167-8396(84)90008-6.

3. Meier, H., Nowacki, H. (1987). Interpolating curves with gradual changes in curvature. Computer Aided
Geometric Design, 4(4), 297–305. DOI 10.1016/0167-8396(87)90004-5.

4. Higashi, M., Kaneko, K., Hosaka, M. (1988). Generation of high-quality curve and surface with smoothly varying
curvature. Proc. of Eurographics’ 88, France, 79–92, Eurographics Association.

5. Kallay, M. (1987). Method to approximate the space curve of least energy and prescribed length. Computer-Aided
Design, 19, 74–76.

6. Moreton, H. P., Séquin, C. H. (1992). Functional optimization for fair surface design. ACM SIGGRAPH Computer
Graphics, 26(2), 167–176. DOI 10.1145/142920.134035.

7. Brunnett, G., Hagen, H., Santarelli, P. (1993). Variational design of curves and surfaces. American Journal of
Mathematics, 3(1), 527–534.

8. Tai, C. L., Hu, S. M., Huang, Q. X. (2003). Approximate merging of B-spline curves via knot adjustment and
constrained optimization. Computer-Aided Design, 35(10), 893–899. DOI 10.1016/S0010-4485(02)00176-8.

9. Pungotra, H., Knopf, G. K., Canas, R. (2010). Merging multiple B-spline surface patches in a virtual reality
environment. Computer-Aided Design, 42(10), 847–859. DOI 10.1016/j.cad.2010.05.006.

10. Lu, L. Z. (2014). An explicit method for G3 merging of two Bézier curves. Journal of Computational and Applied
Mathematics, 260, 421–433. DOI 10.1016/j.cam.2013.10.030.

11. Shu, S. H., Lin, Z. Z. (2014). Approximate merging B-spline curves via least square approximation. Applied
Mechanics and Materials, 556–562, 3496–3500. DOI 10.4028/www.scientific.net/AMM.556-562.3496.

12. Lin, Z. Z., Shu, S. H. (2015). Approximate merging of two adjacent B-spline surfaces using least square
approximation. Applied Mechanics & Materials, 740, 619–623. DOI 10.4028/www.scientific.net/AMM.740.619.

13. Yan, R. J., Wu, J., Ji, Y. L., Abdul, M. K., Chang-Soo, H. et al. (2016). A novel method for 3D reconstruction:
division and merging of overlapping B-spline surfaces. Computer-Aided Design, 81, 14–23. DOI 10.1016/j.
cad.2016.08.007.

14. Hoschek, J., Dietz, U. (1996): Smooth B-spline surface approximation to scattered data. In: Hoschek, J., Dankwort,
W. (eds.) Reverse Engineering, 143–152. Germany: Vieweg+Teubner Verlag.

15. Weiss, V., Andorb, L., Rennera, G., Várady, T. (2002). Advanced surface fitting techniques. Computer Aided
Geometric Design, 19(1), 19–42. DOI 10.1016/S0167-8396(01)00086-3.

16. Yang, H., Wang, W., Sun, J. (2004). Control point adjustment for B-spline curve approximation. Computer-Aided
Design, 36(7), 639–652. DOI 10.1016/S0010-4485(03)00140-4.

17. Deng, C., Lin, H. (2014). Progressive and iterative approximation for least squares B-spline curve and surface
fitting. Computer-Aided Design, 47, 32–44. DOI 10.1016/j.cad.2013.08.012.

CMES, 2020, vol.124, no.2 641

http://dx.doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/10.1016/0167-8396(84)90008-6
http://dx.doi.org/10.1016/0167-8396(87)90004-5
http://dx.doi.org/10.1145/142920.134035
http://dx.doi.org/10.1016/S0010-4485(02)00176-8
http://dx.doi.org/10.1016/j.cad.2010.05.006
http://dx.doi.org/10.1016/j.cam.2013.10.030
http://dx.doi.org/10.4028/www.scientific.net/AMM.556-562.3496
http://dx.doi.org/10.4028/www.scientific.net/AMM.740.619
http://dx.doi.org/10.1016/j.cad.2016.08.007
http://dx.doi.org/10.1016/j.cad.2016.08.007
http://dx.doi.org/10.1016/S0167-8396(01)00086-3
http://dx.doi.org/10.1016/S0010-4485(03)00140-4
http://dx.doi.org/10.1016/j.cad.2013.08.012


18. Bommes, D., Vossemer, T., Kobbelt, L. (2008). Quadrangular parameterization for reverse engineering.
International Conference on Mathematical Methods for Curves and Surfaces, pp. 55–69, Springer-Verlag.

19. Piegl, L. A., Tiller, W. (2001). Parametrization for surface fitting in reverse engineering. Computer-Aided Design,
33(8), 593–603. DOI 10.1016/S0010-4485(00)00103-2.

20. Zhang, Y. H., Cao, J., Chen, Z. G., Li, X., Zeng, X. M. (2016). B-spline surface fitting with knot position
optimization. Computers & Graphics, 58, 73–83. DOI 10.1016/j.cag.2016.05.010.

21. Shi, X. Q., Wang, T. J., Yu, P. Q. (2004). A practical construction of G1 smooth biquintic B-spline surfaces over
arbitrary topology. Computer-Aided Design, 36(5), 413–424. DOI 10.1016/S0010-4485(03)00111-8.

22. Shi, X. Q., Wang, T. J., Wu, P. R., Liu, F. S. (2004). Reconstruction of convergent G1 smooth B-spline surfaces.
Computer Aided Geometric Design, 21(9), 893–913. DOI 10.1016/j.cagd.2004.08.001.

23. Kargaran, S., Jüttler, B., Kleiss, S. K., Mantzaflaris, A., Takacs, T. (2019). Overlapping multi-patch structures in
isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 356, 325–353. DOI 10.1016/j.
cma.2019.07.010.

24. Buchegger, F., Jüttler, B. (2017). Planar multi-patch domain parameterization via patch adjacency graphs.
Computer-Aided Design, 82, 2–12. DOI 10.1016/j.cad.2016.05.019.

25. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2011). Parameterization of computational domain in
isogeometric analysis: methods and comparison. Computer Methods in Applied Mechanics and Engineering,
200(23–24), 2021–2031. DOI 10.1016/j.cma.2011.03.005.

26. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2013). Analysis-suitable volume parameterization of multi-
block computational domain in isogeometric applications. Computer-Aided Design, 45(2), 395–404. DOI
10.1016/j.cad.2012.10.022.

27. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2013). Constructing analysis-suitable parameterization of
computational domain from CAD boundary by variational harmonic method. Journal of Computational
Physics, 252, 275–289. DOI 10.1016/j.jcp.2013.06.029.

28. Xu, G., Mourrain, B., Galligo, A., Rabczuk, T. (2014). High-quality construction of analysis-suitable trivariate
NURBS solids by reparameterization methods. Computational Mechanics, 54(5), 1303–1313. DOI 10.1007/
s00466-014-1060-y.

29. Xu, G., Mourrain, B., Wu, X. Y., Chen, L., Hui, K. C. (2015). Efficient construction of multi-block volumetric
spline parameterization by discrete mask method. Journal of Computational and Applied Mathematics, 290,
589–597. DOI 10.1016/j.cam.2015.06.024.

30. Xu, J., Chen, F., Deng, J. (2015). Two-dimensional domain decomposition based on skeleton computation for
parameterization and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 284,
541–555. DOI 10.1016/j.cma.2014.09.026.

31. Xu, G., Li, M., Mourrain, B., Rabczuk, T., Xu, J. et al. (2018). Constructing IGA-suitable planar parameterization
from complex CAD boundary by domain partition and global/local optimization. Computer Methods in Applied
Mechanics and Engineering, 328, 175–200. DOI 10.1016/j.cma.2017.08.052.

32. Kapl, M., Sangalli, G., Takacs, T. (2018). Construction of analysis-suitable G1 planar multi-patch
parameterizations. Computer-Aided Design, 97, 41–55. DOI 10.1016/j.cad.2017.12.002.

33. Xiao, S., Kang, H., Fu, X. M., Chen, F. (2018). Computing IGA-suitable planar parameterizations by PolySquare-
enhanced domain partition. Computer Aided Geometric Design, 62, 29–43. DOI 10.1016/j.cagd.2018.03.008.

642 CMES, 2020, vol.124, no.2

http://dx.doi.org/10.1016/S0010-4485(00)00103-2
http://dx.doi.org/10.1016/j.cag.2016.05.010
http://dx.doi.org/10.1016/S0010-4485(03)00111-8
http://dx.doi.org/10.1016/j.cagd.2004.08.001
http://dx.doi.org/10.1016/j.cma.2019.07.010
http://dx.doi.org/10.1016/j.cma.2019.07.010
http://dx.doi.org/10.1016/j.cad.2016.05.019
http://dx.doi.org/10.1016/j.cma.2011.03.005
http://dx.doi.org/10.1016/j.cad.2012.10.022
http://dx.doi.org/10.1016/j.jcp.2013.06.029
http://dx.doi.org/10.1007/s00466-014-1060-y
http://dx.doi.org/10.1007/s00466-014-1060-y
http://dx.doi.org/10.1016/j.cam.2015.06.024
http://dx.doi.org/10.1016/j.cma.2014.09.026
http://dx.doi.org/10.1016/j.cma.2017.08.052
http://dx.doi.org/10.1016/j.cad.2017.12.002
http://dx.doi.org/10.1016/j.cagd.2018.03.008

	A High-Accuracy Single Patch Representation of Multi-Patch Geometries with Applications to Isogeometric Analysis
	Introduction
	B-Spline Surfaces
	High-Accuracy Conversion from Multi-Patch Structure to Single Patch Representation
	Experimental Results
	Conclusion
	References


