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Abstract: Geometric fitting based on discrete points to establish curve structures
is an important problem in numerical modeling. The purpose of this paper is to
investigate the geometric fitting method for curved beam structure from points,
and to get high-quality parametric model for isogeometric analysis. ATimoshenko
beam element is established for an initially curved spacial beam with arbitrary
curvature. The approximation and interpolation methods to get parametric models
of curves from given points are examined, and three strategies of parameteriza-
tion, meaning the equally spaced method, the chord length method and the cen-
tripetal method are considered. The influences of the different geometric
approximation algorithms on the precision of isogeometric analysis are examined.
The static analysis and the modal analysis with the established parametric models
are carried out. Three examples with different complexities, the quarter arc curved
beam, the Tschirnhausen beam and the Archimedes spiral beam are examined.
The results show that for the geometric approximation the interpolation method
performs good and maintains high precision. The fitting algorithms are able to
provide parametric models for isogeometric analysis of spacial beam with
Timoshenko model. The equally spaced method and centripetal method perform
better than the chord length method for the algorithm to carry out the parameter-
ization for the sampling points.

Keywords: Analysis-aware modelling; curve fitting; Timoshenko beam; spatial
curve; isogeometric analysis

1 Introduction

Isogeometric analysis (IGA) is proposed by Hughes et al. to bridge the gap between computer aided
design and analysis, and has been proved to be effective in structural analysis, fluid mechanics, bio-
mechanical analysis and microelectronics simulation [1,2]. Compared with the traditional finite element
analysis (FEA) method, the IGA uses the computer aided design (CAD) model for simulation, avoiding
the complicated meshing process and improving the calculation efficiency. However, similar to the
requirement of quality of the mesh in the FEA, in the process of IGA there are also problems with the
quality of the CAD model in geometric representation. The CAD model used in IGA is determined by
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the B-spline or NURBS basis functions and the control points. The parameterization of the basis functions is
implicitly defined in the geometry, which directly affects the accuracy of simulation.

To characterize the impact of the model quality on analysis, Cohen et al. proposed the analysis-aware
modelling concept within IGA to establish an analogous concept of mesh quality [3]. The compositions
in the analysis-aware modelling that affect the results of simulation include the domain parameterization,
knot spacing, the order and the distribution of control points. Researchers investigated deeply into this
subject and obtained fruitful findings. Jaxon et al. investigated the influence of domain parameterization,
knot spacing, mesh regularization, and bijective mapping to improve the performance of isogeometric
analysis with various geometric models [4–7]. For two-dimensional (2D) problems, Collin et al.
introduced the analysis-suitable G1 geometry parameterizations and proved its optimal convergence
property for bilinear two-patch geometries [8]. Nian et al. studied the parameterization of the plane
domain for isogeometric analysis based on the Teichmuller mapping, which improved the accuracy of
isogeometric analysis [9]. Gondegaon et al. proposed a method to map the 2D domain to a circle and
then a square to build parameterization for tensor-product B-spline [10]. With their method models with
complex shapes can be efficiently calculated, but domains with holes are not considered. In 2017,
Wu et al. presented a method to represent complex planar domains with holes by Bi-cubic splines and
obtain optimized results which are suitable for IGA [11]. For three-dimensional modelling, Martin et al.
presented a methodology to parameterize a volumetric model based on discrete volumetric harmonic
functions so that the resulting model is suitable for isogeometric analysis [12]. Chan et al. derived a PHT-
spline representation of a domain from level set boundary representation [13]. Arioli et al. proposed a
scaled boundary parameterizations for IGA which is suitable for domains with boundary description, and
their method is able to deal with three-dimensional geometry [14].

Xu et al. carried out productive research works on the analysis-aware modelling for IGA. In 2011,
Xu et al. studied the parameterization method in two-dimensional computational domain, and optimized
the parameterization by repositioning the internal control points [15]. Based on the study of two-
dimensional problems, Xu et al. further introduced the NURBS volume parameterization into IGA to
analyze the multiple three-dimensional entities, which is of great importance to the industrial applications
of IGA [16–18]. They proved that different parameterizations of a three-dimensional computational
domain have different impacts on the simulation results and efficiency in IGA. By optimization of
parameterization of the boundary before constructing the inner control points and weights, high-quality
NURBS body parameters can be obtained, which is suitable for subsequent isogeometric analysis [19,20].
Xu et al. also proposed a computation reuse method to calculate the parameterization of three-
dimensional by the help from simple models with similar semantic features [21].

Beam structures are widely used in engineering, and the simulations of beam structures with IGA
are investigated by the researchers. Luu et al. used h-refinement, p-refinement, and k-refinement to refine
the Timoshenko curved beam model to improve the calculation accuracy [22]. Ghafari et al. studied
isogeometric analysis of composite beam using time-saving dimensional reduction method and got results
with better convergence rate and more efficient refinement method than FEM [23]. Maurin et al. utilized
the advantage of IGA in higher order inter-element continuity to simulate the pantographic lattice, and the
energy terms of the structure which depend on the second-order derivatives of the displacements are
efficiently calculated [24]. Rezaiee-Pajand et al. investigated the thermo-mechanical static response of
curved circular beam and proved that the temperature distribution leads to both in-plane and out-of-plane
deformations in beam [25]. Hosseini et al. explored the formulation of IGA Timoshenko beam with large
deformations [26]. Numerical locking phenomena is an important topic in IGA analysis of Timoshenko
beam. Liu et al. proposed the selective reduced one-point integration and B-bar projection element based
on stiffness ratio to deal with the locking problem and obtain accurate results for slender models [27].
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Faroughi et al. developed s displacement-based IGA beam element for laminated composite beams [28].
Ghafari et al. proposed a reduced beam model which is developed using cross-sectional properties from
2D beam sectional analysis and applied the model to isogeometric analysis of shear refined delaminated
composite beams [29].

The anaylsis-aware modelling of beam structure is also important to improve the calculation accuracy by
IGA. To get the model for beam, the spline curve fitting is an important method to get curve model from
points in computer aided design and computational graphics. In CNC machining, the fitting with splines
of the poly-line machining tool path can be used for smooth tool path generation and data compression
[30]. To carry out the fitting the selection of the number and location of the knots and the calculation of
the spline coefficients must be determined. Most existing spline curve fitting algorithms need the
parameterization procedure to create a parameter value for each data point. A widely used
parameterization method is to make sure that the point on the curve corresponding to the parameter is the
nearest point on the curve to the target point, and generally an iteration method is used to calculate the
parameterization. The point distance minimization (PDM) is the most widely used method [31], which
minimize the square distance to get the parameterization. Imani et al. developed an algorithm to construct
2D profile based on NURBS parametric curve from ordered data point cloud [32]. Wang et al. proposed a
curvature-based square distance minimization method for the curve fitting [33]. Optimization methods are
used to calculate the number and positions of knots for the curve fitting [34]. Garcia-Capulin et al.
propose a hierarchical genetic algorithm which allows the number and location of knots and the B-spline
coefficients can be calculated automatically [35]. Pagani et al. proposed the curvature based sampling for
curves and surfaces so higher density of sample points is assigned where there are some significant
features [36]. While generally the curve fitting is challenging to use optimization method for the
parameterization.

Hosseini et al. investigated deeply into the anaylsis-aware modelling of beam structure. Hosseini et al.
investigated the effect of parameterization on the results of isogeometric analysis with Euler-Bernoulli beam
formulation and proved that the chord length and centripetal methods lead to a less least square error [37].
They used the pseudo-arc length reparameterization method to parameterize the existing parametric model to
improve the accuracy of isogeometric simulation [38]. In 2018, Hosseini et al. developed a semi-analytical
sensitivity analysis method within IGA framework to solve pre-bent shape design problems in free-form
curved beams [39]. Hashemian et al. proposed to apply the fitting and fairing simultaneously in a
multi-objective optimization process to reconstruct curves and surfaces [40]. Recently Hashemian et al.
investigated the nonlinear bifurcation analysis of statically loaded free-form curved beams and
investigated the different knot placement techniques and their influence on the accuracy of simulation
[41–43]. Despite their extensive research on the analysis-aware modelling of beam structure, the influence
of geometric modelling to an important beam model, which is the Timoshenko beam, is not considered,
and the influence of different fitting algorithms are not investigated neither.

The objective of this paper is to focus on the modeling process of curves from a series of sampling
points, and to obtain analysis-suitable parametric models for the isogeometric analysis of Timoshenko
beam structures. The numerical locking problem is not considered here to allow us concentrate on the
analysis-suitable modelling of beam structure, and in the numerical tests slender beams are avoided. To
carry out the curve fitting, the parameterization is obtained by the chord length method, the centripetal
method and the equal method [44]. Then with the obtained parameters, the curve fitting problem is
reduced to a minimization of the quadratic model and the control points can be solved. The influence of
the different geometric approximation algorithms on the precision of isogeometric analysis is examined.
Compared with previous works, the present paper makes contributions in the following items:

CMES, 2020, vol.124, no.2 607



� The analysis-aware modelling for structural static and dynamic simulations of spatial Timoshenko beam
structure is proposed.

� The approximation and interpolation methods of curve fitting are examined to investigate their influence
on the IGA.

� The effects of three parameterization strategies on the IGA formulation of spatial Timoshenko beam are
studied and compared.

The main contents of this paper are outlined as follows. Sections 2 and 3 provide a brief introduction to
the B-spline curve and the interpolation and approximation methods. Section 4 introduces the isogeometric
analysis algorithm of the spatial Timoshenko beam structure. The numerical tests and discussions are given
in Section 5. Finally, in Section 6 the conclusions are given.

2 Parametric Representation of Curve

2.1 B-spline Curves
B-spline is widely used in the representation of free-form geometries. It is well consistent with the

commercial CAD softwares and employed widely in engineering applications. In this paper we apply B-
spline curves in IGA. The B-spline basis function is defined by the Cox-de Boor recursion formula. For
example, the B-spline basis function Ni,0 with degree p = 0 is defined as

Ni;0 nð Þ ¼ 1 n 2 ni; niþ1½ Þ
0 otherwise

�
(1)

The ξi is the component of the knot vector Ξ, which is a series of non-decending real numbers. An open
knot vector is defined with the multiplicity at each end is p + 1. For example, a typical open knot vector can
be defined as

� ¼ 0;0; � � � ;0|fflfflfflfflffl{zfflfflfflfflffl}
pþ1

; npþ1;npþ2; � � � ;nn; 1;1; � � � ;1|fflfflfflfflffl{zfflfflfflfflffl}
pþ1

2
64

3
75 (2)

B-spline basis function with higher degree can be defined as,

Ni;p nð Þ ¼ n� ni
niþp � ni

Ni;p�1 nð Þ þ niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1 nð Þ (3)

A B-spline curve of degree p is expressed with the defined basis function and control point.

rðnÞ ¼
Xn
i¼0

Ni;pðnÞPi (4)

Pi is the control point. With the defined basis functions and n + 1 control points, the B-spline curve can
be determined.

2.2 Curve Fitting with B-spline Curves for Isogeometric Analysis
Curve fitting with B-splines is a traditional and important problem in engineering applications. Here we

describe the problem of curve fitting as follows: given a series of sample points from a given beam structure
S ¼ xj; yj

� �
, j = 0,…, m, to get the parametric form of the curve

608 CMES, 2020, vol.124, no.2



CðuÞ ¼
Xn
i¼0

Ni;pðuÞPi u 2 ½0; 1� (5)

where C uð Þ is the unknown parametric B-spline curve, Ni;p uð Þ represents the basis function defined by the
knot vector, p is the degree of the basis function and Pi represents the control point.

The focus of this paper is put on the problem to obtain a geometric model of curve which is suitable for
simulation from a set of given data points. To solve the curve fitting problem, the first issue is the choice of
the sample points S from the given curve. The given curve can be described by analytical function, or chosen
from engineering application which do not have explicit mathematical description. The second issue is the
choice of the knot vector Ξ and to estimate the position of control points P. Then the required B-spline curve
can be described by the determined knot vector and the control points. In this paper we will investigate
different methods for curve fitting and consider the requirements of the IGA on the parametrization of model.

3 Algorithms for B-spline Fitting

The B-spline curve fitting involves the following problems. First, the parameters corresponding to the
given sample points need to be selected. Then the knot vector should be chosen, and finally the control points
should be calculated. In this section we consider both interpolation and approximation methods.

3.1 Sample Points and the Corresponding Parameters
We consider that the sampling points are pre-defined and denoted as Qk ; k ¼ 0; . . . ;m. m represents the

total count of sampling points minus 1. To carry out the curve fitting, each parameter must be set
corresponding to each sampling point. Three methods for determining the parameter values are applied,
namely the equidistance method, the chord length and the centripetal method. The parameters are denoted
as ū. In the equally space method, the parameters are equally spaced among the parameter domain [0,1].

�u0 ¼ 0 �um ¼ 1

�uk ¼ k

m
k ¼ 1; � � � ;m� 1

(6)

In the chord length method the parameters are calculated as

�u0 ¼ 0 �um ¼ 1

�uk ¼ �uk�1 þ Qk �Qk�1j j
d1

k ¼ 1; � � � ;m� 1
(7)

The d1 represents the total length of chords connected by the sampling points.

d1 ¼
Xn
k¼1

Qk �Qk�1j j (8)

In the centripetal method parameters are calculated as,

�u0 ¼ 0 �um ¼ 1

�uk ¼ �uk�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qk �Qk�1j jp

d2
k ¼ 1; � � � ;m� 1

(9)

where
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d2 ¼
Xn
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qk �Qk�1j j

p
(10)

3.2 Knot Vector Generation
The knot vector has important influence on the results of fitting. The following algorithms are applied for

curve interpolation to point data. The knots are defined as,

u0 ¼ � � � ¼ up ¼ 0 un�p ¼ � � � ¼ un ¼ 1

ujþp ¼ 1

p

Xjþp�1

i¼j

�ui j ¼ 1; � � � ; n� p
(11)

n represents the number of knots minus 1.

In curve approximation method, the deBoor algorithm is applied to calculate the knot vectors [44]. First let

d ¼ mþ 1

n� pþ 1
(12)

Then the internal knots are defined by

i ¼ int jdð Þ a ¼ jd � i
upþj ¼ 1� að Þti�1 þ ati j ¼ 1; � � � ; n� p

(13)

3.3 Fitting
The fitting algorithms are divided into the interpolation method and the approximation method. The

B-spline expression of the curve is formulated as

C uð Þ ¼ Pn
i¼0

Ni;p uð ÞPi u 2 0; 1½ � (14)

In interpolation method, to calculate the control points, the curve should interpolate all the sampling
points, and m = n − p + 1. With the given sampling points Q and the corresponding parameters ū, the
interpolation condition can be described by the following equations,

Qk ¼ C �ukð Þ ¼
Xn
i¼0

Ni;p �ukð ÞPi (15)

The equations can be solved to get the control points.

The approximation of the curve is more complicated than the interpolation. In the approach method, the
least square algorithm is used to minimize the error function

f ¼
Xm
k¼0

Qk � C �ukð Þj j2 (16)

In the method of curve approximation, the curve generally do not go through the sample points. To
minimize the error function, the following equations must hold [44].

NTN
� �

P ¼ R (17)
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In the equation,

N ¼
N1;p �u1ð Þ � � � Nn�1;p �u1ð Þ

..

. . .
. ..

.

N1;p �um�1ð Þ � � � Nn�1;p �um�1ð Þ

2
64

3
75 (18)

P ¼ ½P1 � � � Pn�1�T (19)

R ¼
N1;p �u1ð ÞR1 þ � � � þ N1;p �um�1ð ÞRm�1

..

.

Nn�1;p �u1ð ÞR1 þ � � � þ Nn�1;p �um�1ð ÞRm�1

2
64

3
75 (20)

Rk ¼ Qk � N0;p �ukð ÞQ0 � Nn;p �ukð ÞQm k ¼ 1; � � � ;m� 1 (21)

Here P represents the coordinates of control points and can be calculated.

4 Isogeometric Analysis of Timoshenko Beam

In this section we briefly introduce the isogeometric analysis algorithm for static and modal analysis of
Timoshenko beam structures. To describe the geometry of beam structure, two sets of coordinate systems,
which are the local and global coordinate systems are established. The local coordinate system is defined
according to the Frenet curvilinear system as,

tðuÞ
nðuÞ
bðuÞ

2
4

3
5 ¼

C
: ðuÞ=jC: ðuÞj
bðuÞ � tðuÞ

ðC: ðuÞ � C
:: ðuÞÞ=jC: ðuÞ � C

:: ðuÞj

2
4

3
5 (22)

According to the Timoshenko beam theory, the displacement within the beam structure can be described
by the transit displacements and rotations of the points in the central line, which can be formulated as

�ut ¼ ut þ yhb þ zhn
�un ¼ un � zht
�ub ¼ ub � yht

(23)

The displacements are formulated in local coordinate system, and are denoted as ~u ¼ ut un ubf gT
and ~r ¼ ht hn hbf gT. When transformed into the global coordinate system, the displacements are
denoted as u ¼ ux uy uz

� �T
and r ¼ hx hy hz

� �T
, with transformation through rotation ~u ¼ Ru,

~r ¼ Rr. The rotation matrix is defined as,

R ¼
tðnÞ
nðnÞ
bðnÞ

2
4

3
5 ¼

tx ty tz
nx ny nz
bx by bz

2
4

3
5 (24)

The strain matrix is calculated through the displacements of the control points in global coordinate
system [45],
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� ¼

et
cn
cb
gt
vn
vb

2
6666664

3
7777775 ¼

tx
dux
ds

þ ty
duy
ds

þ tz
duz
ds

nx
dux
ds

þ ny
duy
ds

þ nz
duz
ds

� bxhx � byhy � bzhz

bx
dux
ds

þ by
duy
ds

þ bz
duz
ds

þ nxhx þ nyhy þ nzhz

tx
dhx
ds

þ ty
dhy
ds

þ tz
dhz
ds

nx
dhx
ds

þ ny
dhy
ds

þ nz
dhz
ds

bx
dhx
ds

þ by
dhy
ds

þ bz
dhz
ds

2
66666666666666664

3
77777777777777775

(25)

Each control point has six degrees of freedom,

U ¼ u v w hx hy hz
� �T

¼ N0 I6 � � � NnI6½ � U1 � � �Unf gT (26)

The strain matrix can be calculated as

� ¼ BU (27)

Finally, the element stiffness matrix is formulated as,

Ke ¼
Z
e
BT �D � Bds (28)

The Jacob value is calculated as,

J ¼ ds

du
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

du

	 
2

þ dy

du

	 
2

þ dz

du

	 
2
s

(29)

The D represents the generalized elastic matrix of Timoshenko beam model. The mass matrix is
formulated as [46]

Me ¼
Z
e
NT � � � Nds (30)

In which

� ¼ qAI3
�

� �
; � ¼

qIt
qIn

qIb

2
4

3
5 (31)

5 Numerical Experiments

The effect of parameterization of B-spline curves from sample points on the result of isogeometric
analysis of Timoshenko beam is explored. In the numerical tests three examples are discussed, which are
a quadrant arc, a Tschirnhausen cantilever beam and an Archimedes spiral curved beam. With these
curves, the sample points are collected from the parametric definitions. Then the centripetal method,
chord length method and the equally spaced method are used to define the knots of the B-spline function.
Finally interpolation and approximation methods are applied to calculate the control points. With the
obtained B-spline curves, the deflection under certain forces and natural frequencies are tested with
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isogeometric analysis. The influence of the different methods of parametrization on the results of the static
and dynamic performances is investigated. The parametric form of functions of the test models are listed in
Tab. 1. The sample points are calculated by the mathematical functions shown in the table with parameters
uniformly distributed with in the parametric range. Let P and Q be two sets of points of the input shape and
the calculated approximation spline curve. The discreted Hausdorff distance from P to Q is denoted by

h P;Qð Þ ¼ max
p2P

minq2Q p� qk k� �
(32)

The Hausdorff distance between P and Q is defined as

H P;Qð Þ ¼ max h P;Qð Þ; h Q;Pð Þf g (33)

To consider the absolute size of the shapes, the geometrical error introduced by the approximation is
described by the relative Hausdorff distance. In present paper Hr is used to represent the geometric error
in fitting.

Hr ¼ H P;Qð Þ
L Pð Þ (34)

5.1 Quadrant Arc: Comparison between Approximation and Interpolation Method
Fig. 1 shows the configuration of the quadrant arc which is defined with formula in Tab. 1. Ten sample

points are also shown in the figure which are uniformly distributed. With the pre-defined ten sample points,
the chord length, equally space and centripetal method obtain the same knots for the present test. While for
approximation and interpolation methods, the calculated knots are different. Fig. 2 shows the knots
calculated from the test with ten input sample points. The distribution of control points is calculated and
is shown in Fig. 3.

The performance of approximation and interpolation algorithms in geometric fitting is investigated. The
following phenomenons are observed:

� First, we set the number of sampling points to be the same with the number of the control points of the
curve. The results show that the interpolation method gives stable results with small geometric error. While
for the approximation method, the geometric fitting error is acceptable when the number of sampling
points is small, and increases rapidly when the number increases. Therefore, suggestion is given that

Model Function Range L Shape

Quadrant arc

{
x = r sin
y = r cos

0 ≤ ≤ π
2 1.57

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tschirnhausen beam

{
x = − 3 2 − 3

)
y = − 2 − 3

) 0 ≤ ≤ 1 4
6 6.5 7 7.5 8 8.5 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Archimedes beam

{
x = asina
y = acosa

0 ≤ a ≤ 2π 21.255
-6 -4 -2 0 2 4

-3

-2

-1

0

1

2

3

4

5

6

Helix

⎧⎨ x = 3cos(720t)
y = 3sin(720t)
z = 6 t

0 ≤ t ≤ 1 38.1723

Table 1: The models applied for numerical tests. The range column gives the parameter ranges of the models,
and the L column gives the lengths of the models
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with approximation method the number of sample points should be larger than that of control points. The
detailed results are shown in Tab. 2 in Appendix section.

� Second, we set the number of sample points as 50, and increase gradually the number of control points in
approximation method. The results show that the fitting error is limited when the control points are less
than 40, and then the fitting error grows rapidly.

The influence of the geometric model on the isogeometric analysis of the quadratic arc is studied. The
material properties are set as Young’s modulus E = 1.0E6, Poisson’s ratio μ = 0.3, density ρ = 7900. The
section of the beam is set as round circle with radius as r = 0.05. The downward vertical force with
magnitude 1 is applied on the right end of the arc and the left end is pinched. The simulation result with
commercial FEA software ABAQUS is used as reference and B31 beam element is applied. An
“overkill” refined mesh with 1000 elements is used for the simulation. The calculated reference solution
for the deformation of the free end in x direction is −0.160. The reference result by FEA is also validated,
and IGA simulation on NURBS described quadrant arc model is carried out which obtains the same
result as FEA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Figure 1: The geometry and input data points of quadrant arc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

(a)

Figure 2: The distribution of knots calculated with the pre-defined ten sample points. (a) The interpolation
method, (b) the approximation method
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The result in Fig. 4 shows the relative error of deflection of the free end in x direction of the arc
calculated with the fitted model using IGA. In the test the same number of sample and control points are
used for both approximation and interpolation method. The result proves that good precision is obtained
with the fitting model using isogeometric analysis, and that the proposed fitting methods from points are
effective. The results also show that with approximation method the number of sample points should be
larger than that of control points. For models calculated with interpolation method, the number of sample
and control points are always the same and stable performances in geometric fitting and also IGA
simulation are observed.

0 0.2 0.4 0.6 0.8 1

X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Quadrant arc
Cps of Interpolation
Cps of Approximation

Figure 3: The distribution of control points. Ten control points are shown obtained by the approximation
and interpolation method with ten input points

Figure 4: The relative error of deflection of the free end in x direction of the arc calculated with the
established model by the fitting algorithms
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5.2 Tschirnhausen Beam: The Influence of Parameters of Sample Points
Fig. 5 shows the configuration of Tschirnhausen beam. Ten sample points are also shown in the figure

which are uniformly distributed in the parameter domain according to formula in Tab. 1. As the curvature
varies along the beam, the samples are un-uniformly distributed on the curve. The parameters
corresponding to the sample points are also different when calculated by the equally space method, chord
length method and the centripetal method.

The knot vector calculated with ten input sample points are shown in Fig. 6. The knot vector calculated
with interpolation method are shown in the first row, and that with approximation method in the second row.
In the first column, the knots are calculated with centripetal method. Chord length method is used for second
column, and equally space method for the third column. The distribution of control points is shown in Fig. 7.

The performance in geometric fitting is first examined. First the number of control points is set the same
as the number of parameters, and the performance of interpolation and approximation methods are tested, as
shown in Fig. 8. It is clear than the precision is improved when the number of sampling points increases.
Among the three method to calculate the parameters for the sample points, the equally spaced method
obtains the best result. It is also noticed that the interpolation method is stable, while the approximation
method gets larger geometric error when the number of sampling points is beyond a threshold value. This
phenomena is similar with that in the first numerical test for quadratic arch.
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Figure 5: The distribution of sample points in Tschirnhausen beam
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Figure 6: The distribution of knot vector in Tschirnhausen beam. Results with interpolation method are
shown in the first row, and that with approximation method are shown in the second row. (a) Centripetal
method. (b) Chord length method. (c) Equally space method
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The influence of the number of control points in approximation method is tested. The number of sample
point is fixed as 50. The equally spaced method gives stable results, and all the three parametric methods for
sampling create large geometric error when the number of control points get close with the number of
sampling point, as shown in Fig. 9.
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Figure 7: The distribution of control points in Tschirnhausen beam. (a) Centripetal method. (b) Chord length
method. (c) Equally space method
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Figure 8: The geometric error of fitting algorithms with different sampling and control points. (a)
Approximation method. (b) Interpolation method

Figure 9: The geometric error of approximation method. The number of control points is changing, and the
number of sampling points is fixed as 50
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The influence of the geometric model on the isogeometric analysis of the Tschirnhausen beam is studied.
The material properties are set the same as that of quadratic arc beam. The section of the beam is set as round
circle with radius as r = 0.2. The downward vertical force with magnitude 1 is applied on the right end of the
beam and the left end is pinched. The reference solution with Abaqus is used, and an “overkill” refined mesh
with 3000 elements is used for the simulation. The deformation of the free end in x direction is calculated as
−0.7208. The simulation results are shown in Fig. 10. Within the three parametric methods for sampling
points, the equally space method gives the best results. With models obtained with approximation method
as shown in Fig. 9, the simulation results are examined for models with geometric error less than 0.002.
As shown in Fig. 11, the models performs well in the simulation, and the equally space method gives the
most precise results.

(a) (b)

Figure 10: The relative error of displacement calculated with models by approximation and interpolation
methods. (a) Approximation method. (b) Interpolation method

Figure 11: The error of displacement calculated in IGAwith models from approximation method. To get the
geometric models, 50 sampling points are used
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Through the test of Tschirnhausen beam, the results show that the fitting algorithms work well to obtain
models for IGA. And, it is proved again that in approximation method the number of control points should be
less that of the sampling points. The precision of both geometric approximation and simulation increases
with the number of sampling points, and the effect in improving the precision decreases once the number
reaches a threshold. With the methods for parametrization, the equally space method performs better than
the centripetal and Chord length method.

5.3 Archimedes Beam
In the third example the Archimedes beam model is applied. Compared with the first two examples, the

Archimedes model’s curvature varies more sharply. Fig. 12 shows the configuration along with ten sample
points which are uniformly distributed within the parametric field. As shown in Figs. 13 and 14, the knots and
distribution of control points are calculated with the ten sample points as input data. With interpolation
method the geometric error decreases with the increase of number of sampling points, as shown in
Fig. 15. With approximation method, the number of sampling point is chosen as 50, and we test the
influence of number of sampling point on the geometric error. The results are shown in Fig. 16.

The influence of the geometric model on the isogeometric analysis of the Archimedes beam is studied.
The material properties are set the same as that of quadratic arc beam. The section of the beam is set as round
circle with radius as r = 1. The downward vertical force with magnitude 1 is applied on the right end of the
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Figure 12: The distribution of sample points in the Archimedes beam
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Figure 13: The distribution of knot vector in Archimedes beam. (a) Centripetal method. (b) Chord length
method. (c) Equally space method
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beam and the left end is pinched. The reference solution with Abaqus is used, and an “overkill” refined mesh
with 10000 elements is used. The deformation of the free end in x direction is calculated as −0.1156, and the
natural frequency at first rank is 1.0996E − 2. With interpolation method, the performances of obtained
models in IGA simulation are shown in Fig. 17. In the calculation, models with geometric error less than
5E − 3 are used. The results shown that the equally space method and centripetal method out-perform the
chord length method.

The models calculated by approximation method shown in Fig. 16 are tested in IGA. The results are
shown in Fig. 18. The models are calculated with 50 sampling points. When the number of control points
reaches 10, the precisions of the simulations for displacement and model analysis are both high. When
the number of control point gets close to the number of sampling point (44 in this test), the errors in
simulations will rise along with the geometric error.

5.4 Helix
In this example we consider the Helix model which is more complicated than previous examples. The

parametric definition of Helix is listed in Tab. 1. The material properties are set as Young’s modulus E =
10E6, Poisson’s ratio μ = 0.3, density ρ = 7900. The section of the beam is set as round circle with radius
as r = 0.5. In Fig. 19 the configuration along with 15 sample points are displayed. In this example the
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Figure 14: The distribution of control points in the Archimedes beam. (a) Centripetal method. (b) Chord
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Figure 15: The geometric error of model obtained with interpolation method. The x axis shows the number
of sampling points
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Figure 16: When the number of sampling points is 50, the relationship between the number of control points
and the geometric error in approximation method

(a) (b)

Figure 17: The relative error of deflection calculated with models obtained by interpolation method. (a)
Displacement in x direction, (b) First rank of natural frequency

(a) (b)

Figure 18: Influence of the number of control points on simulation accuracy in approximation method. (a)
Relative error in displacement in x direction, (b) First rank of natural frequency
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centripetal, chord length and equally space parametric methods obtains the same results, therefore we do not
investigate the difference between these methods. The performance of geometric fitting and isogeometric
analysis by the models obtained with interpolation and approximation algorithms are investigated. For
approximation algorithm, 50 sample points are applied when the number of control points changes. For
interpolation method the number of sample points is always equal to the number of control points. The
geometric error is shown in Fig. 20. With increasing control points, the relative geometric error, which is
defined in Eq. (34) decreases rapidly. The static and modal analysis are carried out. For static analysis,
the endpoint at z = 6 is fixed, and a concentrated force is applied along the negative direction of x axis
with magnitude as 10. For modal analysis, both ends are fixed and the first rank of natural frequency is
calculated. Results by the FEA methods which are calculated by Abaqus are used again as the reference
solutions. 15000 elements are applied, and we have proved that the solution is already convergent and
remains the same when more elements are used. The reference solution for displacement in x direction of
endpoint at z = 0 is 0.1436, and the first rank of natural frequency is 0.009620. The results calculated
with geometric model from interpolation and approximation methods are shown in Fig. 21. The relative

Figure 19: The shape and sample points in Helix curve

Figure 20: The geometric error of approximation and interpolation algorithms in Helix curve
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error in deflection decreases with the increased number of control points, and generally the interpolation
method performs better than the approximation method. The results of natural frequency are quite precise,
which have the relative error at around 0.005% for both methods.

6 Discussions and Conclusions

In this paper, the analysis-suitable modelling of spatial beam with Timoshenko theory for IGA is
investigated. Two basic fitting algorithms, which are the approximation and interpolation methods, are
discussed. Three strategies of parameterization for the sampling points, meaning the equally spaced
method, the chord length method and the centripetal method are considered. The static and the modal
analysis with the established parametric models are carried out. The results show that both the
interpolation and approximation method can obtain precise parametric model with low geometric error for
IGA. The approximation method should be used when the number of control points is much less than
that of the sampling points to assure the precision for geometric fitting. The interpolation method obtains
stable and precise geometry model, and the geometric error decreases with the increase of sampling point.
Within the parameterization methods for sampling points, the equally spaced method and centripetal
method perform better than the chord length method.

In present work the sampling points are obtained by uniform distribution within the parametric space
according to the explicit formula of curve in the present paper. In future work the variation of sampling
points need to be considered. The point clouds obtained by scanning should also be considered.

Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful
suggestions which greatly improved the presentation of this paper.

Funding Statement: This work is funded by the National Key R & D Program of China (Grant No.
2018YFA0703200), Project of the National Natural Science Foundation of China (Grant No. 11702056)
and the Fundamental Research Funds for the Central Universities (Grant No. DUT20JC34). These
supports are gratefully acknowledged.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

(a) (b)

Figure 21: The relative error of deflection in x direction of endpoint at z = 0 and first rank of natural
frequency calculated with Helix models obtained by interpolation and approximation methods. (a)
Deflection in x direction, (b) First rank of natural frequency

CMES, 2020, vol.124, no.2 623



References
1. Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact

geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39–41), 4135–
4195. DOI 10.1016/j.cma.2004.10.008.

2. Bazilevs, Y., Da Veiga, L. B., Cottrell, J. A., Hughes, T. J. R., Sangalli, G. (2006). Isogeometric analysis:
approximation, stability and error estimates for h-refined meshes. Mathematical Models & Methods in Applied
Sciences, 16(7), 1031–1090. DOI 10.1142/S0218202506001455.

3. Cohen, E., Martin, T., Kirby, R. M., Lyche, T., Riesenfeld, R. F. (2010). Analysis-aware modeling: understanding
quality considerations in modeling for isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering, 199(5), 334–356. DOI 10.1016/j.cma.2009.09.010.

4. Jaxon, N., Qian, X. (2014). Isogeometric analysis on triangulations. Computer-Aided Design, 46, 45–57. DOI
10.1016/j.cad.2013.08.017.

5. Pilgerstorfer, E., Jüttler, B. (2014). Bounding the influence of domain parameterization and knot spacing on
numerical stability in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 268,
589–613. DOI 10.1016/j.cma.2013.09.019.

6. Choi, M. J., Cho, S. (2015). A mesh regularization scheme to update internal control points for isogeometric shape
design optimization. Computer Methods in Applied Mechanics and Engineering, 285, 694–713. DOI 10.1016/j.
cma.2014.11.045.

7. Kapl, M., Buchegger, F., Bercovier, M., Jüttler, B. (2017). Isogeometric analysis with geometrically continuous
functions on planar multi-patch geometries. Computer Methods in Applied Mechanics and Engineering, 316,
209–234. DOI 10.1016/j.cma.2016.06.002.

8. Collin, A., Sangalli, G., Takacs, T. (2016). Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric
spaces. Computer Aided Geometric Design, 47, 93–113. DOI 10.1016/j.cagd.2016.05.009.

9. Nian, X., Chen, F. (2016). Planar domain parameterization for isogeometric analysis based on Teichmüller
mapping. Computer Methods in Applied Mechanics and Engineering, 311, 41–55. DOI 10.1016/j.
cma.2016.07.035.

10. Gondegaon, S., Voruganti, H. K. (2018). An efficient parametrization of planar domain for isogeometric analysis
using harmonic functions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(10), 36.
DOI 10.1007/s40430-018-1414-z.

11. Wu, M., Mourrain, B., Galligo, A., Nkonga, B. (2017). H1-parametrizations of complex planar physical domains
in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 318, 296–318. DOI 10.1016/
j.cma.2017.01.025.

12. Martin, T., Cohen, E., Kirby, R. M. (2009). Volumetric parameterization and trivariate B-spline fitting using
harmonic functions. Computer Aided Geometric Design, 26(6), 648–664. DOI 10.1016/j.cagd.2008.09.008.

13. Chan, C. L., Anitescu, C., Rabczuk, T. (2017). Volumetric parametrization from a level set boundary representation
with PHT-splines. Computer-Aided Design, 82, 29–41. DOI 10.1016/j.cad.2016.08.008.

14. Arioli, C., Shamanskiy, A., Klinkel, S., Simeon, B. (2019). Scaled boundary parametrizations in isogeometric
analysis. Computer Methods in Applied Mechanics and Engineering, 349, 576–594. DOI 10.1016/j.
cma.2019.02.022.

15. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2011). Parameterization of computational domain in
isogeometric analysis: methods and comparison. Computer Methods in Applied Mechanics and Engineering,
200(23), 2021–2031. DOI 10.1016/j.cma.2011.03.005.

16. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2013). Analysis-suitable volume parameterization of multi-
block computational domain in isogeometric applications. Computer-Aided Design, 45(2), 395–404. DOI
10.1016/j.cad.2012.10.022.

17. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2013). Constructing analysis-suitable parameterization of
computational domain from CAD boundary by variational harmonic method. Journal of Computational
Physics, 252, 275–289. DOI 10.1016/j.jcp.2013.06.029.

624 CMES, 2020, vol.124, no.2

http://dx.doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/10.1142/S0218202506001455
http://dx.doi.org/10.1016/j.cma.2009.09.010
http://dx.doi.org/10.1016/j.cad.2013.08.017
http://dx.doi.org/10.1016/j.cma.2013.09.019
http://dx.doi.org/10.1016/j.cma.2014.11.045
http://dx.doi.org/10.1016/j.cma.2014.11.045
http://dx.doi.org/10.1016/j.cma.2016.06.002
http://dx.doi.org/10.1016/j.cagd.2016.05.009
http://dx.doi.org/10.1016/j.cma.2016.07.035
http://dx.doi.org/10.1016/j.cma.2016.07.035
http://dx.doi.org/10.1007/s40430-018-1414-z
http://dx.doi.org/10.1016/j.cma.2017.01.025
http://dx.doi.org/10.1016/j.cma.2017.01.025
http://dx.doi.org/10.1016/j.cagd.2008.09.008
http://dx.doi.org/10.1016/j.cad.2016.08.008
http://dx.doi.org/10.1016/j.cma.2019.02.022
http://dx.doi.org/10.1016/j.cma.2019.02.022
http://dx.doi.org/10.1016/j.cma.2011.03.005
http://dx.doi.org/10.1016/j.cad.2012.10.022
http://dx.doi.org/10.1016/j.jcp.2013.06.029


18. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2013). Optimal analysis-aware parameterization of
computational domain in 3D isogeometric analysis. Computer-Aided Design, 45(4), 812–821. DOI 10.1016/j.
cad.2011.05.007.

19. Xu, G., Mourrain, B., Galligo, A., Rabczuk, T. (2014). High-quality construction of analysis-suitable trivariate
NURBS solids by reparameterization methods. Computational Mechanics, 54(5), 1303–1313. DOI 10.1007/
s00466-014-1060-y.

20. Xu, G., Li, M., Mourrain, B., Rabczuk, T., Xu, J. et al. (2018). Constructing IGA-suitable planar parameterization
from complex CAD boundary by domain partition and global/local optimization. Computer Methods in Applied
Mechanics and Engineering, 328, 175–200. DOI 10.1016/j.cma.2017.08.052.

21. Xu, G., Kwok, T. H., Wang, C. C. L. (2017). Isogeometric computation reuse method for complex objects with
topology-consistent volumetric parameterization. Computer-Aided Design, 91, 1–13. DOI 10.1016/j.
cad.2017.04.002.

22. Luu, A. T., Kim, N. I., Lee, J. (2015). Isogeometric vibration analysis of free-form Timoshenko curved beams.
Meccanica, 50(1), 169–187. DOI 10.1007/s11012-014-0062-3.

23. Ghafari, E., Rezaeepazhand, J. (2017). Isogeometric analysis of composite beams with arbitrary cross-section
using dimensional reduction method. Computer Methods in Applied Mechanics and Engineering, 318, 594–
618. DOI 10.1016/j.cma.2017.02.008.

24. Maurin, F., Greco, F., Desmet, W. (2018). Isogeometric analysis for nonlinear planar pantographic lattice: discrete
and continuum models. Continuum Mechanics and Thermodynamics, 31(4), 1051–1064. DOI 10.1007/s00161-
018-0641-y.

25. Rezaiee-Pajand, M., Rajabzadeh-Safaei, N., Hozhabrossadati, S. M. (2018). Three-dimensional deformations of a
curved circular beam subjected to thermo-mechanical loading using green’s function method. International
Journal of Mechanical Sciences, 142–143, 163–175. DOI 10.1016/j.ijmecsci.2018.04.045.

26. Hosseini, S. F., Hashemian, A., Moetakef-Imani, B., Hadidimoud, S. (2018). Isogeometric analysis of free-form
Timoshenko curved beams including the nonlinear effects of large deformations. Acta Mechanica Sinica, 34(4),
728–743. DOI 10.1007/s10409-018-0753-4.

27. Liu, H., Zhu, X., Yang, D. (2016). Isogeometric method based in-plane and out-of-plane free vibration analysis for
Timoshenko curved beams. Structural Engineering and Mechanics, 59(3), 503–526. DOI 10.12989/
sem.2016.59.3.503.

28. Faroughi, S., Shafei, E., Eriksson, A. (2019). NURBS-based modeling of laminated composite beams with
isogeometric displacement-only theory. Composites Part B: Engineering, 162, 89–102. DOI 10.1016/j.
compositesb.2018.10.073.

29. Ghafari, E., Rezaeepazhand, J. (2019). Isogeometric analysis of shear refined delaminated composite beams using
dimensionally reduced beam sectional analysis. Composite Structures, 210, 858–868. DOI 10.1016/j.
compstruct.2018.12.001.

30. Yang, Z., Shen, L. Y., Yuan, C. M., Gao, X. S. (2015). Curve fitting and optimal interpolation for CNC machining
under confined error using quadratic B-splines. Computer-Aided Design, 66, 62–72. DOI 10.1016/j.
cad.2015.04.010.

31. Plass, M., Stone, M. (1983). Curve-fitting with piecewise parametric cubics. ACM SIGGRAPH Computer
Graphics, 17(3), 229–239. DOI 10.1145/964967.801153.

32. Imani, B. M., Hashemian, S. A. (2012). Nurbs-based profile reconstruction using constrained fitting techniques.
Journal of Mechanics, 28(3), 407–412. DOI 10.1017/jmech.2012.71.

33. Wang, W., Pottmann, H., Liu, Y. (2006). Fitting B-spline curves to point clouds by curvature-based squared
distance minimization. ACM Transactions on Graphics, 25(2), 214–238. DOI 10.1145/1138450.1138453.

34. Kang, H., Chen, F., Li, Y., Deng, J., Yang, Z. (2015). Knot calculation for spline fitting via sparse optimization.
Computer-Aided Design, 58, 179–188. DOI 10.1016/j.cad.2014.08.022.

35. Garcia-Capulin, C. H., Cuevas, F. J., Trejo-Caballero, G., Rostro-Gonzalez, H. (2014). A hierarchical genetic
algorithm approach for curve fitting with B-splines. Genetic Programming and Evolvable Machines, 16(2),
151–166. DOI 10.1007/s10710-014-9231-3.

CMES, 2020, vol.124, no.2 625

http://dx.doi.org/10.1016/j.cad.2011.05.007
http://dx.doi.org/10.1016/j.cad.2011.05.007
http://dx.doi.org/10.1007/s00466-014-1060-y
http://dx.doi.org/10.1007/s00466-014-1060-y
http://dx.doi.org/10.1016/j.cma.2017.08.052
http://dx.doi.org/10.1016/j.cad.2017.04.002
http://dx.doi.org/10.1016/j.cad.2017.04.002
http://dx.doi.org/10.1007/s11012-014-0062-3
http://dx.doi.org/10.1016/j.cma.2017.02.008
http://dx.doi.org/10.1007/s00161-018-0641-y
http://dx.doi.org/10.1007/s00161-018-0641-y
http://dx.doi.org/10.1016/j.ijmecsci.2018.04.045
http://dx.doi.org/10.1007/s10409-018-0753-4
http://dx.doi.org/10.12989/sem.2016.59.3.503
http://dx.doi.org/10.12989/sem.2016.59.3.503
http://dx.doi.org/10.1016/j.compositesb.2018.10.073
http://dx.doi.org/10.1016/j.compositesb.2018.10.073
http://dx.doi.org/10.1016/j.compstruct.2018.12.001
http://dx.doi.org/10.1016/j.compstruct.2018.12.001
http://dx.doi.org/10.1016/j.cad.2015.04.010
http://dx.doi.org/10.1016/j.cad.2015.04.010
http://dx.doi.org/10.1145/964967.801153
http://dx.doi.org/10.1017/jmech.2012.71
http://dx.doi.org/10.1145/1138450.1138453
http://dx.doi.org/10.1016/j.cad.2014.08.022
http://dx.doi.org/10.1007/s10710-014-9231-3


36. Pagani, L., Scott, P. J. (2018). Curvature based sampling of curves and surfaces. Computer Aided Geometric
Design, 59, 32–48. DOI 10.1016/j.cagd.2017.11.004.

37. Hosseini, S. F., Moetakef-Imani, B., Hadidi-Moud, S., Hassani, B. (2016). The effect of parameterization on isogeometric
analysis of free-form curved beams. Acta Mechanica, 227(7), 1983–1998. DOI 10.1007/s00707-016-1610-9.

38. Hosseini, S. F., Hashemian, A., Reali, A. (2018). On the application of curve reparameterization in isogeometric
vibration analysis of free-from curved beams. Computers & Structures, 209, 117–129. DOI 10.1016/j.
compstruc.2018.08.009.

39. Hosseini, S. F., Moetakef-Imani, B., Hadidi-Moud, S., Hassani, B. (2018). Pre-bent shape design of full free-form
curved beams using isogeometric method and semi-analytical sensitivity analysis. Structural and Multidisciplinary
Optimization, 58(6), 2621–2633. DOI 10.1007/s00158-018-2041-0.

40. Hashemian, A., Hosseini, S. F. (2018). An integrated fitting and fairing approach for object reconstruction using
smooth NURBS curves and surfaces. Computers & Mathematics with Applications, 76(7), 1555–1575. DOI
10.1016/j.camwa.2018.07.007.

41. Hashemian, A., Hosseini, S. F. (2019). Nonlinear bifurcation analysis of statically loaded free-form curved beams
using isogeometric framework and pseudo-arclength continuation. International Journal of Non-Linear
Mechanics, 113, 1–16. DOI 10.1016/j.ijnonlinmec.2019.03.002.

42. Hashemian, A., Hosseini, S. F., Reali, A. (2019). Analysis-suitable parameterization for isogeometric simulation of
free-form structures: an application to curved beams. VII International Conference on Isogeometric Analysis,
Munich, Germany.

43. Hosseini, S. F., Hashemian, A., Reali, A. (2020). Studies on knot placement techniques for the geometry
construction and the accurate simulation of isogeometric spatial curved beams. Computer Methods in Applied
Mechanics and Engineering, 360, 112705. DOI 10.1016/j.cma.2019.112705.

44. Piegl, L., Tiller, W. (1997). The NURBS book. Second edition. Berlin: Springer.

45. Hu, Q., Xia, Y., Zou, R., Hu, P. (2016). A global formulation for complex rod structures in isogeometric analysis.
International Journal of Mechanical Sciences, 115–116, 736–745. DOI 10.1016/j.ijmecsci.2016.07.031.

46. Zhang, X., Xia, Y., Hu, Q., Hu, P. (2017). Efficient isogeometric formulation for vibration analysis of
complex spatial beam structures. European Journal of Mechanics-A/Solids, 66, 212–231. DOI 10.1016/j.
euromechsol.2017.07.006.

Appendix A. Results of the Numerical Tests

Tab. 2 shows the geometric error of the fitting algorithms.

Table 2: The geometric error of the fitting algorithm for quadratic arc in Numerical example 1. The degree of
B-spline basis is set as three

4 6 8 10 15 20

Interpolation 0.00176 5.0042E-4 5.0040E-4 5.0038E-4 5.0038E-4 5.0038E-4

Approximation 0.00176 7.2119E-4 5.0038E-4 5.0084E-4 5.0038E-4 0.0043

22 24 25 30 40 50

Interpolation 5.0038E-4 5.0038E-4 5.0038E-4 5.0038E-4 5.0038E-4 5.0038E-4

Approximation 0.2959 9.7218 71.3655 7489.1009 7131.2582 1.0116E6
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