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Abstract: The paper applied the isogeometric boundary element method (IGA-
BEM) to thermoelastic problems. The Non-Uniform Rational B-splines (NURBS)
used to construct geometric models are employed to discretize the boundary inte-
gral formulation of the governing equation. Due to the existence of thermal stress,
the domain integral term appears in the boundary integral equation. We resolve
this problem by incorporating radial integration method into IGABEM which
converts the domain integral to the boundary integral. In this way, IGABEM
can maintain its advantages in dimensionality reduction and more importantly,
seamless integration of CAD and numerical analysis based on boundary represen-
tation. The algorithm is verified by numerical examples.
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1 Introduction

Isogeometric analysis (IGA) has received considerable attention in engineering science ever since the
seminal works of Hughes et al. [1]. IGA adopts spline functions used to construct the geometric model in
CAD, for example Non-Uniform Rational B-splines (NURBS), as the basis function to discretize partial
differential equations. The main advantage of IGA lies in its capability of performing numerical analysis
from CAD models directly without needing meshing, and therefore avoids cumbersome preprocessing
procedure and geometric errors as encountered by traditional numerical methods such as finite element
methods (FEM) and boundary element methods (BEM). Other benefits include high order continuity,
flexible refinement scheme, etc. IGA has found wide applications in a number of areas, such as elasticity
mechanics [2,3], fluid dynamics [4], fluid-structure interaction [5–7], shape optimization [8–10], structural
vibration [11], shell analysis [12], contact problems [13], composite layering [14], etc. In addition,
advancements were made in IGA by utilizing T-splines [4], PHT-splines [15,16], and subdivision surfaces
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[17] that allow for the analysis of complicated geometries. The introduction of Bézier extraction technique
further eases the implementation of IGA with the existing FEM codes [18].

IGA was originally proposed in the context of FEM, which requires volume parameterization [19,20]
and thus conflicts with the boundary representation predominant in CAD. This problem constitutes a
severe bottleneck to use of IGA in engineering practice. An effective approach to bypass this difficulty is
to combine IGA with BEM (IGABEM) [21]. BEM only needs discretizing the boundary of the analysis
domain that is naturally compatible with CAD model [22–29]. IGABEM was successfully applied in the
fields of potential problems [30], heat conduction [31], linear elasticity [32–35], fracture mechanics [36–
38], wave resistance [39], elastoplastic inclusions [40], structural-acoustic coupling [41], electromagnetic
waves [42], acoustics [43–49], shape optimization [47,50–53], topological optimization [54], etc.

In elasticity mechanics, thermal stress plays a critical role in many engineering applications. However, it
is not a trivial task to perform thermoelasticity analysis with (IGA)BEM because an additional domain
integral term appears which must be treated carefully [55,56]. Although one may discretize the analysis
domain as in FEM, the advantages of (IGA)BEM in dimensionality reduction is sacrificed. Hence, to
maintain the boundary representation properties of (IGA)BEM, the domain integral should be converted
to boundary integral with the aid of some special techniques. Fang et al. [57] utilized Galerkin vector in
IGABEM for thermoelasticity but the availability of this technique only holds for steady heat conduction,
that is, the variation of temperature should satisfy the Laplace equation. The radial integration method
proposed by [58] might be a feasible alternative and is investigated in the present work. To the authors’
best knowledge, this is the first time that the radial integration method is integrated into IGABEM, which
is not only significant for the effective use of IGABEM in thermoelasticity analysis, but more
importantly, paves the way towards a general approach of addressing domain integrals in IGABEM. The
remainder of the paper is organized as follows. Section 2 outlines the NURBS. Section 3 introduces the
boundary integral equation for thermoelasticity. Section 4 details implementation of the isogeometric
boundary element method in the field of thermoelasticity. Section 5 provides some numerical examples to
verify the present algorithm, followed by the conclusion in Section 6.

2 NURBS

Non-Uniform Rational B-splines (NURBS) are used in the present work since they are ubiquitous in the
CAD industry. For the sake of completeness, the fundamentals of NURBS are briefed in this section. Before
the introduction of NURBS, it is necessary to start with the concept of B-splines. A B-spline curve is
expressed by

xðnÞ ¼
Xn
i¼1

Ni;pðnÞPi (1)

where x is the Cartesian coordinate of a point located on the B-spline curve, n the number of control points, p
the polynomial order, Pi the control point, and Ni,p B-spline basis functions. Given a knot vector Ξ = [ξ 0,ξ 1,
…,ξ m], the B-spline basis function is defined as follows:

Ni;0 ¼ 1; if ðni � n < niþ1Þ
0; otherwise

�
(2)

Ni;pðnÞ¼ n� ni
niþp � ni

Ni;p�1ðnÞ þ
niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ (3)

As an extension of B-splines by adding the weight coefficient wi , NURBS curve is parameterized as
follows
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xðnÞ ¼
Xn
i¼1

Ri;pðnÞPi (4)

where Ri,p(ξ) is the NURBS basis function which is written as

Ri;pðnÞ ¼ Ni;pðnÞwiPn
k¼1 Nk;pðnÞwk

(5)

or

Ri;pðnÞ ¼ Ni;pðnÞwi

W ðnÞ (6)

with wi denoting the weight coefficient, and W ðnÞ ¼ Pn
k¼1 Nk;pðnÞwk .

The first derivative of the NURBS basis function can be expressed as:

d

dn
Ri;pðnÞ ¼ wi

W ðnÞ d

dn
Ni;pðnÞ � Ni;pðnÞ d

dn
W ðnÞ

W ðnÞð Þ2 (7)

where

d

dn
W ðnÞ¼

Xn
k¼1

d

dn
Nk;pðnÞwk (8)

The advantage of NURBS over B-splines is that NURBS can exactly represent all conic sections. Take a
quarter circle as an example. As shown in Fig. 1, the weight coefficients w0 = w2 = 1, and the value of w1

varies. As can be seen from the figure, the larger the weight coefficient w1, the closer the NURBS curve is to
the control point. When w1 ¼ 1=

ffiffiffi
2

p
a quarter arc is recovered [59].

Fig. 2 compares Bézier, B-spline and NURBS curves. By adjusting the value of weight factors, NURBS
curves can flexibly control the distance between control points and curve.

The h-refinement (knot insertion) refers to inserting a new knot �n on the basis of the original knot vector.
This process adds control points without changing the original geometry, and finally achieves the purpose of

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 w=1
w=1/(2)(1/2)

w=0.6
w=3
w=10
Control polygon

Figure 1: Comparison of NURBS curves with different weight coefficients
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increasing the model degree of freedom. Assuming the newly inserted knot �n is in the interval [ξk, ξk + 1), the
weight coefficient corresponding to the new control point can be defined as

�wi ¼ aiwi þ ð1� aiÞwiþ1 (9)

where

ai ¼
1; i � k � p
�n� ni

niþp � ni
; k � pþ 1 � i � k

0; i � k þ 1

8>><
>>: (10)

The corresponding control point �Pi can be expressed as

�Pi ¼ aiwiPi þ ð1� aiÞwi�1Pi�1

�wi
(11)

It is noteworthy that although the continuity of the basis is reduced by one for each repetition of a give
knot value, the continuity of the curve is preserved.

3 Boundary Integral Equation for Thermoelasticity

The constitutive relationship in thermoelasticity is expressed by

Eij¼ 1

2l
rij � m

1þ m
dijrkk

� �
þ dijkT (12)

where T represents the variation of temperature and k is the thermal expansion coefficient. The second term
on the right hand side of the above equation denotes the strain induced by thermal stress. The above equation
can be reformulated as

rij ¼ 2l Eij þ mdijEkk
1� 2m

� �
� dij~kT (13)

where

~k ¼ 2lð1þ mÞk
1� 2m

(14)

The boundary integral equation for evaluating the displacement of a point ~p is expressed as [56,60,61]:
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Figure 2: Comparison of the Bézier, B-spline and NURBS curves
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cijð~pÞujð~pÞ ¼
Z
�

u�ijðQ; ~pÞtjðQÞ � t�ijðQ; ~pÞujðQÞ
h i

d�ðQÞ

þ
Z
�

�iðq; ~pÞTðqÞd�ðqÞ
(15)

where

u�ij ¼
1

8pð1� tÞl 3� 4tð Þdij lnð1rÞ þ r;ir;j

� �
(16)

t�ij ¼
�2

8pð1� tÞr ½Aðnir;j � njr;iÞ þ nmr;mðAdij þ 2r;ir;jÞ� (17)

�i ¼ �ð1þ mÞk
2pð1� mÞr r;i (18)

in which ~p is the source point,Q the field point on the boundary, and A = 1 − 2υ. cij = δij for inner point and cij
= δij/2 if the point is located on the boundary.

The boundary integral equation for evaluating stress at point ~p is given by [56,60,61],

rijð~pÞ ¼
Z
�

u�ijkktkd��
Z
�

t�ijkukd�

þ Tð~pÞ
Z
�

r ln r
@r

@n
�ijd�þ

Z
�

T � Tð~pÞ½ ��ijd�� dijhTð~pÞ
(19)

where n is the normal vector, and

h ¼ lðbþ 1Þð1þ mÞk
3ð1� mÞ (20)

�ij ¼ lð1þ mÞk
pð1� mÞr2 dij � 2r;ir;j

� 	
(21)

and

u�ijk ¼
1

4pð1� tÞ
1

r
ð1� 2mÞðdkir;j þ dkjr;i � dijr;kÞ þ 2r;ir;jr;k

 �

(22)

t�ijk ¼
l

2pð1� tÞ
1

r
f2r;mn;m½ð1� 2mÞdijr;k þ tðdikr;j þ djkr;iÞ � 4r;ir;jr;k �

þ 2tðnir;jr;k þ njr;ir;kÞ þ ð1� 2mÞð2nkr;ir;j þ njdik þ nidjkÞ � ð1� 4tÞnkdijg
(23)

We can find the domain integral term exists in Eqs. (15) and (19). It will be treated with radial integration
method [58].

Using the radial basis operation, any integrand in a domain can be transformed into a integral over its
boundary
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Z
�

f ðxÞd�¼
Z
�

1

rðQ; ~pÞ
@r

@n
FðxÞd� (24)

where f(x) is a integrand function, rðQ; ~pÞ denotes the distance from the source point ~p to the boundary point
Q, and F(x) is a radial integral function as follows

FðxÞ ¼
Z rðQ;~pÞ

0
f ðxÞrdr (25)

As shown in Fig. 3, the Cartesian coordinate x needs to be expressed as a function of the integral variable r:

xi ¼ x~pi þ r;ir (26)

where

r;i ¼ @r

@xi
¼ xQi � x~pi

rðQ; ~pÞ (27)

Upon substitution of the domain integral term ∫ΩΨiT dΩ into the radial integral formula, the domain
integral is converted into a boundary integral:Z
�

ΨiTd� ¼
Z
�

@r

@n
�i�Fd� (28)

where

�F ¼
Z r

0
Tdr (29)

By substituting Eq. (28) into the Eq. (15), we arrive at the displacement boundary integral equation,

cijð~pÞujð~pÞ ¼
Z
�

u�ijðQ; ~pÞtjðQÞ � t�ijðQ; ~pÞujðQÞ
h i

d�ðQÞ þ
Z
�

@r

@n
�i�Fd� (30)

In a similar manner, the domain integral for stress in Eq. (19) can be expressed as:

Figure 3: The relationship of coordinate transformation
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Z
�

T � Tð~pÞ½ ��ijd� ¼
Z
�

r
@r

@n
�ij~Fd� (31)

where

~F ¼
Z r

0

T � Tð~pÞ
r

dr (32)

Substituting Eq. (31) into Eq. (19) can eliminate the domain integral term in the boundary integral
formulation for stress evaluation as follows

rijð~pÞ ¼
Z
�

u�ijkktkd��
Z
�

t�ijkukd�

þ Tð~pÞ
Z
�

r ln r
@r

@n
�ijd�þ

Z
�

r
@r

@n
�ij~Fd�� dijhTð~pÞ

(33)

4 IGABEM Formulation for Thermoelasticity Analysis

In this work, the NURBS basis function is used for both geometry generation and physical field
approximation. The boundary of the domain is first discretized into Ne non-overlapping NURBS
elements. The global coordinates of any point in every NURBS element can be obtained through linear
combination of the NURBS basis functions and the coordinates of the control points xl

xðnÞ ¼
Xpþ1

l¼1

Rl;pðnÞxl (34)

where l is the number of control points, and ξ is the local parametric coordinate varying in the range [−1, 1].

In order to perform Gaussian numerical integration, variables need to be mapped from physical space to
local coordinate space. Therefore, the Jacobian transformation Jðn̂Þ consists of two parts: the mapping from
physical space to parametric space and that from parametric space to local coordinate space. The
corresponding mathematical expression is

d�

dn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx1ðnÞ
dn

� �2

þ dx2ðnÞ
dn

� �2
s

(35)

with

dn

dn̂
¼ nd � nc

2
(36)

where ξc and ξd represent the papametric coordinates of the first and last point in a NURBS element,
respectively. Thus, the Jacobian can be expressed as

J ðn̂Þ¼ d�

dn̂
¼ d�

dn
dn

dn̂
(37)

The approximation of the physical field with NURBS basis functions can be expressed by
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ujðnÞ ¼
Xpþ1

l¼1

Rl;pðnÞulj (38)

tjðnÞ ¼
Xpþ1

l¼1

Rl;pðnÞtlj (39)

where ulj and tlj are nodal coefficients related to displacement and traction. Different from the Lagrangian
interpolation used in traditional boundary element methods (TBEM), NURBS do not possess Kronecker-
delta property, so the control points may not lie on the boundary and ulj and t

l
j have no physical interpretations.

We use collocation scheme to generate a series of equations, and adopt Greville abscissae [62,63] to
obtain the coordinates of these collocation points,

n0a ¼
naþ1 þ naþ2 þ � � � þ naþp

p
a ¼ 1; 2;…; n; (40)

where n0a is the parameteric coordinate of the a-th collocation point.

Substituting Eqs. (38) and (39) to boundary integral equation, the first term of Eq. (30) is expressed as
follows

cijð~p0Þ
Xpþ1

l¼1

R�e
l;pðn̂0Þul�ej (41)

where ē represents the element containing the collocation point ~p0, and n̂
0
represents the local coordinate of

the collocation point.

Similarly, the first term of the right hand side of Eq. (30) is discretized as

R
� u

�
ijðQ; ~p0ÞtjðQÞd�ðQÞ ¼

PNe
e¼1

Ppþ1

l¼1
½R 1

�1 u
�
ijðQðn̂Þ; ~p0ÞRe

l;pðn̂ÞJ ðn̂Þdn̂�tlej ðQÞ
R
� t

�
ijðQ; ~p0ÞujðQÞd�ðQÞ ¼

PNe
e¼1

Ppþ1

l¼1
½R 1

�1 t
�
ijðQðn̂Þ; ~p0ÞRe

l;pðn̂ÞJ ðn̂Þdn̂�ulej ðQÞ

8>>><
>>>:

(42)

where ulej and tlej represent nodal coefficients in element e related to displacement and traction.

For the domain integral in the displacement boundary integral equation, the physical coordinates are
approximated by NURBS. Given a known temperature field T, the radial integral can be evaluated using
Eq. (26). For the simple temperature field distribution the radial integral can be calculated analytically,
but in the general cases it needs to be calculated using the Gaussian numerical integration. The
conversion relationship of the integral variable is

rðq; ~pÞ ¼ rðQ; ~pÞ
2

ð1þ nÞ (43)

Since the domain integral has been approximated by the radial integration method, only the geometric
field approximation is required. Using Eqs. (26) and (43), the domain integral after discretization can be
expressed as
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Z
�

�iTd� ¼
Z
�

@r

@n
�iðQ; ~p0Þ�Fd�¼

XNe
e¼1

Z 1

�1

@rðQðn̂Þ; ~p0Þ
@n

�iðQðn̂Þ; ~p0Þ�Fðn̂ÞJdn̂ (44)

with

�F ¼
Z r

0
TðqÞdr¼ rðQ; ~p0Þ

2

Z 1

�1
TðqðnÞÞdn (45)

where Q stands for the boundary field point, q the interior field point, and ~p0 the source point. q(ξ) is the
coordinate of the field point obtained by substituting rðq; ~p0Þ in the Eq. (43) to the Eq. (26).

Now the complete expression of Eq. (15) after discretization is

cijð~p0Þ
Xpþ1

l¼1

R�e
l;pðn̂0Þul�ej ¼

XNe
e¼1

Xpþ1

l¼1

½
Z 1

�1
u�ijðQðn̂Þ; ~p0ÞRe

l;pðn̂ÞJ ðn̂Þdn̂�tlej ðQÞ

�
XNe
e¼1

Xpþ1

l¼1

½
Z 1

�1
t�ijðQðn̂Þ; ~p0ÞRe

l;pðn̂ÞJ ðn̂Þdn̂�ulej ðQÞ

þ
XNe
e¼1

Z 1

�1

@rðQðn̂Þ; ~p0Þ
@n

�iðQðn̂Þ; ~p0Þ�Fðn̂ÞJdn̂

(46)

or collected as a matrix form:

Hu� Gt ¼ yp (47)

where the matrixH contains all integrals kernel functions u�ij and the jump terms cij, the matrixG contains all
integration kernel functions t�ij, and the vectors u and t contain the nodal coefficient of displacements and
traction field. yp is a column vector formed by the domain integral caused by thermal stress (Eq. (44)).
After imposing boundary conditions, Eq. (47) transforms to a set of linear equations as

Ax ¼ b (48)

with x being a vector of unknown degrees of freedom.

5 Numerical Examples

5.1 Thick-Walled Cylinder Subjected to Internal and External Temperature Difference
A cylinder structure model with an inner radius of 1 m and an outer radius of 2 m is heated from the inner

boundary surface, as shown in Fig. 4. This stress is induced by a large temperature gradient between the inner
and outer surfaces. The temperature of the inner boundary rises by 1°C, and that of the outter boundary rises
by 0°C. Linear expansion coefficient k = 1.2 × 10−5 K−1, modulus of elasticity E = 210 GPa, and Poisson’s
ratio υ = 0.3. This problem can be simplified to be a plane strain problem. Because the structure and
temperature loads are axisymmetric, only a quarter of the structural model is needed for numerical
analysis. This model is constructed by NURBS curve, as shown in Fig. 5.

From Fig. 5, we can find that only a few control points are needed to describe the geometric model
exactly when using NURBS curves. However, for approximation of the physical field, they are not
enough to capture the unknown variables. It may cause a large error for the calculation results. One of the
most favourable properties of IGA is that the mesh can be refined while retaining accurate geometry at all
times. Fig. 6 depicts the NURBS curve and control points with different levels of subdivision.
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It can be seen that through h-refiment operation, more control points are obtained and the consistency of
the structural model is still maintained.

The heat transfer equation is applied to obtain the temperature field distribution on the model satisfying
initial conditions and boundary conditions, as follows

T ¼
ln
2

�r
ln 2

(49)

where �r represents the radial distance from a point to the center of the circle.

The analytical solution of the circumferential thermal stress distribution on the structure is expressed as:

rh ¼ 1:8
1� lnð2

�r
Þ

ln 2
�
ð2
�r
Þ
2

þ 1

3
(50)

A model with 200 degrees of freedom is used for numerical analysis. The distribution function of
temperature field determines the values of the final displacement and stress. For a simple temperature

Figure 4: Cylindrical section model

NURBS curve
Control point

Figure 5: Quarter cylindrical section boundary NURBS curve and control point: the order is p = 2, and the
control point is {(1, 0), (1.5, 0), (2, 0), (2, 2), (0, 2), (0, 1.5), (0, 1), (1, 1), (1, 0)}, and the knot vector is Ξ =
{0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1}
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field distribution function, the corresponding radial integral function in Eqs. (29) and (32) can be obtained
analytically, but for complex situations, Gaussian quadrature should be used.

Tab. 1 lists the numerical and analytical solutions of the hoop stresses at several internal points with
different radial distances. It can be seen that the calculation results for the algorithm proposed in this
work are consistent with the analytical solution.

Among them, the minimum error at the point with r = 1.5 m is −9.0766E-04, and the maximum error at
the point with r = 1.96 m is −2.3843E-02.

The stress values at more points are calculated by IGABEM and compared with the analytical solution to
further demonstrate the correctness of the algorithm, as shown in Fig. 7. Because the thermal stress boundary
integral equation contains singular integrals, the accuracy of the boundary element method for calculating
internal thermal stress decreases as the calculation point approaches the boundary. Thus, It can be seen
that, the result has a small jump around r = 2 m.

(a)

NURBS curve
Control point

(b)

NURBS curve
Control point

(c)

NURBS curve
Control point

(d)

Figure 6: Control points and NURBS curves with different levels of subdivision. (a) One subdivision. (b)
Two subdivision. (c) Five subdivision. (d) Six subdivision
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In this example, for the same degrees of freedom, IGABEM achieves higher accuracy than that of
traditional BEM, and the accuracy of IGABEM becomes even more significant when the computing point
is close to the structural boundary. For example, the errors of traditional BEM at r = 1.96 m and 1.98 m
are 3.5205E-02 and 3.0584E-02, respectively. As can be seen in the Tab. 1, the errors of IGABEM are
−2.3843E-02 and 8.8156E-03, respectively. The high accuracy of IGABEM can be attributed to the high
order basis functions and the geometric accuracy.

To further explore the accuracy and stability of the algorithm, convergence analysis is performed, and
the model is further refined, including 400, 800 and 1000 degrees of freedom. Fig. 8 illustrates the
convergence curves of hoop stress values at two interior points with different radial distances that are
evaluated by IGABEM and traditional BEM using quadratic elements, respectively.

It can be observed that the numerical solution of IGABEM converges rapidly and has smaller errors than
the quadratic BEM.

It is noteworthy that although IGABEM improves the calculation accuracy, the NURBS employed in
IGABEM need to be evaluated recursively, which is far more time consuming than the polynomial basis
functions used in conventional algorithms. However, this problem is alleviated by adopting Bézier

Table 1: Hoop stress σθ (Mpa)

Radius/m IGABEM/Mpa Exact solution/Mpa Error/Mpa

1.10 −1.541799 −1.539114 1.7447E-03

1.20 −0.997957 −0.996354 1.6095E-03

1.30 −0.543317 −0.541946 2.5297E-03

1.40 −0.154419 −0.153870 3.5658E-03

1.50 0.182951 0.183117 −9.0766E-04

1.60 0.480655 0.479881 1.6137E-03

1.70 0.746553 0.744364 2.9413E-03

1.80 0.988744 0.982505 6.3501E-03

1.90 1.217228 1.198830 1.5347E-02

1.96 1.288183 1.319648 −2.3843E-02

1.98 1.370546 1.358569 8.8156E-03

140

Figure 7: Hoop stress curve

596 CMES, 2020, vol.124, no.2



extraction operation that transforms NURBS to Bernstein polynomials and thus avoids the recursive
calculation and considerably improves the calculation efficiency.

5.2 Eight-Leaf Plate Model
In order to demonstrate the ability of IGABEM in dealing with complex models, a two-dimensional

model called “eight-leaf plate” is constructed in this work, as shown in Fig. 9. In this example, the
geometric model is constructed through in-house software which allows the users to input the control
point coordinates in command lines or determine their positions directly with mouse in a graphical user
interface. For more complicated geometries, we can resort to the professional CAD software like
Rhinoceros and import the geometric information to our codes and then perform h-refinement if needed.
Linear expansion coefficient k = 1.0 ×10–5 K−1, Poisson’s ratio υ = 0.3. The temperature field distribution
is taken as a linear function (T = 60y + 60) and a quadratic function (T = 40y2 − 60y), respectively.

Because of the simple temperature field function, the radial integral function can be calculated
analytically. In this example, for the quadratic temperature field function (T = 40y2 − 60y), the radial
integral function in the displacement integral Eq. (29) is derived as
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Figure 8: Convergence curves of errors at different internal points
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Figure 9: Eight-leaf board NURBS curve and its control points: the order is p = 2, and the knot vector is Ξ =
{0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8}
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2 þ 40x~p2 � 30
� 

r;2r

� �
(51)

Similarly, the radial integral function in the stress integral equation can be obtained as follows:

~F¼20r2;2r
2 þ 80x~p2 � 60

� 
r;2r (52)

We further investigate the influence of different temperature fields on the displacement and stress. The
displacements and stresses at the internal points along the x-axis are calculated subject to the linear and
quadratic temperature distribution, respectively. The numerical results with IGABEM are shown in Figs.
10 and 11 with 1000 degrees of freedom.

From Figs. 10 and 11, we can observe that at the internal points furthest from the boundary, the
displacement attains the smallest values, and the stress under the linear function temperature field
distribution is the largest. In contrary, under the quadratic temperature field distribution the stress reaches
the maximum at the boundary points. It is also noticed that the calculation results of displacement and
stress show symmetry to the y-axis because the structure and temperature field distribution are symmetrical
along the y-axis.
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Figure 11: Curve of stress at internal point
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5.3 Wrench Model
In this section, a wrench model as shown in Fig. 12 is analyzed with IGABEM. Fig. 13(a) shows the

NURBS curve and the associated control points. This model uses the same quadratic distribution function
of temperature field and material properties as the previous example.

We select several internal points (Fig. 13(b)) and evaluate their displacements and stresses with
IGABEM and TBEM (Tabs. 2 and 3). The TBEM uses quadratic elements. It can be seen that the
numerical results of IGABEM agree well with that of TBEM.

Figure 12: Geometry of the open spanner

Figure 13: Wrench model constructed by NURBS basis functions: The coordinate of these internal points
are (−1, 1.5); (0.5, 0.5); (1, 0); (4, 0); (0.5, −0.5); (−1, −1.5), respectively. The order is p = 2, and the knot
vector is Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13}. (a) NURBS curve
and control points. (b) NURBS curve and internal points

Table 2: Comparison of displacement uy calculation results

Internal point 1 2 3 4 5 6

TBEM 1.1720E-04 1.3831E-03 2.1940E-03 1.0711E-02 1.3390E-03 −1.1498E-03

IGABEM 1.1740E-04 1.3852E-03 2.1982E-03 1.0720E-02 1.3380E-03 −1.1556E-03

Relative difference 1.7065E-03 1.5183E-03 1.9143E-03 8.4026E-04 7.4683E-04 5.0444E-03
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6 Conclusion

This paper applied IGABEM to thermoelastic analysis. It takes full advantage of IGABEM in the
seamless integration of CAD and numerical analysis. IGABEM significantly reduces the meshing time
and improves the accuracy due to exact geometry representation. To address the domain integral term
arising from the thermal stress, the radial integration method was used in IGABEM to successfully
convert the domain integral to the boundary integral. In the case of a simple temperature field distribution
function, the radial integral is evaluated analytically, while for a complex distribution function, a
numerical integration is used. This method is also applicable to 3D thermal stress problems. The next
step is to extend this method to thermoelastic analysis for complicated 3D geometries with multi-patches
and the future work is to solve the thermal-structure coupling problems.
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