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Abstract: In this study, a new state-based peridynamic formulation is developed
for functionally graded Euler-Bernoulli beams. The equation of motion is
developed by using Lagrange’s equation and Taylor series. Both axial and trans-
verse displacements are taken into account as degrees of freedom. Four different
boundary conditions are considered including pinned support-roller support,
pinned support-pinned support, clamped-clamped and clamped-free. Peridy-
namic results are compared against finite element analysis results for transverse
and axial deformations and a very good agreement is observed for all different
types of boundary conditions.
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1 Introduction

Functionally Graded Materials (FGMs) are within the class of composite materials which have material
properties continuously varying from one surface to another surface. This eliminates the stress concentrations
that occur at the interface of neighbouring plies in laminated composites. Therefore, failure due to
delamination can be avoided. FGMs are used in different fields including mechanical, aerospace, nuclear
and civil engineering [1].

Due to the increase in usage of FGMs, numerous beam formulations for FGMs are available in the
literature. Amongst these, Li [2] developed a unified approach to analyze the static and dynamic
behaviours of functionally graded beams by including rotary inertia and shear deformation. Kadoli et al.
[3] performed static analysis of functionally graded beams using higher order shear deformation theory.
Kahrobaiyan et al. [4] proposed a size-dependent functionally graded Euler-Bernoulli beam model based
on strain gradient theory. Thai et al. [1] performed bending and free vibration analysis of functionally
graded beams using various higher-order shear deformation beam theories. Lu et al. [5] presented
elasticity solutions for bending and thermal deformations of functionally graded beams with various end
conditions using the state space-based differential quadrature method. Su et al. [6] developed the dynamic
stiffness method to investigate the free vibration behaviour of functionally graded beams. Simsek et al.
[7] performed linear dynamic analysis of an axially functionally graded beam with simply supported
edges and subjected to a moving harmonic load based on Euler-Bernoulli beam theory. Li et al. [8]
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investigated relationships between buckling loads of functionally graded Timoshenko and homogenous
Euler-Bernoulli beams. Sankar [9] presented an elasticity solution for a functionally graded Euler-
Bernoulli beam subjected to transverse loads. Birsan et al. [10] performed deformation analysis of
functionally graded beams by using direct approach which is based on the deformable curve model with
a triad of rotating directors attached to each point. Nguyen et al. [11] investigated static and free vibration
behaviour of axially loaded functionally graded beams based on the first-order shear deformation theory.
Filippi et al. [12] used 1D Carrera Unified Formulation (CUF) to perform static analysis of functionally
graded beams.

In this study, an alternative formulation, peridynamics [13–22], is utilized to analyze functionally graded
Euler-Bernoulli beams. Peridynamics is a non-local continuum mechanics formulation and it is very suitable
for failure analysis of structures due to its mathematical structure. Moreover, it has a length scale parameter
called “horizon” which provides a capability to represent non-classical deformation behaviour which are
usually seen in objects at nano-scale. The nonlocal operator introduced by Rabczuk et al. [23] and Ren
et al. [24] can significantly simplify the derivation of the strong form and weak form of peridynamics.
The novel peridynamic formulation specifically developed for functionally graded Euler-Bernoulli beams
is based on state-based peridynamics and the equation of motion is obtained utilising Lagrange’s
equation. Several different numerical cases are considered to demonstrate the capability of the current
approach for functionally graded Euler-Bernoulli beams subjected to different types of boundary conditions.

2 Euler-Bernoulli Beam Theory

A complete and adequate set of equation for linear theory of thin beams was developed by Euler and
Bernoulli, which is also known as Euler-Bernoulli beam theory. According to Euler-Bernoulli beam
theory, a transverse normal to the central axis of the beam in the undeformed state remains straight,
normal to the central axis and its length doesn’t change during deformation. Based on the assumptions of
the Euler-Bernoulli beam theory, the displacement field of any material point can be represented in terms
of the displacement field of the material points along the central axis in xz plane as

u x; zð Þ ¼ u x; 0ð Þ þ z � u x; 0ð Þ;z (1a)

w x; zð Þ ¼ w x; 0ð Þ (1b)

where u x; 0ð Þ and w x; 0ð Þ denote the displacement components of the material point along the central axis in
x- and z-directions, respectively. Thus, the strain-displacement relationship can be written as

exx ¼ @u0
@x

þ z
@h
@x

(2a)

cxz ¼ hþ @w0

@x
¼ 0 (2b)

ezz ¼ 0 (2c)

in which h ¼ @u0
@z represents the rotation angle of the material point along the central axis, which can be

expressed in terms of w0 by casting from Eq. (2b) as

h ¼ � @w0

@x
(3)

Therefore, eliminating h, the deformation in an Euler-Bernoulli beam can be easily represented in terms
of only two central axis displacement components u0, and w0 as
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exx ¼ @u0
@x

� z
@2w0

@x2
(4)

where u0 ¼ u x; 0ð Þ and w0 ¼ w x; 0ð Þ represent the displacement functions of the central axis of the beam,
respectively.

According to the Hooke’s Law, the stress function can be written as

rx ¼ E zð Þex ¼ E zð Þ @u0
@x

� z
@2w0

@x2

� �
(5)

where E zð Þ represents elastic (Young’s) modulus which is a function of z-coordinate.

The linear elastic strain energy density of the beam can be expressed as

W ¼ 1

2
rxex (6)

Substituting Eqs. (4) and (5) into (6) yields

W ¼ E zð Þ
2

@u0
@x

� �2

þ z2
@2w0

@x2

� �2

� 2z
@u0
@x

@2w0

@x2

" #
(7)

The average strain energy density of a material point can be reasonably calculated by integrating the
strain energy density function Eq. (7) through the transverse direction and divided by the thickness as

W ¼ 1

2h

Z h
2

� h
2

E zð Þdz � @u0
@x

� �2

þ
Z h

2

� h
2

E zð Þz2dz @2w0

@x2

� �2

� 2

Z h
2

� h
2

E zð Þzdz @u0
@x

@2w0

@x2

" #
(8)

3 Peridynamic Theory

Peridynamic (PD) theory is a reformulation of continuum mechanics by using integro-differential
equations instead of partial differential equations. The formulation does not contain any spatial
derivatives which prevents issues due to discontinuities especially in the displacement field as a result of
cracks. Material points in PD formulation can interact with each other in a non-local manner within a
domain of influence called “horizon”. The governing equations of peridynamics can be obtained by using
Lagrange equations [25] and can be written as

q€u x; tð Þ ¼
Z
H
f x0 � x;u0 � uð ÞdV 0 þ b x; tð Þ (9)

where q is the density, u is the displacement of the material point located at x, and €u is the acceleration of the
same material point. f represents the interaction (bond) force between two interacting material points located
at x and x0. b is the external body force acting on the material point located at x. Note that the material points
represented with x0 are the material points within the horizon,H of the material point located at x. To obtain a
closed-form solution for Eq. (9) is usually not possible and numerical methods are generally utilized.
Therefore, the discrete form of Eq. (9) for a particular material point k can be written as

q kð Þ€u kð Þ ¼
XN

j¼1
f kð Þ jð ÞV jð Þ þ b kð Þ (10)

where N is the number of material points inside the horizon of the material point k. The symbol j represents
the material points inside the horizon of the material point k and the bond force between the material points k
and j can be expressed as
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f kð Þ jð Þ ¼ t kð Þ jð Þ � t jð Þ kð Þ (11)

where t kð Þ jð Þ is the force that the material point j exerting on k and t jð Þ kð Þ is the force that the material point k
exerting on j as depicted in Fig. 1.

As mentioned earlier, the PD equations of motion can be obtained by using Lagrange’s equation which
can be written for the material point k as

d

dt

@L

@ _u kð Þ
� @L

@u kð Þ
¼ 0 (12)

where the Lagrangian term, L can be defined as the difference between the total kinetic energy, T and
potential energy, U of the system. The total potential energy of the system is the difference between the
total strain energy of the system and the total energy due to external forces which can be expressed as

U ¼
X

k
W kð Þ u 1kð Þ � u kð Þ; u 2kð Þ � u kð Þ; u 3kð Þ � u kð Þ; � � �

� �
V kð Þ �

X
k
b kð Þu kð ÞV kð Þ (13)

where W kð Þ is the strain energy density of the material point k and ik i ¼ 1; 2; 3; � � �ð Þ corresponds to the
material points inside the horizon of the material point k. On the other hand, the total kinetic energy of the
system can be calculated as

T ¼ 1

2

X
k
q kð Þ _u kð Þ � _u kð ÞV kð Þ (14)

where _u kð Þ is the velocity of the material point k. Utilising Eqs. (12) and (13), the Lagrangian term can be
written as

L ¼ T � U ¼ 1

2

X
k
q kð Þ _u kð Þ � _u kð ÞV kð Þ �

X
k
W kð Þ u 1kð Þ � u kð Þ; u 2kð Þ � u kð Þ; u 3kð Þ � u kð Þ; � � �

� �
V kð Þ

þ
X

k
b kð Þu kð ÞV kð Þ

(15)

Hence, by utilizing the Lagrange’s equation given in Eq. (12) and the Lagrangian given in Eq. (15), PD
equations of motion can be obtained as

Figure 1: Interaction force vector between material points k and j and the horizon concept [25]
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q kð Þ€u kð Þ �
X

i

@W kð Þ
@ u ikð Þ�u kð Þ
� �@ u ikð Þ �u kð Þ

� �
@u kð Þ

�
X

i

X
ik

@W ikð Þ

@ u ikkð Þ�u ikð Þ
� �@ u ikkð Þ�u ikð Þ

� �
@u kð Þ

þb kð Þ

2
64

3
75¼0 (16)

where the material point ik
k
is a material point inside the horizon of the material point ik . Since the material

point k is inside the horizon of the material point the material point ik , by using the following definition

@ u ikkð Þ � u ikð Þ
� �

@u kð Þ
¼ dikk k (17)

PD equations of motion can be simplified as

q kð Þ€u kð Þ ¼
X

j

@W kð Þ
@ u jð Þ � u kð Þ
� ��X

j

@W jð Þ
@ u kð Þ � u jð Þ
� � V jð Þ

V kð Þ
þ b kð Þ

¼
X

j

@W kð Þ
@ u jð Þ � u kð Þ
� � 1

V jð Þ
� @W jð Þ
@ u kð Þ � u jð Þ
� � 1

V kð Þ

 !
V jð Þ þ b kð Þ

(18)

which is equivalent to the PD equations of motion given in Eq. (9). Hence, the interaction force expressions
can be written as a function of strain energy density functions as

t kð Þ jð Þ ¼ 1

V jð Þ

@W kð Þ
@ u jð Þ � u kð Þ
� � (19a)

and

t jð Þ kð Þ ¼ 1

V kð Þ

@W jð Þ
@ u kð Þ � u jð Þ
� � (19b)

For a functionally graded beam, the components of the PD interaction forces in x- (axial) and z-
(transverse) directions can be written as

t kð Þ jð Þ ¼ t kð Þ jð Þ
x
t kð Þ jð Þ
z

� 	
¼ 1

V jð Þ

@W kð Þ
@ u jð Þ � u kð Þ
� �

@W kð Þ
@ w jð Þ � w kð Þ
� �

8>>><
>>>:

9>>>=
>>>;

(20a)

and

t jð Þ kð Þ ¼ t jð Þ kð Þ
x
t jð Þ kð Þ
z

� 	
¼ 1

V kð Þ

@W jð Þ
@ u kð Þ � u jð Þ
� �

@W jð Þ
@ w kð Þ � w jð Þ
� �

8>>><
>>>:

9>>>=
>>>;

(20b)

where u and w are the components of the displacement vector in x- and z-directions, respectively.

In order to express the strain energy density function for the material point k in non-local form, it is
necessary to transform all differential terms to their equivalent form of integration. To achieve this, first,
Taylor expansion of the axial displacement function u xð Þ can be written while ignoring higher order
terms as
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u xþ nð Þ � u xð Þ ¼ @u xð Þ
@x

n (21)

Squaring both sides of Eq. (21) and dividing all terms by the absolute value of n results in

u xþ nð Þ � u xð Þð Þ2
nj j ¼ @u xð Þ

@x

� �2

nj j (22)

Considering x as a constant point and integrating both sides of Eq. (22) over a symmetric domain,
�d; d½ �, gives
@u xð Þ
@x

� �2

¼ 1

d2

Z d

�d

u xþ nð Þ � u xð Þð Þ2
nj j dn (23)

Next, dividing both sides of Eq. (21) by n results in

u xþ nð Þ � u xð Þ
n

¼ @u xð Þ
@x

(24)

Considering x as a constant point and integrating both sides of Eq. (24) over a symmetric domain,
�d; d½ �, gives
@u xð Þ
@x

¼ 1

2d

Z d

�d

u xþ nð Þ � u xð Þ
n

dn (25)

Similarly, the transverse displacement function w xð Þ can be expanded using Taylor series while ignoring
higher order terms as

w xþ nð Þ � w xð Þ ¼ @w xð Þ
@x

nþ 1

2

@2w xð Þ
@x2

n2 þ 1

3!

@3w xð Þ
@x3

n3 (26)

Multiplying each term in Eq. (26) by
1

n2
and integrating over a symmetric domain, �d; d½ �, yields

@2w xð Þ
@x2

¼ 1

d

Z d

�d

w xþ nð Þ � w xð Þ
n2

dn (27)

Note that the transverse displacement function w xð Þ is related to the flexural deformation of the beam,
thus, multiplying Eq. (26) by 1

n2
is for the sake of ensuring the dimension of integrand of Eq. (27) in

accordance to the curvature, i.e., “1/length”.

Strain energy density expression can then be written in its non-local form by substituting Eqs. (23), (24),
and (27) into Eq. (8) as

W ¼ 1

2h

1

d2

"Z h
2

� h
2

EðzÞdz �
Z d

�d

u xþ nð Þ � u xð Þð Þ2
nj j dnþ

Z h
2

� h
2

E zð Þz2dz
Z d

�d

w xþ nð Þ � w xð Þ
n2

dn

� �2

�
Z h

2

� h
2

E zð Þzdz
Z d

�d

u xþ nð Þ � u xð Þ
n

dn
Z d

�d

w xþ nð Þ � w xð Þ
n2

dn

# (28)

It can also be written in discretized form for the material point k as
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W kð Þ ¼ 1

2h

"
1

d2A

Z h
2

� h
2

EðzÞdz �
X

i

u ikð Þ � u kð Þ
� �2

nðikÞðkÞ


 

 V ikð Þ þ

1

dAð Þ2
Z h

2

� h
2

E zð Þz2dz
X

i

w ikð Þ � w kð Þ
n2ðikÞðkÞ

V ikð Þ

 !2

� 1

dAð Þ2
Z h

2

� h
2

E zð Þzdz
X

i

u ikð Þ � u kð Þ
nðikÞðkÞ

V ikð Þ
X

i

w ikð Þ � w kð Þ
n2ðikÞðkÞ

V ikð Þ

# (29a)

where A represents the cross-sectional area of the beam. Similarly, the PD strain energy density function for
the material point j can be written by changing index as

W jð Þ ¼ 1

2h

"
1

d2A

Z h
2

� h
2

EðzÞdz �
X

i

u ijð Þ � u jð Þ
� �2

nðijÞðjÞ


 

 V ijð Þ þ 1

dAð Þ2
Z h

2

� h
2

E zð Þz2dz
X

i

w ijð Þ � w jð Þ
n2ðijÞðjÞ

V ijð Þ

 !2

� 1

dAð Þ2
Z h

2

� h
2

E zð Þzdz
X

i

u ijð Þ � u jð Þ
nðijÞðjÞ

V ijð Þ
X

i

w ijð Þ � w jð Þ
n2ðijÞðjÞ

V ijð Þ

� (29b)

Substituting Eqs. (29a) and (29b) into Eqs. (20a) and (20b) yields the PD force densities as

t kð Þ jð Þ
x ¼ 1

2h

2

d2A

Z h
2

�h
2

E zð ÞdA � u jð Þ � u kð Þ
n jð Þ kð Þ


 

 � 1

dAð Þ2
Z h

2

�h
2

E zð ÞzdA 1

n jð Þ kð Þ

X
i

w ikð Þ � w kð Þ
n2ikð Þ kð Þ

V ikð Þ

" #
(30a)

t jð Þ kð Þ
x ¼ 1

2h

2

d2A

Z h
2

�h
2

E zð ÞdA � u kð Þ � u jð Þ
n jð Þ kð Þ


 

 � 1

dAð Þ2
Z h

2

�h
2

E zð ÞzdA 1

n jð Þ kð Þ

X
i

w ijð Þ � w jð Þ
n2ijð Þ jð Þ

V ijð Þ

" #
(30b)

and

t kð Þ jð Þ
z ¼ 1

2h

1

n2jð Þ kð Þ

1

dAð Þ2 2

Z h
2

� h
2

E zð Þz2dz
X

i

w ikð Þ � w kð Þ
n2ikð Þ kð Þ

V ikð Þ �
Z h

2

� h
2

E zð Þzdz
X

i

u ikð Þ � u kð Þ
n ikð Þ kð Þ

V ikð Þ

" #
(31a)

t jð Þ kð Þ
z ¼ 1

2h

1

n2jð Þ kð Þ

1

dAð Þ2 2

Z h
2

� h
2

E zð Þz2dz
X

i

w ijð Þ � w jð Þ
n2ijð Þ jð Þ

V ijð Þ �
Z h

2

� h
2

E zð Þzdz
X

i

u ijð Þ � u jð Þ
n ijð Þ jð Þ

V ijð Þ

" #
(31b)

The derivation procedure of Eqs. (31) and (32) is given in Appendix C. The final peridynamic equation
of motion for a functionally graded Euler-Bernoulli beam can be obtained by inserting Eqs. (30) and (31) into
Eq. (10) as

q kð Þ€u kð Þ ¼ 1

h

2

d2A

Z h
2

� h
2

EðzÞdz
X

j

u jð Þ � u kð Þ
n jð Þ kð Þ


 

 V jð Þ

� 1

2h

1

dA

� �2 Z h
2

� h
2

E zð Þzdz
X

j

1

n jð Þ kð Þ

X
i

w ikð Þ �w kð Þ
n2ikð Þ kð Þ

V ikð Þ þ
X

i

w ijð Þ �w jð Þ
n2ijð Þ jð Þ

V ijð Þ

 !
V jð Þ þ b kð Þ

x (32a)
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q kð Þ€w kð Þ ¼ 1

h

1

dA

� �2 Z h
2

� h
2

E zð Þz2dz
X

j

1

n2ðjÞðkÞ

X
i

w ikð Þ �w kð Þ
n2ðikÞðkÞ

V ikð Þ �
X

i

w ijð Þ �w jð Þ
n2ðijÞðjÞ

V ijð Þ

 !
V jð Þ

� 1

2h

1

dA

� �2 Z h
2

� h
2

E zð Þzdz
X

j

1

n2jð Þ kð Þ

X
i

u ikð Þ � u kð Þ
n ikð Þ kð Þ

V ikð Þ �
X

i

u ijð Þ � u jð Þ
n ijð Þ jð Þ

V ijð Þ

 !
V jð Þ þ b kð Þ

z (32b)

4 Boundary Conditions

As mentioned earlier, PD equations of motion are in the form of integro-differential equations which are
different than the partial differential equations of Classical Continuum Mechanics (CCM). Application of
boundary conditions in PD is also different than the ones in CCM and they are applied over a volume. In
this section, two common boundary condition types for beams are considered and the procedure of
application of such boundary conditions in PD framework is explained in detail.

4.1 Clamped Boundary Condition
According to Euler-Bernoulli Beam theory, the clamped boundary condition can be represented by

constraining the transverse displacement, w and the rotation, h at the boundary which can be defined as

w ¼ 0 and h ¼ @w

@x
¼ 0 (33)

In PD framework, such boundary condition can be achieved by introducing a fictitious domain outside
the boundary with a length equal to two times of the horizon size, d so that all material points inside the actual
solution domain have a complete horizon. In this study, the horizon size is chosen as d ¼ 3Dxwhere Dx is the
distance between material points. Therefore, there are six additional material points inside the fictitious
boundary region.

As shown in Fig. 2, clamped boundary conditions given in Eq. (33) can be expressed in PD form by
imposing mirror images of the transverse displacements for the six material points in the actual and
fictitious domains next to the boundary as

w ið Þ ¼ w i�ð Þ for i ¼ 1; 2; . . . ; 6 (34a)

and

Figure 2: Application of clamped boundary condition
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w 1ð Þ ¼ w 1�ð Þ ¼ 0 (34b)

In addition, the axial displacement should also be constrained at the clamped boundary as

u ¼ 0 (35)

which can be expressed in PD framework by imposing anti-mirror values of the axial displacements of the six
material points in the actual and fictitious domains as

u i�ð Þ ¼ �u ið Þ for i ¼ 1; 2; . . . ; 6 (36)

4.2 Simply Supported Boundary Condition
According to Euler-Bernoulli Beam theory, the simply supported boundary condition can be represented

by constraining transverse displacement, w and curvature at the boundary which can be defined as

w ¼ 0 and j ¼ @2w

@x2
¼ 0 (37)

As in the clamped boundary condition, simply supported boundary condition in PD framework can be
achieved by introducing a fictitious domain outside the boundary with a length equal to two times of
the horizon size, d. Moreover, as shown in Figs. 3a and 3b, the constraint conditions given in Eq. (37)
can be satisfied by imposing anti-symmetrical transverse displacement fields to the six material points in
the actual and fictitious domains next to the boundary which can be defined as

Figure 3: Application of simply supported boundary condition, (a) pinned support, (b) roller support
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w ið Þ ¼ �w i�ð Þ for i ¼ 1; 2; . . . ; 6 (38)

However, for axial deformation, the application of simply supported boundary condition is different
depending on the pinned support and roller support conditions.

For pinned support condition, the axial deformations can be constrained by imposing anti-symmetrical
displacement fields to the six material points in the actual and fictitious material domains next to the
boundary, as shown in Fig. 3a, which can be defined as

u i�ð Þ ¼ �u ið Þ for i ¼ 1; 2; . . . ; 6 (39)

On the other hand, the implementation of roller support boundary condition requires symmetrical
displacement field adjacent to the boundary as (see Fig. 3b)

u i�ð Þ ¼ u ið Þ for i ¼ 1; 2; . . . ; 6 (40)

5 Numerical Results

To verify the validity of the PD formulation for functionally graded Euler-Bernoulli beams, the PD
solutions are compared with the corresponding finite element (FE) analysis results. In this study, the
functionally graded material property is chosen as Young’s Modulus, E zð Þ, and it is assumed to vary
linearly through the thickness as

E zð Þ ¼ Et � Ebð Þ z
h
þ 1

2
Et þ Ebð Þ GPað Þ (41)

where Et and Eb denote the Young’s modulus of the top and bottom surfaces of the beam, and h donates the
total thickness of the beam as shown in Fig. 4. The procedure to calculate surface correction factors is
presented in Appendix A. All numerical examples considered in this section are for statics analysis and
the numerical solution procedure is given in Appendix B. For all numerical examples, the horizon size is
chosen as d ¼ 3Dx where Dx is the distance between material points.

5.1 Functionally Graded Beam Subjected to Pinned Support-Roller Support Boundary Condition
A simply supported functionally graded beam with length, width and thickness of L ¼ 1 m, b ¼ 0:01 m

and h ¼ 0:05 m, is considered as shown in Fig. 5. The beam is constrained by pinned support and roller
support at left and right ends, respectively. The Young’s modulus of the top and bottom surfaces are
Et ¼ 200 GPa and Eb ¼ 100 GPa, respectively. The model is discretized into one single row of material
points along the thickness and the distance between material points is Dx ¼ 1=101 m. A fictitious region
is introduced outside the two ends as the external boundaries with a width of 2d. The beam is subjected

Figure 4: Functionally graded Euler-Bernoulli beam
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to a concentrated transverse load of Pz ¼ 1 N at the center of the beam. The load is converted to a body load
of b ¼ Pz

DV ¼ 202000 N=m3 and it is subjected to central material points of the model.

The FE model of the beam is created by using the SHELL181 element in ANSYS with dimensions of
1� 0:05� 0:01 m3. To model the functionally graded beam, the model is divided into 50 layers by varying
homogeneous material properties through the thickness. The Young’s modulus varies linearly over the
thickness from the first layer E1 ¼ 101 GPa to the last layer E50 ¼ 199 GPa, as shown in Fig. 6. The
Poisson’s ratio, m ¼ 0, is applied in ANSYS for the sake of eliminating the Poisson’s effect.

The PD and FE transverse and axial displacements are compared in Fig. 7. There is a very good
agreement between PD and FE results. These results verify the accuracy of the current PD formulation
for a functionally graded beam subjected to pinned support–roller support boundary condition.

Figure 6: Variation of the Young’s modulus in thickness direction for the FE model

Figure 5: Functionally graded beam subjected to Pinned Support-Roller Support boundary condition

Figure 7: Comparison of PD and FE results; (a) transverse displacement, (b) axial displacement
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5.2 Functionally Graded Beam Subjected to Pinned Support-Pinned Support Boundary Condition
In the second case, the functionally graded beam considered in the previous section is subjected to

pinned support at both edges as shown in Fig. 8. Moreover, a horizontal load of Px ¼ 1 N is acting at the
center of the beam in addition to the transverse load of Pz ¼ 1 N.

PD results for transverse and axial deformations are compared against FE results as shown in Fig. 9 and
there is a very good agreement between the two approaches.

5.3 Functionally Graded Beam Subjected to Clamped-Clamped Boundary Condition
In the third case, the functionally graded beam is subjected to clamped–clamped boundary condition as

shown in Fig. 10. A transverse load of Pz ¼ 1 N is applied at the centre of the beam. As demonstrated in
Fig. 11, a very good match between PD and FE results is obtained for this particular condition.

5.4 Functionally Graded Beam Subjected to Clamped-Free Boundary Condition
In the final numerical case, the functionally graded beam is subjected to clamped–free boundary

condition as shown in Fig. 12. A transverse load of Pz ¼ 1 N is exerted at the free edge of the beam. As
shown in Fig. 13, a very good agreement between PD and FE results is observed which shows that
current PD formulation can capture accurate deformation behaviour for functionally graded beams
subjected to different types of boundary conditions and loading.

Figure 8: Functionally graded beam subjected to Pinned Support-Pinned Support boundary condition

Figure 9: Comparison of PD and FE results; (a) transverse displacement, (b) axial displacement
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Figure 10: Functionally graded beam subjected to Clamped-Clamped boundary condition

Figure 11: Comparison of PD and FE results; (a) transverse displacement, (b) axial displacement

Figure 12: Functionally graded beam subjected to Clamped-Free boundary condition

Figure 13: Comparison of PD and FE results; (a) transverse displacement, (b) axial displacement
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6 Conclusions

In this study, a new state-based peridynamic formulation was presented for functionally graded Euler
beams. The equation of motion was derived by using Lagrange’s equations and utilizing Taylor series. To
verify the accuracy of the current formulation, four different boundary conditions were considered
including pinned support-roller support, pinned support-pinned support, clamped-clamped and clamped-
free. For all these boundary conditions, peridynamic results for transverse and axial displacements were
compared against finite element analysis results and a very good agreement was obtained between the
two approaches. This shows that current peridynamics formulation can capture accurate deformation
behaviour for functionally graded beams subjected to different types of boundary conditions and loading.
The developed formulation can be further extended to analyze Kirchhoff plates.
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Appendix A. Surface Correction Factor

As derived above, the strain energy density stored in the body according to the classical continuum
mechanics can be written as

WCM x kð Þ
� � ¼ 1

2h

Z h
2

� h
2

E zð Þdz � e2kð Þ þ
Z h

2

� h
2

E zð Þz2dz � j2kð Þ � 2

Z h
2

� h
2

E zð Þzdz � e kð Þj kð Þ

" #
(A1)

where e kð Þ ¼ @u x kð Þð Þ
@x and j kð Þ ¼ @2w x kð Þð Þ

@x2 represent the strain and curvature, respectively. Note that the strain
energy density function is composed of three terms. The first term occurs due to pure axial deformation, the
second term arises due to pure flexural deformation, and the last term is due to the coupled effect. Thus,
Eq. (A1) can be written separately into three parts as

WCM x kð Þ
� � ¼ WI

CM x kð Þ
� �þWII

CM x kð Þ
� �þWIII

CM x kð Þ
� �

(A2)

where

WI
CM x kð Þ
� � ¼ 1

2h

Z h
2

� h
2

E zð Þdz � e2kð Þ (A3a)
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WII
CM x kð Þ
� � ¼ 1

2h

Z h
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� h
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E zð Þz2dz � j2kð Þ (A3b)

WIII
CM x kð Þ
� � ¼ � 1

h

Z h
2

� h
2

E zð Þzdz � e kð Þj kð Þ (A3c)

Their counterpart in PD theory can be expressed as
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PD x kð Þ
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X
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Considering the beam is undergoing a homogeneous deformation in terms of axial and flexure that

e xð Þ ¼ e0 and j xð Þ ¼ j0 (A5)

this can be achieved by enforcing displacement fields as

u xð Þ ¼ e0x and w xð Þ ¼ x2

2
j0 (A6)

Thus, the strain energy density functions according to classical continuum mechanics become
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CM x kð Þ
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� h
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E zð Þdz � e20 (A7a)
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and their counterpart PD functions are
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WIII
PD x kð Þ
� � ¼ � 1

2h

1

dAð Þ2
Z h

2

� h
2

E zð Þzdz
X

i

x ikð Þ � x kð Þ
n ikð Þ kð Þ

e0V ikð Þ
X

i

x ikð Þ
� �2 � x kð Þ

� �2
2n2ikð Þ kð Þ

j0V ikð Þ (A8c)

Therefore, the surface correction factors for the material point k can be calculated as

gIkð Þ ¼
WI

CM x kð Þ
� �

WI
PD x kð Þ
� � (A9a)

gIIkð Þ ¼
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PD x kð Þ
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and
gIIIkð Þ ¼
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CM x kð Þ
� �

WI
PD x kð Þ
� � (A9c)

These three correction factors will be used for their corresponding terms in the equation of motion to
reduce the errors due to surfaces and numerical integration.

Appendix B. Numerical Solution Procedure

The numerical solution for statics analysis is obtained by eliminating the inertial forces. Therefore, the
PD governing equations given in Eqs. (32a) and (32b) will be reduced as:
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Eqs. (B1a) and (B1b) can be written in matrix form as:

K½ � Uf g ¼ � Bf g (B2)

where K½ �, Uf g and Bf g represent stiffness matrix, displacement and body force vectors, respectively.
Thus, displacements can be obtained from Eq. (B2) by considering the boundary conditions as explained
in Section 4.

Appendix C. Procedure to Obtained Peridynamic Interaction Forces

The relationship between the peridynamic interaction force and the strain energy density is given in
Eq. (19a) as
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where the strain energy density for the material point k is given in Eq. (29a) as
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The x-component of the peridynamic interaction force can be obtained as:
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The first summation term on the right hand side of Eq. (C3) can be simplified as:
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The second summation term on the right hand side of Eq. (C3) can be similarly simplified as:
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Inserting Eqs. (C4a) and (C4b) into Eq. (C3) yields Eq. (30a) as:
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Other expressions of peridynamic interaction forces given in Eqs. (30a), (31a) and (31b) can obtained
similarly.
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