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Abstract: In the present work, a novel machine learning computational investigation is 
carried out to accurately predict the solubility of different acids in supercritical carbon 
dioxide. Four different machine learning algorithms of radial basis function, multi-layer 
perceptron (MLP), artificial neural networks (ANN), least squares support vector machine 
(LSSVM) and adaptive neuro-fuzzy inference system (ANFIS) are used to model the 
solubility of different acids in carbon dioxide based on the temperature, pressure, hydrogen 
number, carbon number, molecular weight, and the dissociation constant of acid. To 
evaluate the proposed models, different graphical and statistical analyses, along with novel 
sensitivity analysis, are carried out. The present study proposes an efficient tool for acid 
solubility estimation in supercritical carbon dioxide, which can be highly beneficial for 
engineers and chemists to predict operational conditions in industries. 
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1 Introduction 
In recent years, supercritical fluid has become one of the interests of chemical engineers 
and chemists as a novel and extensive applicable technology. The synthesis and generating 
of nanomaterials and extraction process of different materials are the popular applications 
of supercritical fluids [Inomata, Honma, Imahori et al. (1999); Stassi and Bettini (2000); 
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Ohde, Hunt and Wai (2001); Celso, Triolo and Mcclain (2002); Uzer, Akman and Sarker 
(2006); Munshi and Bhaduri (2009); Nahar and Sarker (2012); Zhang, Heinonen and 
Levanen (2014); Knez and Cor (2017); Zhao, Zhang, Zhao et al. (2017); Belghait, Si-
Moussa, Laidi et al. (2018); Gao, Daryasafar, Lavasani et al. (2018)]. One of the 
supercritical fluids which have wide applications in the extraction of various metals from 
solid and liquid phases is carbon dioxide [Erkey (2000); Sunarso and Ismadji (2009); Lin, 
Liu, Maiti et al. (2014)]. Due to non-flammability, nontoxicity, low cost, and critical points 
(304.2 K and 7.38 MPa) of carbon dioxide, the supercritical carbon dioxide becomes one 
of the interesting and applicable supercritical fluids in industries [Ghaziaskar and 
Nikravesh (2003); Bovard, Abdi, Nikou et al. (2017)]. The viscosity and density of 
supercritical carbon dioxide are known as two important transport properties of the fluids 
which are affected by pressure and temperature [Choubin, Abdolshahnejad and Moradi 
(2020); Shamshirband, Hadipoor and Baghban (2019)]. Another dominant thermos 
physical property of supercritical carbon dioxide is the solubility of different materials in 
supercritical carbon dioxide which is a function of various factors such as polarity, 
molecular weight, pressure, temperature, and vapor pressure [Huang, Chiew, Lu et al. 
(2005); Ghaziaskar and Kaboudvand (2008)]. 
One types of the materials which have a solubility in supercritical carbon dioxide are acids, 
the nanofluoropentanoic acid which is known as one type of perfluorocarboxylic acids, has 
extensive applications in the production of paints additives, polymers, foams, and stain 
repellents but because of their high ability instability, they are harmful to environment 
[Richter and Dibble (1983); Moody and Field (1999); Hintzer, Löhr, killich et al. (2004); 
Fei and Olsen (2011); Hubbard, Guo, Krebs et al. (2012); Dartiguelongue, Leybros and 
Grandjean (2016); Hintzer, Juergens, Kaempf et al. (2016)]. Adrien Dartiguelongue and 
coworkers studied solubility of perfluoropentanoic acid in supercritical carbon dioxide in 
the wide range of temperature and pressure and also proposed some density-based models 
to predict solubility in terms of density of supercritical fluids [Dartiguelongue, Leybros 
and Grandjean (2016)]. Gurdial et al. [Gurdial and Foster (1991)] constructed dynamic 
setup to study solubility of o-, m- and p-hydroxybenzoic acid in the supercritical carbon 
dioxide in the wide range pressure of 80-205 mbar and temperature range of 308.15-328.15 
K and correlated the measured solubility as a function of density. Kumoro measured the 
solubility of 2R,3β-dihydroxyurs-12-en-28-oic acid which is called Corosolic acid 
dynamically in a different range of pressure 8 to 30 MPa and five different temperatures of 
308.15, 313.15, 323.15, and 333.15 K. Kumoro used various density-based models to 
correlate the experimental data [Kumoro (2011)]. 
Sahihi et al. [Sahihi, Ghaziaskar and Hajebrahimi (2010)] measured the solubility of 
Maleic acid in supercritical carbon dioxide by utilization of static experimental setup. The 
measured data belongs to Maleic acid in a pressure range of 7 to 300 bar and temperature 
of 348.15 K. Ghaziaskar and coworkers used a continuous flow set up to study solubility 
of tracetin, diacentin and acetic acid in supercritical carbon dioxide in the pressure range 
of 70 to 180 bar and various temperature of 313, 333 and 348 K and they also compared 
the obtained solubilities for different acids [Ghaziaskar, Afsari, Rezayat et al. (2017)]. 
Helena Sovova adjusted the Adachi-Lu equation based on the solubility of Ribes nigrum 
(blackcurrant) and Vitis vinifera (grape-vine) in supercritical carbon dioxide. They 
concluded the Adachi-Lu equation has enough accuracy in forecasting solubility of 
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triglycerides in carbon dioxide [Sovova, Zarevucka, Vacek et al. (2001)]. 
The issue of prediction of various acids solubility in supercritical carbon dioxide and phase 
equilibrium investigation of supercritical carbon dioxide and different materials are the 
important topics in chemical engineering research [Hemmati-Sarapardeh and Hajirezaie 
(2020)]. According to the hardships of experimental studies such as special tools and 
procedure which are needed, in the present work, the data-driven methods and advanced 
machine learning models have been considered as the reliable solutions, e.g., [Anitescu, 
Atroshchenko, Alajlan et al. (2019); Zarei, Razavi, Baghban et al. (2019); Mosavi, 
Shamshirband, Salwana et al. (2019); Mosavi, Salimi and Faizollahzadeh (2019); Najafi, 
Faizollahzadeh, Mosavi et al. (2018)]. In this paper four different algorithms, Radial basis 
function artificial neural network (RBF-ANN), Multi-layer Perceptron artificial neural 
network (MLP-ANN), Least squares support vector machine (LSSVM) and Adaptive 
neuro-fuzzy inference system (ANFIS) are developed to predict the solubility of different 
types of acid in supercritical carbon dioxide based on the various parameters such as 
structure of acid, pressure and temperature. 

2 Methodology 
2.1 Experimental data gathering 
The dominant purpose of the present paper is the development of accurate and simple 
models to forecast solubility of different acids in supercritical carbon dioxide. Due to this, 
the required actual data for training and testing phases of models were assembled from the 
reliable source existed in literature [Gurdial and Foster (1991); Sovova, Zarevucka, Vacek 
et al. (2001); Sparks and Hernandez (2007); Tian, Jin, Gua et al. (2007); Sparks, Estevez, 
Hernandez et al. (2008); Kumoro (2011); Dartiguelongue, Leybros and Grandjean (2016)]. 
This collection of data contains the 188 acid solubility data points in terms of pressure, 
temperature, acid dissociation constant, molecular weight, number of carbon and hydrogen 
of acid. The details of data collection are reported in Tabs. S1 and S2. These details include 
acid name, acid dissociation constant, pressure and temperature ranges, and the number of 
utilized data points for each acid. Also, for clarification of this experimental dataset, the 
structure, linear formula and molecular weight of utilized acids are presented in Tab. S3. 
These acids include Perfluoropentanoic acid, o-Hydroxybenzoic Acid, Corosolic Acid, 
Maleic Acid, Ferulic Acid, Azelaic Acid, p-aminobanzoic acid, and Nonanioc acid. 

2.2 Artificial neural networks 
Artificial neural networks have amazing similarities to the performance and structure of 
neuron units in the brain system [Smith (1993); Bas and Boyaci (2007)]. These 
computational blocks construct different types of a layer such as input, output, and hidden 
layers. In the layers, there are transfer functions or activation function which organize the 
process of training in the algorithm. Each neuron has specific weight and bias values that 
control the optimization process. The artificial neural networks have the ability to trace a 
nonlinear form relationship between input and output parameters. Due to this ability, 
artificial neural networks have a widespread application in different industries and sciences. 
Artificial neural networks can be classified in different forms, such as a recurrent neural 
network (RNN), radial basis function, and multilayer perceptron [Movagharnejad and 
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Mehdizadeh (2011); Abdi-Khanghah, Bemani and Naserzadeh (2018); Zamen (2019)]. In 
the present work, the MLP and RBF network are utilized. 

2.3 Least squares support vector machine 
Vapnik [Vapnik (1998)] proposed the support vector machine based on statistical learning 
theory. This computational intelligence can be used for regression and classification 
purposes [Faizollahzadeh, Najafi, Alizamir et al. (2018); Riahi-Madvar and Dehghani 
(2019)]. However, there are many advantages to this method, but there is a hardship in its 
computational procedure because of quadratic programming. The least-squares SVM 
(LSSVM) is proposed as a novel type of SVM to solve this problem. This novel approach 
organized linear equations for computation and optimization [Cortes and Vapnik (1995); 
Suykens and Vandewalle (1999, 2001); Zamen (2019)]. 
By considering a dataset of (xi, yi)n, the LSSVM regression prediction is utilized to estimate 
a function, where xi and yi are known as input and target parameters and n represent the 
number of data which utilized in training phase [Wang (2005)]. The linear regression is 
formulated, such as the following: 
𝑦𝑦 = 𝜔𝜔𝑇𝑇φ(x) + b                                                                                                                 (1)  
where φ(x) denotes a nonlinear function that has different forms such as polynomial, linear, 
sigmoid, and radial basis functions. Also, ω and b denote the weights and determined 
constant-coefficient in the training process. A new optimization problem can be defined 
based on LSSVM approach [Baghban, Bahadori, Lemraski et al. (2016); Baghban, 
Namvarrechi, Phung et al. (2016); Ahmadi, Baghban, Salwana et al. (2019)]: 
𝑚𝑚𝑚𝑚𝑚𝑚
𝜔𝜔,𝑏𝑏,𝑒𝑒

𝐽𝐽 (𝜔𝜔, 𝑒𝑒) = 1
2
𝜔𝜔𝑇𝑇𝜔𝜔 + 1

2
𝛾𝛾 ∑ 𝑒𝑒𝑘𝑘2𝑁𝑁

𝑘𝑘=1                                                                                  (2) 

Which is related to the below constraints: 
𝑦𝑦𝑘𝑘 = 𝜔𝜔𝑇𝑇𝜑𝜑(𝑥𝑥𝑘𝑘) + 𝑏𝑏 + 𝑒𝑒𝑘𝑘                    k=1,2,…,N                                                              (3) 
The Lagrangian equation is constructed to solve the optimization problem: 
L(ω, b, e,α) = 𝐽𝐽 (𝜔𝜔, 𝑒𝑒) − ∑ 𝛼𝛼𝑘𝑘{𝜔𝜔𝑇𝑇𝜑𝜑(𝑥𝑥𝑘𝑘)𝑁𝑁

𝑘𝑘=1 + 𝑏𝑏 + 𝑒𝑒𝑘𝑘 − 𝑦𝑦𝑘𝑘}                                          (4)  
where ϒ and ek are known as regularization parameter and regression error. The αk 
represents the support value. To solve the above problem, the above equation is 
differentiated with respect to the different parameters: 
𝜕𝜕𝜕𝜕(ω,b,e,α)

𝜕𝜕𝜕𝜕
= 0 → 𝜔𝜔 = ∑ 𝛼𝛼𝑘𝑘𝑁𝑁

𝑘𝑘=1 𝜑𝜑(𝑥𝑥𝑘𝑘)                                                                               (5) 
𝜕𝜕𝜕𝜕(ω,b,e,α)

𝜕𝜕𝜕𝜕
= 0 → ∑ 𝛼𝛼𝑘𝑘𝑁𝑁

𝑘𝑘=1 = 0                                                                                           (6) 
𝜕𝜕𝜕𝜕(ω,b,e,α)

𝜕𝜕𝑒𝑒𝑘𝑘
= 0 → 𝛼𝛼𝑘𝑘 = 𝛾𝛾𝑒𝑒𝑘𝑘,     k=1,2,…,N                                                                        (7) 

𝜕𝜕𝜕𝜕(ω,b,e,α)
𝜕𝜕𝛼𝛼𝑘𝑘

= 0 → 𝑦𝑦𝑘𝑘 = 𝜔𝜔𝑇𝑇𝜑𝜑(𝑥𝑥𝑘𝑘) + 𝑏𝑏 + 𝑒𝑒𝑘𝑘       k=1,2,…,N                                               (8) 

Karush-Kuhn-Trucker matrix can be obtained by elimination of ω and e [Cortes and Vapnik 
(1995); Baylar, Hanbay and Batan (2009); Mehdizadeh and Movagharnejad (2011)]: 

� 0 1𝑣𝑣𝑇𝑇

1𝑣𝑣 𝛺𝛺 + 𝛾𝛾−1𝐼𝐼
� �𝑏𝑏𝛼𝛼� = �0𝑦𝑦�                                                                                                 (9) 
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where 𝑦𝑦 = [𝑦𝑦1 …𝑦𝑦𝑁𝑁]𝑇𝑇, 𝛼𝛼 = [𝛼𝛼1 …𝛼𝛼𝑁𝑁]𝑇𝑇, 1𝑁𝑁 = [1 … 1]𝑇𝑇, and I represent the identity matrix. 
𝛀𝛀kl is 𝜑𝜑(𝑥𝑥𝑘𝑘)𝑇𝑇𝜑𝜑(𝑥𝑥𝑙𝑙) = 𝐾𝐾(𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑙𝑙). K(xk,xl) is known as kernel function which can be in 
different forms of linear, polynomial and radial basis function forms [Gunn (1998)]. The 
estimating function form of LSSVM algorithm can be expressed as following formulation 
[Muller, Mika, Ratsch et al. (2001); Rostami, Baghban and Shirazian (2019)]: 
𝑦𝑦(𝑥𝑥) = ∑ 𝛼𝛼𝑘𝑘𝑁𝑁

𝑘𝑘=1 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑘𝑘) + 𝑏𝑏                                                                                          (10) 

2.4 Adaptive neuro-fuzzy inference system (ANFIS) 
In Adaptive neuro-fuzzy inference system, which is called the ANFIS algorithm, in brief, 
has five different layers. The aforementioned approach was developed by Jang et al. [Jang, 
Sun and Mizutani (1997)]. The hybrid learning approach and backpropagation are known 
as fundamentals of training of conventional ANFIS algorithm [Qasem, Samadianfard and 
Nahand (2019); Rezakazemi, Mosavi and Shirazian (2019)]. The ANFIS algorithm was 
born base on fuzzy logic and neural network advantages and also the different evolutionary 
methods such as Imperialist Competitive Algorithm (ICA), Particle Swarm Optimization 
(PSO) and Genetic algorithm (GA) can be used to reach the optimal structure of ANFIS 
algorithm [Afshar, Gholami and Asoodeh (2014), Khosravi, Nunes, Asad et al. (2018); 
Razavi, Sabaghmoghadam, Bemani et al. (2019)]. The ANFIS structure is demonstrated in 
Fig. 1. As shown, there are two input variables and one output. 

 
Figure 1: Typical construction of ANFIS approach 

In the first layer, the linguistic terms are built based on input data. The Gaussian 
membership function is applied to organize these linguistic terms. The Gaussian function 
can be shown as the following formulation [Ahangari, Moeinossadat and Behnia (2015); 
Bahadori, Baghban, Bahadori et al. (2016)]: 

𝑂𝑂𝑖𝑖1 = 𝛽𝛽(𝑋𝑋) = 𝑒𝑒𝑒𝑒𝑒𝑒(−12 (𝑋𝑋−𝑍𝑍)2

𝜎𝜎2 )                                                                                             (11) 
where Z and σ denote the Gaussian parameters. 
The next layer, shown as Π multiplies the incoming signals and contains the weighted terms 
which are related to rules: 
𝑂𝑂𝑖𝑖2 = 𝑊𝑊𝑖𝑖 = 𝛽𝛽𝐴𝐴𝐴𝐴(𝑋𝑋).𝛽𝛽𝐵𝐵𝐵𝐵(𝑋𝑋)                                                                                              (12) 
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The third layer the shown as NN, it averages of determined weights are evaluated such as 
the following formulation: 

𝑂𝑂𝑖𝑖3 = 𝑊𝑊𝑖𝑖
∑𝑊𝑊𝑖𝑖

                                                                                                                          (13) 

Then in the next layer, the average weight values are multiplied to the related function such 
as below: 
𝑂𝑂𝑖𝑖4 = 𝑊𝑊𝚤𝚤���𝑓𝑓𝑖𝑖 = 𝑊𝑊𝚤𝚤���(𝑚𝑚𝑖𝑖𝑋𝑋1 + 𝑛𝑛𝑖𝑖𝑋𝑋2 + 𝑟𝑟𝑖𝑖)                                                                                (14) 
where, m, n, and r represent the resulting indexes.  
At last, the fifth layer consists of the summation of previous layer outputs: 

𝑂𝑂𝑖𝑖5 = 𝑌𝑌 = ∑ 𝑊𝑊𝚤𝚤���𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑊𝑊1����𝑓𝑓1 + 𝑊𝑊2����𝑓𝑓2 = ∑𝑊𝑊𝑖𝑖𝑓𝑓𝑖𝑖
∑𝑊𝑊𝑖𝑖

                                                                    (15) 

2.5 Particle swarm optimization (PSO) 
The combination of random probability distribution approach and generation of the 
population constructed the particle swarm optimization algorithm. Eberhart et al. 
introduced the PSO algorithm that comes from the social behavior of birds and developed 
it to solve nonlinear function optimization problems [Kennedy (2010)]. This strategy has 
special similarities with other optimization approaches such as a genetic algorithm that is 
constructed a base on a random solution population. Each particle can be known as a 
probable solution to the problem. A random population of particles created in search space 
to relate in an optimum system. Pbest is known as the best solution which can be obtained 
from this strategy for a particle. Also, gbest represents the global best solution determined 
by the swarm. The particle moves in the space by time iterations, and the next iteration 
velocity is determined by using gbest, Pbest and current velocity [Eberhart and Kennedy 
(1995)]. The P’th particle can be determined as follow: 
𝑋𝑋𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1 = 𝑋𝑋𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1                                                                                               (16) 
The particle velocity is updated by the following expression: 

𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑐𝑐1𝑟𝑟1 �𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)� + 𝑐𝑐2𝑟𝑟2 �𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑑𝑑(𝑡𝑡) − 𝑋𝑋𝑖𝑖𝑖𝑖(𝑡𝑡)�     (17)       

w, c, and r are inertia weight, learning rate, and random number respectively [Haratipour, 
Baghban, Mohammadi et al. (2017)].   

3 Results and discussion  
In the present study, the determined structure of the MLP-ANN algorithm utilizes log-sigmoid, 
and linear activation functions the hidden and output layers respectively. By utilization of trial 
and error, the optimum number of neurons in hidden layers is determined as 7 to reach the 
best structure of the MLP-ANN algorithm. The performance of Levenberg Marquardt training 
of MLP-ANN algorithm based on the mean square error is shown in Fig. 2. 
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Figure 2: Trained MLP-ANN model by Levenberg Marquardt algorithm 

 In the RBF-ANN algorithm, the radial basis function (RBF) is utilized for hidden layers. 
According to information in the literature, the hidden layer neurons for RBF-ANN can be 
supposed one-tenth of training data points. The training process of the RBF-ANN 
algorithm base on MSE has been reported in Fig. 3.  

 
Figure 3: Trained RBF-ANN approach by Levenberg Marquardt algorithm 

In this work, a particle swarm optimization approach is applied to train the best structure 
of the ANFIS algorithm. Fig. 4 demonstrates the gained root mean squared error (RMSE) 
of estimated and experimental acid solubility values in the training step. 
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Figure 4: Performance of trained ANFIS model 

The optimum structure of ANFIS can be recognized by the RMSE value of 0.003 after 
1000 of iteration steps. Trained membership functions of the proposed ANFIS model are 
also shown in Fig. 5 for each cluster.  
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Figure 5: Trained membership function parameters 

 
Figure 6: Schematic demonstration of trained LSSVM algorithm 
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The RBF kernel function due to its high degree of performance is utilized to construct the 
LSSVM algorithm. The LSSVM algorithm has two tuning parameters, σ2, and ϒ which are 
determined by utilizing the PSO algorithm. The schematic demonstration of the LSSVM 
algorithm is depicted in Fig. 6. The details of predicting models are summarized in Tab. 1. 
These details can be helpful in the development of models for the prediction of acid 
solubility in carbon dioxide. 

Table 1: Details of proposed models 
Type comment/value Type comment/value 

LSSVM ANFIS 

Kernel function RBF Membership function Gaussian 

σ2 0.80321 No. of membership function parameters 112 

ϒ 12893.2264 No. of clusters 8 

Number of data utilized for training 141 Number of data utilized for training 141 

Number of data utilized for testing 47 Number of data utilized for testing 47 

Population size 85 Population size 50 

Iteration 1000 Iteration 1000 

C1 1 C1 1 

C2 2 C2 2 
 
MLP-ANN RBF-ANN 

No. input neuron layer 6 No. input neuron layer 6 

No. hidden neuron layer 8 No. hidden neuron layer 50 

No. output neuron layer 1 No. output neuron layer 1 

Hidden layer activation function Sigmoid Hidden layer activation function RBF 

output layer activation function Linear output layer activation function linear 

Number of data utilized for training 141 Number of data utilized for training 141 

Number of data utilized for testing 47 Number of data utilized for testing 47 

Number of max iteration 1500 Number of max iteration 50 

In order to show the performance of proposed models in the prediction of solubility of 
different acids, regression plots of RBF-ANN, MLP-ANN, ANFIS, and LSSVM 
algorithms are depicted in Fig. 7 to compare the determined and actual solubility values. 
Based on these plots, the surprising fits for the predicting algorithms are obtained. Also, 
the predicted acid solubility data for proposed models are demonstrated along with the 
corresponding actual acid solubility values in Fig. S1. It can be observed that the model’s 
output solubility values have excellent agreement with actual solubility values. Another 
graphical evaluation method is a demonstration of relative error between predicted and 
experimental acid solubility in supercritical carbon dioxide. Fig. S2 shows the percentage 
of absolute error for the different predicting algorithms. The percentages of absolute error 
place under 1.5 percent for all developed algorithms, which expresses the acceptable 
degree of accuracy in prediction of acid solubility. 
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Figure 7: Regression plots obtained for different models 
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(AAD), Mean squared errors (MSEs) and Standard deviations (STDs) are determined such 
as following:  

R2 = 1 − ∑ (Xi
actual−Xi

predicted)2N
i=1

∑ (Xi
actual−Xactual)2N

i=1
                                                                                      (18) 

𝐴𝐴𝐴𝐴𝐴𝐴 =  1
𝑁𝑁
∑ �𝑋𝑋𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑋𝑋𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑁𝑁
𝑖𝑖=1                                                                              (19) 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑁𝑁
∑ (𝑋𝑋𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑋𝑋𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)2𝑁𝑁
𝑖𝑖=1                                                                           (20) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ( 1
𝑁𝑁−1

∑ (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��������)𝑁𝑁
𝑖𝑖=1 )0.5                                                                    (21) 

The R2, AD, MSE and STD values of different algorithms are summarized in Tab. 2. 
According to these results, the LSSVM model has the greatest ability in forecasting acid 
solubility. The determined R2 values for LSSVM is equal to 0.998 and 0.999 in the train 
and test set, respectively. Furthermore, it’s RMSE, MSE and AAD parameters are 
0.000527, 2.77875E-07, and 0.0179, respectively. According to these analyses LSSVM 
algorithm is known as the best predictor for the prediction of solubility of different acids. 

Table 2: Statistical analyses of models 

Model Set  MSE RMSE R2 STD AAD (%) 

LSSVM Train 5.72159E-07 0.000756 0.998 0.0007 0.0269 

Test 1.7978E-07 0.000424 0.999 0.0004 0.0149 

Total 2.77875E-07 0.000527 0.999 0.0005 0.0179 

ANFIS Train 5.79633E-06 0.002408 0.975 0.0022 0.1093 

Test 1.00976E-05 0.003178 0.965 0.0027 0.1677 

Total 9.02227E-06 0.003004 0.967 0.0026 0.1531 

MLP-ANN Train 3.23782E-06 0.001799 0.987 0.0017 0.0756 

Test 1.44839E-06 0.001203 0.995 0.0010 0.0600 

Total 1.89575E-06 0.001377 0.993 0.0012 0.0639 

RBF-ANN Train 2.33037E-06 0.001527 0.986 0.0013 0.0827 

Test 1.61993E-06 0.001273 0.995 0.0010 0.0779 

Total 1.79754E-06 0.001341 0.993 0.0011 0.0791 

In addition to previous statistical indexes, there is another statistical approach to evaluate 
the reliability and accuracy of predicting algorithms, which called the Leverage method. 
The mentioned approach consists of some statistical concepts such as model residuals, Hat 
matrix, and Williams plot which are used for the detection of suspected and outlier data. 
There is more description of the Leverage method in the literature [Rousseeuw and Leroy 
(2005)]. In this method, the residuals are estimated and inputs are utilized to build a matrix 
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called Hat matrix such as follow:  
𝐻𝐻 = 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇                                                                                                            (22) 
where X is the m×n matrix, which n and m are the numbers of model parameters and 
samples, respectively. 
Fig. 8 illustrates the William plot for the proposed models. As shown in this figure, most 
of the data points are in the range of leverage limit of residuals for -3 to 3. The leverage 
limit is formulated, such as the following:  
𝐻𝐻∗ = 3(𝑛𝑛 + 1)/𝑚𝑚                                                                                                            (23) 
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Figure 8: Absolute deviation plots for (a) LSSVM, (b) ANFIS, (c) MLP-ANN, and (d) 
RBF-ANN 
Another method to investigate the validity of the models is a parametric analysis of 
solubility. To this end, the Relevancy index is introduced to investigate the impact of inputs 
on acid solubility. The Relevancy index is determined such as following [Zarei, Razavi, 
Baghban et al. (2019)]: 

𝑟𝑟 = ∑ (𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑘𝑘,𝑖𝑖−𝑋𝑋𝑘𝑘����)(𝑌𝑌𝑖𝑖−𝑌𝑌�)

�∑ (𝑋𝑋𝑘𝑘,𝑖𝑖−𝑋𝑋𝑘𝑘����)2 ∑ (𝑌𝑌𝑖𝑖−𝑌𝑌)���2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

                                                                                           (24) 

where 𝑌𝑌𝑖𝑖, 𝑌𝑌�, 𝑋𝑋𝑘𝑘,𝑖𝑖 and 𝑋𝑋𝑘𝑘���� are the ‘i’ th output, output average, kth of input and average of 
input. The Relevancy index absolute value represents the effectiveness of the parameters 
on acid solubility. As shown in Fig. 9, the molecular weight of acid has the most Relevancy 
factor between different input parameters, so this parameter is known as the most effective 
parameter on acid solubility in supercritical carbon dioxide. Moreover, acid dissociation 
constant has the least effect on acid solubility. This figure illustrates that as the number of 
carbon and hydrogen of acid, molecular weight, and pressure increases, acid solubility in 
carbon dioxide increases. On the other hand, increasing acid dissociation constant and 
temperature caused a drop in the solubility of acid in carbon dioxide.    
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Figure 9: Sensitivity analysis of investigated variables 

5 Conclusions  
In this paper, we have applied RBF-ANN, MLP-ANN, ANFIS-PSO and LSSVM 
algorithms to determine the different acids solubility values in supercritical carbon dioxide 
in terms of pressure, temperature, and different acid structure based on a reliable databank 
which gathered from the literature. These predicting approaches can forecast acid solubility 
in a wide range of operating conditions. To prove the acclaim above, different statistical 
and graphical evaluations have been performed in the previous section. According to the 
obtained results from comparisons, the LSSVM model has the best performance respect to 
the others, and the ANFIS algorithm has the least accuracy in this prediction. Also, the 
results of the sensitivity analysis identify the molecular weight of the acid parameter is the 
most effective factor in the solubility of acids in supercritical carbon dioxide. Based on 
these comprehensive investigations, this manuscript has great potential and ability to help 
the researchers in their future works. 
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Appendix A. Nomenclature 

ANFIS Adaptive neuro-fuzzy inference system 

LSSVM Least squares support vector machine 

RBF-ANN Radial basis function artificial neural network 

MLP-ANN Multi-layer Perceptron artificial neural network 

PSO Particle swarm optimization 
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φ(x) Nonlinear function 

ω             Weight    

b                Bias 

ϒ           Regularization parameter 

ek     Support value 

K Kernel function 

Z Gaussian parameter 

σ Gaussian parameter 

m One of the resulting index of ANFIS 

n One of the resulting index of ANFIS 

r One of the resulting index of ANFIS 

W Inertia weight 

c Learning rate 

R2 Coefficient of determination 

AAD Average absolute deviation 

MSE Mean squared error 

STD Standard deviation 

H Hat matrix 

H* The leverage limit 

 

Appendix B. Supplementary Contents 
Table S1: Experimental data which are used in this study 

Acid name Pressure  Temperature 
(K) 

Acid 
dissociation 
constant (PKa) 

solubility 
(mol/mol) 

No of data 
points 

Ref 

Perfluoropentanoic 
acid 

10-26.2 314-334 0.52 0.0134-
0.0298 

17 [Dartiguelongue, 
Leybros et al. 
2016] 

o-Hydroxybenzoic 
Acid 

8.11-20.26 308.15-328.15 4.06 0.000007-
0.000624 

49 [Gurdial and 
Foster (1991)] 

Corosolic Acid 8.0-30 308.15-333.15 4.7 3.28×10-11  -  
0.071 

40 [Kumoro (2011)] 

Maleic Acid 7.0-30 318.15-348.15 1.83 0.000013-
0.0005917 

21 [Sahihi, 
Ghaziaskar, and 
Hajebrahimi 
(2010)] 
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Ferulic Acid 12.0-28 301.15-333.15 4.38 0.00000155
-0.0000118 

18 [Sovova, 
Zarevucka, 
Vacek et al. 
(2001)] 

Azelaic Acid 10.0-30 313.15-333.15 4.84 0.00000042
-
0.00001012 

14 [Sparks and 
Hernandez 
(2007)] 

Nonanoic  Acid 10.0-30 313.15-333.15 4.96 0.00013-
0.00782 

14 [Sparks, Estévez, 
Hernandez et al. 
(2008)] 

p-aminobanzoic 
acid 

8.0-21 308-328.0 4.78 0.00000130
2-
0.00000645
2 

15 [Tian, Jin, Guo et 
al. (2007)] 

     Total=188  

Table S2: Average of experimental data which are used in this study 
Acid name Pressure (Mpa) Temprature (K) Solublity (mol/mol) 

Perfluoropentanoic acid 17.37058824 324 0.022118 

o-Hydroxybenzoic Acid 13.84040816 316.6193878 0.000238 

Corosolic Acid 18.2 319.4 0.029932 

Maleic Acid 16.42857143 333.15 0.000173 

Ferulic Acid 19.83333333 319.4833333 5.37E-06 

Azelaic Acid 20 323.15 3.92E-06 

Nonanoic (Pelargonic) Acid 20 323.15 0.006548 

p-aminobanzoic acid 14 318 3.82E-06 

 

Table S3: Details of acids which are utilized in this investigation 
Acid name  Structure Empirical Formula or 

linear formula 
Molecular Weight 
gr/mole 

Perfluoropentanoic acid 

 

CF3(CF2)3COOH 264.05 

o-Hydroxybenzoic Acid 

 

 HOC6H4CO2H 
 

138.12 

Corosolic Acid 
 

 

C30H48O4  472.70 
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Maleic Acid 
 

 

HO2CCH=CHCO2H  
 

116.07 

Ferulic Acid 

 

 

 HOC6H3(OCH3)CH=C

HCO2H 

194.18 

Azelaic Acid 

 

 

HO2C(CH2)7CO2H 188.22 

Nonanoic (Sparks, 

Estévez, Hernandez et al. 

2008) Acid 
 

CH3(CH2)7COOH 158.24 

p-aminobanzoic acid 

 

C₇H₇NO₂ 137.14 
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Figure S1: Experimental and predicted solubility of CO2 by the proposed models 
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Figure S2: Absolut deviation plots for (a) LSSVM, (b) ANFIS, (c) MLP-ANN, and (d) 

RBF-ANN 

-1.5

-1

-0.5

0

0.5

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

A
bs

ol
ut

e 
D

ev
ia

tio
n 

(%
)

CO2 Solubility

Train Test

(c)

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

A
bs

ol
ut

e 
D

ev
ia

tio
n 

(%
)

CO2 Solubility

Train Test

(d)


	Applying ANN, ANFIS and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2
	Amin Bemani0F , Alireza Baghban1F , Shahaboddin Shamshirband2F , 3F , *,
	Amir Mosavi4F , 5F , 7, Peter Csiba7 and Annamaria R. Varkonyi-Koczy5, 7

	5 Conclusions
	Acknowledgment: This research is sponsored by the Project: “Support of research and development activities of the J. Selye University in the field of Digital Slovakia and creative industry” of the Research & Innovation Operational Programme (ITMS code...
	Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

