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Abstract: Existing model registration of individual bones does not have a high
certainly of success due to the lack of anatomic semantic. In light of the surface
anatomy and functional structure of bones, we hypothesized individual femur
models would be aligned through feature points both in geometrical level and
in anatomic level, and proposed a hierarchical approach for the rigid registration
(HRR) of point cloud models of femur with high resolution. Firstly, a coarse
registration between two simplified point cloud models was implemented based
on the extraction of geometric feature points (GFPs); and then, according to the
anatomic feature points (AFPs) in two level namely shape features and structure
features, the fine weight-based registration was performed to achieve anatomical
alignment; finally, the origin source model was automatically transformed by
applying the obtained coarse matrix and fine one in sequence. Experimental
results show that the hierarchical registration method can rapidly and accurately
register point clouds of individual femurs, and achieves the medical semantic
alignment, and provides a basic tool for the understanding and comparison of
femur anatomy and structure.

Keywords: Hierarchical registration; point cloud; geometrical feature; anatomic
feature; 3D alignment

1 Introduction

Three-dimensional (3D) models which describe the intuitive and precise anatomic morphology of human
bone play a more and more important role in many biomedical fields, including orthopedic diagnosis, surgical
planning and basic researches [1]. Based on the volume data acquired from computed tomography (CT) scan
slices, point cloud models representing outer surface shape of skeleton can be generated with a set of 3D points.
As is well known to all, the shape registration of one sample bone to another one is an essential prerequisite
process for some comparative and quantitative applications of femoral surface morphologies, such as the
construction of statistical shape model (SSM) [2] and parameter measurement [3]. Unfortunately, the point
cloud or mesh models of femur samples can seldom be aligned well in a uniform coordinate system
because of various viewpoints of scanner or different modeling platforms [4–5]. Therefore, transforming 3D
models and determining the correspondence between them have been indispensable components for surface
shape comparison and anatomy statistical analysis.
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In the past two decades, many works so far have focused on point cloud registration (PCR) in the
research field of computer graphics [4]. The key goal of PCR is to obtain the 3D correspondence of
various models, so that the same local parts can be matched each other in a common spatial system.
Existing PCR methods can be roughly divided into two major categories in terms of transform properties,
namely rigid registration and non-rigid registration [5]. In the former, models were usually transformed
with rigid operations including translation and rotation, and the distances and interrelationships of
adjacent points could be reserved. While in the latter, 3D models were processed with affine
transformations including scaling and shear mapping, so that the input model were eventually deformed
to match the reference one. In practice, 3D rigid transformation of skeleton model was more widely used
than the non-rigid one in many applications, because that human bones are incredibly strong and their
shapes cannot be deformed easily. Accordingly, the rigid registration of human bone model is critical for
many orthopedic researches and applications.

There are many excellent reviews in the literature dealing with various concepts of PCR [5–6]. The
distance-based, filter-based, probability-based methods were widely applied in many studies [7–15].
Distance-based registrations are the most common method, which were achieved with two processes
including correspondence finding and distance error minimizing. Besl et al. [6] proposed a classical
algorithm named iterative closest point (ICP), in their study, the mean squared error of Euclidean distance
of point pairs was iteratively minimized. Subsequently, to accelerate convergent speed and improve
registration accuracy, many efficient ICP variants including FICP, EM-ICP [7] and LM-ICP [8], were
subsequently proposed by using different strategies such as point selection, point matching, pair
weighting, pair rejecting and error metric minimization [9]. ICP-based algorithms have the advantage of
low computational complexity and support parallel computing. Nevertheless, these approaches are
sensitive to the initial pose and are easy to be trapped into local minima for complex models
considerably. To overcome major drawbacks of ICP-based methods, the robust point matching (RPM)
method by employing deterministic annealing and soft-assign optimization [10–11] was proposed to
obtain the correspondence and transformation parameter of cloud points. However, the applications of
RPM method were limited in the complex environment with noise and outliers [12]. Later, some filter-
based methods were suggested and achieved by using state space model. Ma et al. [13] proposed an
unscented particle filter for rigid registration. Sandhu and his team [14] suggested a particle filter schema
in which the local optimizer formulated based on point matching. Although filter-based methods were
used to process a large number of point sets, their primary limitation is the pre-calculating of the
corresponding relations of point sets. Myronenko et al. [15] proposed a novel approach named coherent
point drift (CPD), which core idea was the solving of a maximum likelihood (ML) estimation problem by
using Gaussian mixture model (GMM). Probability-based method has better performance, but the
calculation cost was significantly higher than other methods.

Most PCR studies have achieved the automatic alignment of models constructed in different views or
platforms. It is important to highlight that the source model and the reference are various poses of the
same object, and they can overlap completely in theory. It is well known that the structure of one human
femur is similar to others, and there are significant differences between individuals. In fact, it should be
noted that very littler work has been carried out on the alignment of different individual bones. On one
hand, the large number of vertices in high-precision point cloud model increases the computational
complexity of geometric objects, and the improvement of registration algorithm efficiency is still a
challenging work. On the other hand, existing PCR researches pay little attention to the anatomy
alignment, and little evaluation criteria for registration result between different skeletons has been
suggested. Therefore, how to align different bone models with medical anatomic semantics for
biomedical applications is yet another hard issue to be researched.
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In summary, model registration of different bones does not have a high certainly of success because of
the lack of anatomic semantic. In light of the surface anatomy and functionally structure of bone, we
hypothesized different point clouds of femur could be aligned through feature points both in geometrical
level and in anatomic level. In this study, a hierarchical approach for the rigid registration (HRR) of
individual femur models with high resolution and was propose based on anatomical feature to achieve the
rapid alignment of individual bones and to facilitate the understand and comparison of anatomy and
structure of femur.

The paper is organized as follows. Section 2 presents the study materials. Section 3 describes an
overview of the proposed method of model registration. Section 4 provides detailed algorithms for point
cloud preprocessing, feature extraction and registrations in two levels. In Section 5, the approach was
implemented, and experimental results were tested, then time-consuming, error and anatomic alignment
were discussed. Section 6 concludes with a summary of the content of this study and proposes future
research directions.

2 Materials

In the study, 20 heathy right femurs of Chinese female volunteers lived in Southern Jiangsu of China
with no previous trauma and no history of diseases were selected and scanned by 64-slice CT (MSCT,
Aquilion 64, Toshiba, Zoetermeer, Netherlands), and then 3D models were constructed in the form of
point cloud. The average age and the average height of volunteers were 37.4 ± 6.2 years (range: 30 to 39)
and 158.3 ± 5.3 mm (range: 156.7 to 163.2). Although the selected femur samples are very similar in
overall structure, there are significant differences in length and detailed shapes between individuals.

3 Overview of Proposed Approach

Given preprocessed point cloud models of femur, our approach aims at registering the two models with
rigid transformation and achieving the anatomic semantic alignment. Firstly, a coarse registration between
two simplified point cloud models was implemented based on the extraction of geometric feature points
(GFPs); and then, according to the anatomic feature points (AFPs) in two level namely shape features
and structure features, the fine registration was performed by using the weight-based method to achieve
anatomical alignment; finally, the origin source model was automatically transformed by applying the
coarse matrix and the fine one in sequence.

The complete flow of hierarchical registration of femur model based on anatomic features is shown in
Fig. 1. Steps II–IV are the most important of the steps and will be expounded in the following sections.
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Figure 1: The overflow of hierarchical registration of femur model based on anatomic features
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4 Methods

4.1 Point Cloud Preprocessing
In the original 3D point cloud model of individual samples reconstructed from CT scanning images,

available points are usually accompanied by some noise and outliers. To remove the noise points,
individual original models were preprocessed by using filtering and smoothing before subsequent 3D
modelling. Recently, many effective methods have been proposed to remove the outliers such as based on
partial differential equations [16], based on Laplacian signal processing [17], based on neighborhood
filtering [18], based on projection [19] and based on statistical [20]. Considering the preservation of the
original shape of bone, especially local details in the noise removal stage, the denoising smoothing
algorithm was applied in this work based on the method proposed by Gu [21]. The principal pipeline of
the algorithm and a preprocessed smooth model (abbreviated as MP) were shown in Figs. 2 and 3
respectively.

4.2 Geometric Feature Extraction
High-precision model composed of enormous geometric points have the advantages in the detail

representation of complex shapes, however, the process of mass geometric objects in low-level may
consume large amounts of computational and memory resources. Considering different contributions of
each point on the description of skeletal shape, reducing point number in the model under the premise of
accurate representation may be an ideal approach to improve the processing efficiency of point cloud
model. Therefore, the detection and extraction geometric feature points was an indispensable basic
technology in this work.

In the geometric level, normal vector and curvature were typical factors and widely used in the shape
feature description. The point which normal angle was larger than a threshold value can be regarded as
geometric feature point [22]. In traditional curvature-based methods [23–24], the feature points were
extracted according to the bending or smoothness of local surfaces reflected by curvatures of each point.
To avoid the limitation, normal vector sensitive for noise and outliers, we proposed an optimized
curvature-based strategy for geometric feature extraction in this study, and the feature points were
selected from the curvature variation of neighbors. The detailed processes of curvature solution were
processed as follows.

Step 1. Calculate the gravity center Ocnt of point Pi:

Ocnt ¼ 1

k

Xk
i¼1

Pnbi (1)

where Pnbi was the neighborhoods of Pi, k was the number of the neighbors.

KD tree
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Figure 2: The pipeline of denoising algorithm

Figure 3: Point cloud of preprocessed sample (MP)
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Step 2. Obtain the normal vector Ni with the minimization of fitted function F in Eq. (2), where a, b, c, d
and e were the coefficients.

F ¼
Xk
i¼1

jjðPnbi � OcntÞ � N ijj (2)

F ¼
Xk
i¼1

½hi � ðaui þ bvi þ cui
2 þ duivi þ evi

2Þ�2 (3)

Step 3. Calculate the curvatures of points:

KGaus ¼ 2c� d2

ð1þ a2 þ b2Þ2 (4)

KMean ¼ 2c� d2

ð1þ a2 þ b2Þ2 (5)

K1 ¼ KMean �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KMean

2 � KGaus

p
(6)

K2 ¼ KMean þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KMean

2 � KGaus

p
(7)

where KGaus was Gaussian curvature, KMean was mean curvature, K1 and K2 were principal curvatures,
respectively.

Step 4. Select GFPs based on curvature variation:

CidxðPiÞ ¼ 1

2
� 1

p
arctan

2KMean

K1� K2
(8)

where Cidx(Pi) was the curvature factor of Pi which ranged from 0 to 1:

CidxðPiÞ 2 ½0; 1� (9)

Pcvx ¼ fPi;CidxðPiÞ >¼ v1g (10)

Pccv ¼ fPi;CidxðPiÞ <¼ v2g (11)
According to Eqs. (10) and (11), both the points which Cidx(Pi) were larger than the threshold ω1 in

convexity and the ones which Cidx(Pi) were less than the threshold ω2 in concavity were extracted and
defined as the point set Pcvx and Pcvv respectively, then Pcvv and Pcvx were combined into the geometric
feature model (abbreviated as MG) as show in Eq. (12).

MG ¼ fPcvx;Pccvg (12)

Therefore, the MP shown in Fig. 3 was replaced by MG with a smaller number of GFPs as shown in
Fig. 4.

Figure 4: Point cloud of GFP (MG)
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4.3 Coarse Registration of Geometric Feature
At this stage, the sample model which length was the closest to the mean value of all MG models was

selected as the reference model named with MGR, and the other GFP models were defined as source models
namely MGS, and all MGS were registered to MGR coarsely in geometric level.

The overview registration process was depicted in Fig. 5. To meet the requirement of initial posts and
avoid falling into local optimization, the centroid alignment between two models was achieved by translating
theMGS with a matrix TC. As a result,MGS andMGR were locally overlapped. Then, theMGS was registered
to theMGR with the ICP algorithm based on KD tree researching, and the rotation matrix RG and translation
matrix TG were obtained. The key steps were explained as follows:

Step 1. Create the centroids model, named as Pc shown in Fig. 6(a) by computing the average coordinate
values of each point cloud according to in Eq. (13).

Pc¼ 1

n

Xn
i¼1

ðPGFPiÞ (13)

where n was the number of the GFPs in a cloud model MG.

Step 2. Translate theMGS to realize the centroid alignment betweenMGS andMGR as shown in Fig. 6(b).

Step 3. Constrain the centroid of MGR, and the MGS was iteratively transformed until either the sum of
distance between two models was smaller than a threshold value or the iteration times was over a specific
number to obtain the coast registered model (MGC) as shown in Fig. 7.

Input MGR and MGS

Create centroid of MG

Select pairs between source and reference

Traversal search pairs based on KD tree

Convergence

Solve matrix of RG and TG

Coast registered model (MGC)

Y

N

Align centroid with matrix TC

Figure 5: Overall process of coast registration of MG
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4.4 Anatomic Feature Extraction
Unlike other 3D models, there are always special structures and anatomic shapes in femur surface

model, such as the head, neck, condyles and trochanters, and these anatomic features have distinct
function roles due to being a part of hip joint or knee joint. It is of great significance for many clinical
applications to combine the anatomical features of bones in the alignment of bone. Therefore, using
anatomic feature points (AFPs) to describe the functional structure and local shapes in point cloud model
was a premise task of 3D alignment. In this work, AFPs were defined and extracted from two aspects.
Feature points of shape (Ps) were extracted from the surface based on the prior medical knowledge to
represent detailed anatomy in local regions. In addition, Feature points of function (Pf) were created by
discrete the fitted axes to describe the anatomic structure of a whole bone.

Pc  Pc

MSR

MSS

         (a) Centroid creation                                                    (b) Centroid alignment

Figure 6: Centroid alignment between MGS and MGR

Figure 7: Coarse registration between MS
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The definition scheme of anatomy model (MA) with of AFPs was shown in Fig. 8, and MA consists of
the set Ps and Pf. The detailed methods for feature definition and extraction can be found in our previous
work [25], and the formal definition was given below:

MA ¼ fAFPg
AFP ¼ Ps;Pf

� �
s:t: Ps ¼ fPs1;Ps2;Ps3; . . . ;Psmg
s:t: Pf ¼ fPf 1;Pf 2;Pf 3; . . . ;Pfng

8>><
>>:

(14)

4.5 Fine Registration of Anatomic Feature
The aims of fine registration of anatomic feature were to accomplish the anatomic alignment and

improve the medical significance based on the extracted AFPs, so that not only the detailed regions
with significant medical semantics but also the functional structure of the whole skeleton may be
aligned as possible.

The coast registered model (MGC) obtained in Subsection 4.3 was transformed again by employing a
weighted rigid registration. To achieve the goal of anatomy alignment, and the point clouds were
processed with the following steps.

Step 1. Group the MGC and MA into a new point cloud named with feature model MF.

MF¼ fMGC; MAg (15)

Step 2. Transform the new source model MFS to match the reference MFR by using ICP rigid
registration.

Step 3. Calculate the rotation matrix RA and translation matrix TA.

Therefore, the fine registration problem was converted to solve the minimization problem of the sum of
Euclidean distance between point pairs of MFs as shown in Eq. (16).

(a) Feature points of shape (Ps) (b) Ps in front view
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Figure 8: Feature definition of femur anatomy (MA)
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EFðRA; TAÞ ¼ 1

k

Xk
i¼1

jjMGCRi � ðRAMGCSi þ TAÞjj þ b
s

Xs

j¼1

jjMARi � ðRAMASi þ TAÞjj (16)

where, EF(RA,TA) was the object function, MGCR and MGCS were the reference model and source model of
MGC, while MAR and MAS were the reference and source model of MA, k and s were the point numbers in
MGC and MA. β was the influence weight, which value were defined in the range of 1 to 100, and the
default value was set to 20.

4.6 Final Transformation of Origin Model
Based on the mentioned transformation in two levels, namely coarse registration of geometric feature

and fine registration of anatomic feature, the simplified model MF was aligned to the reference one.
However, the description accuracy of the simplified model (MF) was obviously less than the one of
original preprocessed model (MP) which composed of a large number of point sets. In consequence, the
original preprocessed model (MP) should be transformed according to the hierarchical matrixes obtained
in the two registration processes to match the reference model. The final registered source model was
(MR) acquired with the following steps.

Step 1. Translate the source model MFC according to the vector TC obtained in the coarse registration,
and create the intermediate model MFC1.

MFC1 ¼ MFC þ TC (17)

Step 2. TransformMFC1 with rotation and translation in geometric level based on the matrix RG and TG

respectively, and create the intermediate model MFC2.

MFC2 ¼ RGMFC1 þ TG (18)

Step 3. ReadjustmentMFC2 in anatomic level based on the matrix RA and TA respectively, and obtain the
final model MR.

MR ¼ RAMFC2 þ TA (19)

5 Results and Discussion

To evaluate and verify the feasibility and effectiveness of the methodology and algorithms proposed in
this study, 20 point-clouds of right femur were tested, and the error analysis, semantic alignment and time-
consuming were carried out to illustrate the registration efficiency and the accuracy in anatomic semantic.

5.1 Experiment Results
Using a 2.2 GHz i5-5200u CPU with 4G RAM, the proposed methodology and algorithms were

implemented in the software environment of MATLAB 7.11.0.

5.1.1 Registration Results
To compare the align results conveniently, the same reference model was used in each registration

experiment, while the source femurs were in various poses as shown in Figs. 9(a) to 9(c). The registration
results of three samples selected were shown in Figs. 9(d) to 9(f).

To improve the medical semantics of registration, the value of the influence weight β was set to 10, 50
and 100, respectively, and the results of optimized experiments were tested and shown in Fig. 10.
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5.1.2 Method Comparisons
Four representative point set registration algorithms including ICP, FICP, CPD, KC were selected to

conduct the similar experiments. The performance of these common algorithms was validated on the same
point clouds. First, the Root Mean Square (RMS) error was used to evaluate the performance. The
registration results and the total processing times were calculated, compared and listed in Fig. 11. Then, the
shaft center distance, namely the Euclidean distance between the shaft-centers of two registered samples
proposed in our previous works [26–27] was used for the semantics effect assessment of registration. The
average values of shaft center distance of five methodologies were compared and listed in Tab. 1.

5.2 Discussion
5.2.1 Time-Consuming

Under the premise of preserving the original shape and anatomic structure information of femur model,
using a small number of feature points to simplify the skeleton model and reducing the scale of the original

Figure 9: Registration results of three samples
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femur point cloud model could be an effective strategy to improve the registration efficiency of the model,
especially the large-scale point cloud model. From the time results of HRR we have obtained as shown in
Fig. 11, it was found that not only geometric feature extraction but also anatomic feature extraction are
important stages to improve the efficiency of the algorithm.

5.2.2 Error Analysis
As shown in the right column of Fig. 11, the final RMS errors of former four algorithms were found to be

similar and were limited within 10 mm under the same experiment conditions. Nevertheless, the registered
models (the red) in former two rows were inverted, and neither the result of ICP nor the one of FICP was
reasonable. The main reason for the inaccuracy was that the ICP-based processes fell into local
minimization due to the lack of overlap between the two models [4]. Compared with results in the third
and fourth rows, it was shown that the final result our HRR can have a better match, especially in the
parts of head and the condyle, and the alignments of these special functional parts are very important for
medical applications. Therefore, on the basis of comparison results, it can be concluded that the HRR has
certain advantages in anatomical alignment.

5.2.3 Anatomic Alignment
Considerable research efforts have been devoted to 3D point cloud registration, and much work so far

has focused on the error minimization of geometric objects [5]. Anatomic features of the femur, such as the
head, trochanters and condyles have distinct functional roles in the joint connections and daily activities [28].
Therefore, the bone models resulted from existing typical methods were seldomly accepted by medical
professionals because of the lack of attention to anatomic semantics. In brief, not only local shapes and
typical structure are of great significance for many medical researches and related applications. As far as
we know, there is no report on anatomic registration with medical semantics.

In this study, anatomic features (AFPs) were defined and extracted in two levels (Ps and Pf). On one
hand, Pss were extracted from the point cloud with the combination of prior medical knowledges to

Figure 10: Registration results with various weights
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Figure 11: Comparison of registration results with common approaches including ICP (first row), FICP
(second row), KC (third row) and HRR (fourth row)
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describe surface features. On the other hand, Pfs were generated with the discretization of the fitted anatomic
axes to represent structure features. Based on the registration of geometric features, the feature registration of
anatomic and structure features were implemented by using a linear weighing method. As a result, the RMS
error value of HRR was less than anyone of the other methods as shown in Fig. 11. What’s more, the
comparison results in Fig. 10 show that the influence of the AFPs in the entire feature points (the pint set
of GFPs and AFPs) could be adjusted by the weight factor β, thereby, anatomical semantics of the model
can be improved according to the ratio of numbers between GFPs and AFPs.

So far, there are no clear criteria for assessing anatomical alignment between femur models. Considering
the significant individual differences in skeletal length and local shape, a simplified scheme to evaluate the
alignment error was proposed in this paper. The center-offset, namely the distance between the central point
of the shaft isthmus of registered source model and the one of the reference model. In this study, the overlap
between centroidMG of source and the one of reference model was defined as a constraint in all registrations,
therefore, the center-offset of HRR is less than the ones of other methods as shown in Tab. 1. Although the
centroid MG may not match the center of shaft isthmus, the constraint of centroids overlap can facilitate the
anatomical alignment.

The evaluation of anatomic and semantic alignments between different bones cannot only depend on the
geometric objects, and the prior knowledge, medical anatomy and bone characteristics should be taken into
consideration. Therefore, the study of describing the differences between bones with typical effective
method, such as probability statistics and feature parameterization, which will be one of the research
directions in the future.

6 Conclusion

To facilitate the anatomic alignment of different femur point clouds, this study proposed a novel
mechanism for hierarchical registration of different models based on anatomic features of femur. The
femur model consisting of a large number of point clouds was simplified with a small amount of feature
points in geometric level to deduce the compute cost of model registration, and can improve the
reconstruction efficiency. In addition, the features of anatomic surface and functional structure were
defined and extracted according to prior medical knowledge, and were taken part in the rigid registration
to achieve the anatomic alignment. This research indicates that for the first time we have proposed a
novel method for registering individual femur models in anatomic level rather than only in geometric
level. The main characteristics of this approach are as follows.

� It simplifies the original femur model consists of large number of point clouds with the feature points in
two-level, namely geometric feature points (GFPs) and anatomical feature points (AFPs), and improves
the efficiency of registration algorithm significantly.

� It defines hierarchical anatomic features from two aspects of shape and function, and achieves the hi
representation of anatomic features and the alignment of medical semantic

� It extends the existingmethodology for 3D rigid registration, and provides the alignment of medical semantic
for further medical applications

However, some directions must be researched in future work, including the following avenues of
investigation:

Table 1: Average center-offsets of five method (mm)

ICP FICP CPD KC HRR

1.310 1.287 1.092 1.156 0.261
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� The more reasonable evaluation method for skeletal model registration based on anatomical semantics
parameters should to be researched to meet the needs of medical application.

� More powerful representation approach of anatomic and functional features of femur must to be studied to
enhance the accuracy of individual bone model registration.
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