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Abstract: Weather phenomenon recognition plays an important role in the field of 
meteorology. Nowadays, weather radars and weathers sensor have been widely used for 
weather recognition. However, given the high cost in deploying and maintaining the 
devices, it is difficult to apply them to intensive weather phenomenon recognition. 
Moreover, advanced machine learning models such as Convolutional Neural Networks 
(CNNs) have shown a lot of promise in meteorology, but these models also require 
intensive computation and large memory, which make it difficult to use them in reality. 
In practice, lightweight models are often used to solve such problems. However, 
lightweight models often result in significant performance losses. To this end, after taking 
a deep dive into a large number of lightweight models and summarizing their 
shortcomings, we propose a novel lightweight CNNs model which is constructed based 
on new building blocks. The experimental results show that the model proposed in this 
paper has comparable performance with the mainstream non-lightweight model while 
also saving 25 times of memory consumption. Such memory reduction is even better than 
that of existing lightweight models. 
 
Keywords: Deep learning, convolution neural networks, lightweight models, weather 
identification. 

1 Introduction 
Weather phenomenon recognition plays an important role in the field of meteorology. At 
present, weather radars and weather sensors have become significant means of weather 
identification in a target area. However, in order to better understand weather 
phenomenon, we need to collect more detailed data at finer resolution. As a result, this 
can bring substantial cost in deploying and maintaining the devices.  
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In recent years, deep learning technology has affected many fields [Oh, Song, Kim et al. 
(2019); Yu, Liu, Wang et al. (2018); Guo, Chen and Qi (2019)]. In particular, convolutional 
neural networks (CNNs) have made remarkable achievements in a large number of 
challenging computer vision tasks [Zhang and Ma (2015)]. Modern neural network models 
have tens or even hundreds of millions of parameters [Wang, Zhang, Zhou et al. (2019)], 
which can improve the performance while greatly increasing the computation cost. For the 
above reasons, it is difficult to deploy these models to actual weather recognition devices. 
On the other hand, although some lightweight models can meet the computation 
requirements, they often result in significant performance degradation. 
In this paper, we propose a lightweight model by stacking innovative building blocks. 
The model can be easily applied to small devices and implemented for intensive weather 
monitoring. Section 2 reviews prior research on weather phenomena identification. 
Section 3 describes the details of our method. Section 4 presents extensive experiment to 
demonstrate the model’s performance. Section 5 concludes our work and discusses the 
potential future work. 

2 Related work 
Different from ordinary images, weather images possess characteristics of high 
complexity and diversity, which bring difficulties to design proper feature extractor. 
Therefore, weather phenomenon identification has become a difficult problem in the field 
of computer vision [Lu, Lin, Jia et al. (2014)]. In order to recognize weather phenomena, 
some researchers adopt the traditional machine learning method. First, they segment the 
image and the region containing weather features only. Then, they use HOG, contrast and 
other features to design the classifier [Liu, Li and Wang (2017)]. However, this method 
requires fine image segmentation and preprocessing, which is difficult to be applied in 
practice. For example, weather phenomena that need to be identified sometimes occur in 
complex scenarios, where it is not feasible to segment weather phenomena. 
Elhoseiny et al. [Elhoseiny, Huang and Elgammal (2015)] first used convolutional neural 
networks for weather phenomenon recognition. In this paper, a simple eight-layer 
convolutional neural network is constructed to identify cloudy and sunny weather 
phenomena. This method achieves high precision without manual feature extraction or 
complicated pre-processing. Since then, there have been a lot of studies using 
convolutional neural networks for weather recognition [An, Chen and Shin (2018)]. With 
the increasing depth of the network, the identifiable weather types and the identification 
accuracy are constantly improved. 
However, more complex networks cause the difficulty in training. To train a 
convolutional neural network with hundreds of millions of parameters, we need at least a 
few hundred thousand images to avoid overfitting. To solve this problem, one approach is 
to adopt a transfer learning, which aims at training large models with less data by fine-
tuning the models that have been trained on other data sets. In this way, it does solve 
some of the training difficulties, but such a large model is complicated to deploy. In 
addition, transfer learning largely limits the design of the model, making it difficult to 
transform the parts beyond the full connection layer to better fit the data. 
Instead of employing more complex networks, some studies have focused on designing 
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lighter models to solve those problems, given the redundancy of convolutional neural 
networks [Li, Wang and Li (2019)]. There are two main ways to build a lightweight 
network. One is the 1×1 convolution module for dimension reduction, which is largely 
used by SqueezeNet [Iandola, Han, Moskewicz et al. (2016)] to reduce the number of 
parameters in the model. The other is the depth-wise convolution, which is now an 
integral part of lightweight networks. MobileNetV1 [Howard, Zhu, Chen et al. (2017)], 
MobileNetV2 [Sandler, Howard, Zhu et al. (2018)], MobileNetV3 [Howard, Sandler, 
Chu et al. (2019)] and ShuffleNet [Zhang, Zhou, Lin et al. (2018)] make extensive use of 
such modules to reduce the redundancy of neural networks. In addition, there are other 
ways to reduce network redundancy, such as pruning [Han, Pool, Tran et al. (2015)], 
quantification [Jacob, Kligys, Chen et al. (2018)], knowledge distillation [Hinton, 
Vinyals and Dean (2015)], etc. 
In this paper, we will investigate weather phenomenon recognition with the usage of 
lightweight networks. Most lightweight networks tend to produce lower accuracy. To this 
end, the proposed model leverages both the strengths of lightweight models in reducing 
computing consumption and the novel structure in advanced deep learning models to 
ensure the performance.  

3 Method details 
This section will cover the specific model architecture and implementation details. 

3.1 Depth-wise separable convolutions building block 
For building lightweight models, one common approach is to extract feature map with the 
usage of depth-wise convolution. Such models have far less parameters compared with 
the conventional convolution models and thus have lower operational cost.  

 
Figure 1: Standard convolution and Depth-wise convolution 

As can be seen in Fig. 1, in ordinary convolution, the computation of feature map 
requires convolutional operations with each convolution kernel, while in depth-wise 
convolution, each feature graph only needs convolutional operation with its 
corresponding convolution kernel. Assuming we are using a convolutional kernel of 3-
by-3, this structure can reduce the number of parameters by about 60%. 
An important factor in determining the performance of a network is its depth [He, Zhang, 
Ren et al. (2016)]. The increasing depth can cause the larger perceptive field of the 
network, which provides a better chance at extracting more abstract image features. 
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Hence, we intend to use the depth-wise convolution to construct the building blocks 
shown in Fig. 2, and expand the depth of the network by stacking the building blocks, so 
as to improve the network performance. 

 
Figure 2: The building blocks 

3.2 Nonlinearities 
In order to obtain the nonlinear capability, the neural network model needs to add the 
nonlinear layer, also known as activation functions. The most widely used activation 
function is ReLU. An alternative to this is the swish [Ramachandran, Zoph and Le 
(2017)] activation function: 

( )swish x x xσ= ⋅  (1) 

Although the swish function has shown to outperform other activation functions (e.g., 
ReLU) in different test cases, the high complexity of the sigmoid operation makes it slow 
in computation. One solution is to replace sigmoid with an approximation of the sigmoid 
function. The final activation function is called the hard swish: 

( )( )3 6hard swish x Re LU x /= +  (2) 

3.3 Channel attention 
To further improve the performance of the network, here we introduce a building block in 
the stacked layers. The existing convolution is carried out in two dimensions without 
considering the correlation between channels. Hu et al. [Hu, Shen and Sun (2018)] 
proposed a squeeze and excitation module (SE module) to model the correlation between 
channels, also known as the channel attention. 

 
Figure 3: Squeeze and excitation 

The structure of the module is shown in Fig. 3. Like an external module, the SE module 
assigns different weights to each channel of feature map, which is called channel 
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attention. The details of this approach are as follows: the feature map is compressed 
through the global average pooling, so that each channel only retains an averaged value 
as its feature, that is, squeeze. Then we can generate the attention weight for each channel 
through another fully connected layer after the squeeze values. These attention weights 
(namely excitation) are multiplied with the input feature map at each channel to obtain 
the final output feature map. The resulting output feature map has the same dimension as 
the original feature graph. However, it has different weights assigned to different 
channels according to their importance. By employing the channel attention mechanism, 
the model is capable of identifying most relevant channels while filtering out redundant 
and trivial information from other channels, which helps boost the performance. 

3.4 Model architecture 
These structures are employed to rebuild the building blocks in Fig. 4. 

 
Figure 4: New building blocks 

The feature extraction part is mainly composed of two layers of convolution kernel of 
3×3, and the convolution mode is depth-wise convolution. Non-linear relationships are 
captured more efficiently by stacking multiple convolutional layers in this model. Such 
capacity would directly impact the feature extraction performance. 
Moreover, the feature extraction capacity of the neural network is positively correlated 
with the receptive field of neurons in the network. The convolution kernel of 3×3 in two 
layers has the same receptive field as the convolution kernel of 5×5 in one layer: 

( )1 1 1l l l lRF RF k size f stride+ − + −= + − ∗  (3) 

RF  refers to receptive field, k size−  refers to the size of convolution kernel, f stride−  
refers to the convolution stride. 
Since depth-wise separable convolution is widely used in the model, a convolution kernel 
of 1×1 is set to change the network width to improve the performance of the model. 
The nonlinear part uses the hard swish and adds a BN layer to make the network easier to 
converge. At the bottom of the model is an SE module with skip connect. 
The detailed model structure is shown in Tab. 1. Input denotes the input feature map’s size, 
Operator denotes the function unit, E-size denotes the expand size in building blocks, #out 
denotes the number of output channels, and Stride denotes the step length of convolution. 
The performance of the network is demonstrated in the experimental section. 
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Table 1: Specification for the proposed model 
Input Operator E-size #out Stride 

2224 3×   conv2d - 8 2 
2112 8×   block 16 12 2 

256 12×   block 24 18 1 
256 18×   block 36 24 2 
228 24×   block 48 32 1 
228 32×   block 64 48 2 
214 48×   block 96 96 1 
214 96×   conv2d - 364 1 

214 364×   pool - - 1 
21 364×   Fc - 6 1 

3.5 Scaling 
Scaling up the model is a common way to achieve better accuracy while shrinking the 
model tends to save more computing resources. We define a width multiplier α  to scale 
the model. It will be shown in experiment section. 

3.6 Tricks 
Different training strategies have different effects on the model performance. Some work 
was unfairly compared with other state-of-the-art methods since the improvement were 
mainly from training tricks rather than methods themselves. We implement several useful 
training tricks for this task, which are discussed as follows. 

3.6.1 Label smoothing 
In image classification task, we usually use the one-hot form of label.  Label smoothing is 
an improved form of one-hot label.  It changes the one-hot label to: 

11
i
is

N , if i y
Ny

, otherwise
N

ε

ε

− − == 



 (4) 

where ε  is a small constant to encourage the model to be less confident on the training 
set. In this task, ε  is set to be 0.1. 

3.6.2 Learning schedular 
The learning rate of the optimizer is critical to the model performance, and thus a good 
learning scheduler is extremely important. We use the warmup strategy to change the learning 
rate. We spent 10 epochs linearly increasing the learning rate from 3e-4 to 3e-3. Then, the 
learning rate is decayed to 3e-4 and 3e-5 at 30th epoch and 60th epoch respectively. 
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3.6.3 Random erasing augmentation 
The traditional data augmentation includes random clipping, rotation and so on. Zhong et 
al. [Zhong, Zheng, Kang et al. (2017)] proposed a new data augmentation approach 
named as Random Erasing Augmentation. For weather images, local information is 
irrelevant compared with global information, and random erasers can effectively avoid 
overfitting. The effect of random erasing is shown in Fig. 5. 

 
Figure 5: Random erasing augmentation 

4 Experiment 
We compared the performance of mainstream models using migration learning with that 
of some lightweight models. The dataset and code are available at:  
https://github.com/guhuozhengling/lightweight-model-for-weather.  

4.1 Datasets 
The experiment is conducted on two datasets, an open source dataset including four types 
of weather phenomena, which we called dataset four. Considering the lack of image types 
and high image recognition in the open source dataset, 12, 100 images were collected 
through the Internet, photography and academic exchanges. Then another dataset 
containing six weather phenomena including dew, freezing, haze, rain, dust and snow 
was constructed. Tab. 2 shows some information about this dataset. 
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Table 2: The dataset information 

Examples of different types of images 

dew frozen haze 

rain dust snow 
Quantitative information 

Total number of images: 12,100 
The number of different types of images: 
dew: 1189, frozen: 660, haze: 3654, rain: 2061, dust: 1593, snow: 2934 

4.2 Experiment settings 
In terms of data division, a fixed random seed was employed to randomly select 20% as 
the test set to ensure that the same data was used in each experiment. The experimental 
platform is Pytorch [Paszke, Gross, Massa et al. (2019)], the operating system is Ubuntu, 
and the hardware is Tesla V100. 
In the setting of training parameters, the number of iterations is 100, and an early stop 
mechanism is set to avoid overfitting. The optimizer is Adam, the initial learning rate is 
3e-4, and the batch size is 64. 
Accuracy and memory usage were evaluated against the mainstream models using 
transfer learning Vgg16, Vgg19, Resnet152, Densenet201, InceptionV3, and the 
lightweight models Squeezenet, Shufflenet, Efficientnet, and MobilenetV1-V3. 

4.3 Experiment results 
Tabs. 3 and 4 show the performance comparison to the transfer learning models and some 
lightweight models respectively. Acc1 represents the accuracy on our dataset, and Acc2 
represents the accuracy on the open source dataset. The performance is estimated by the 
accuracy and the video memory occupation. The higher the accuracy is, the less the video 
memory occupation is, and the better the performance of the model is. 
It can be seen from the table that for transfer learning model, resnet152 achieves the best 
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accuracy in both datasets, but also occupies the most video memory. In comparison, the 
accuracy of the proposed model is 1.55% lower, but more than 25 video memory is 
saved. Our model is also the most competitive among the lightweight models. 
Figs. 6 and 7 visually illustrate the performance of the different models on the two 
datasets. The horizontal axis represents the video memory occupation, and the vertical 
axis represents the accuracy. It can be seen that in both data sets, the proposed model is 
located at the upper left corner of the image. This shows that the proposed model is very 
competitive with other models in terms of performance. 

Table 3: Comparison with transfer learning models 
Model name Acc1 Acc2 Memory usage (MB) 
InceptionV3 
Resnet152 

Densenet201 
Vgg16 
Vgg19 

82.97 
92.98 
92.61 
89.45 
89.66 

90.95 
96.55 
95.26 
95.26 
93.07 

733.33 
829.00 
510.66 
735.52 
775.68 

Proposed model 91.43 96.55 32.97 
Performance gap -1.55 0.00 25.14 times 

Table 4: Comparison with other lightweight models 
Model name Acc1 Acc2 Memory usage (MB) 
Squeezenet 
Shufflenet 

Efficientnet-0 
Efficientnet-1 
Efficientnet-2 
Efficientnet-3 

MobilenetV3-large 
MobilenetV3-small 

72.97 
89.53 
87.74 
87.00 
86.84 
87.08 
90.89 
90.47 

89.66 
95.19 
93.53 
90.95 
92.24 
93.97 
94.40 
93.53 

92.62 
60.71 
123.20 
175.33 
187.06 
250.01 
118.06 
40.35 

Proposed model 91.43 96.55 32.97 

 
Figure 6: Performance on our dataset 
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Figure 7: Performance on dataset four 

4.4 Scaling 
In general, a wider model often leads to performance improvements. When the model 
needs to be migrated to another task or has different requirements on the computing power 
of the device, it is more convenient to adjust the width coefficient than to redesign the 
model. In our experiment, the performance was further improved when the proposed model 
width was extended to 2.5 times. In other words, if the computing power allowed, the 
accuracy could be improved by consuming more video memory. Note that this is only in 
this task. The width coefficient needs to be adjusted to the specific situation in other tasks. 

4.5 Ablation experiment 
In the experiments above, we employed the best network models and tricks. In this 
section, we will set up some comparative experiments to verify the benefit of each 
component used in our proposed method for the classification of weather images. 
By employing the depth-wise convolution, the model has very small parameters. In 
addition to the redundancy of traditional convolution, the high accuracy of such a 
lightweight model is also due to the use of swish activation function and the integration 
of lightweight SE module. As shown in Tab. 5, swish activation function replaced with 
the ReLU activation function and the SE module was removed respectively. It can be 
seen that the accuracy has decreased to a certain extent, while the parameters have only a 
slight reduction or no change. Tab. 6 shows the role of tricks in training. The result of no 
tricks will be used as the baseline, and the accuracy will be improved after adding 
different tricks. 
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Table 5: Comparison in different structure 

Structure Accuracy Memory Usage (MB) 
Without SE 90.65 31.66 

Without Swish 90.88 32.97 
Original 91.43 32.97 

Table 6: Comparison in different tricks 

Tricks Accuracy Promote 
Baseline 89.31 - 

Add Label Smoothing 90.01 0.7 
Add Schedular 90.21 0.2 
Add Erasing 91.43 1.23 

5 Conclusions 
In this paper, a lightweight model is proposed for weather classification and a weather 
dataset is built. We have reviewed efficient structures and used them in our model. 
Through the experiment by our weather dataset, the proposed model can save 25 times 
memory usage comparing with the best transfer learning model with only 1.55% 
accuracy lost. Compared with other lightweight models, the proposed model achieves the 
optimal efficiency and accuracy. Also, proposed model performs equally well on other 
datasets. In addition, we have studied the scaling method that can easily expand the 
model to other tasks. 
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