

Computers, Materials & Continua CMC, vol.64, no.3, pp.1999-2012, 2020

CMC. doi:10.32604/cmc.2020.09950 www.techscience.com/journal/cmc

A Recommendation Approach Based on Bayesian Networks for
Clone Refactor

Ye Zhai1, *, Dongsheng Liu1 , Celimuge Wu2 and Rongrong She1

Abstract: Reusing code fragments by copying and pasting them with or without minor
adaptation is a common activity in software development. As a result, software systems
often contain sections of code that are very similar, called code clones. Code clones are
beneficial in reducing software development costs and development risks. However,
recent studies have indicated some negative impacts as a result. In order to effectively
manage and utilize the clones, we design an approach for recommending refactoring
clones based on a Bayesian network. Firstly, clone codes are detected from the source
code. Secondly, the clones that need to be refactored are identified, and the static and
evolutions features are extracted to build the feature database. Finally, the Bayesian
network classifier is used for training and evaluating the classification results. Based on
more than 640 refactor examples of five open source software developed in C, we
observe a considerable enhancement. The results show that the accuracy of the approach
is larger than 90%. We believe our approach will provide a more accurate and reasonable
code refactoring and maintenance advice for software developers.

Keywords: Clone code, clone refactor, feature extraction, Bayesian network.

1 Introduction
Code clone has become a common method during software development. If two or more
code fragments in a software system’s codebase are exactly or nearly similar to one
another, we call them code clones [Kim, Sazawal and Notkin (2005)]. A group of similar
code fragments forms a clone class. Code clones are mainly created because of the
frequent copy/paste activities of the programmers during software development and
maintenance. Whatever may be the reasons behind cloning, code clones are of great
importance from the perspectives of software maintenance and evolution [Roy, Zibran
and Koschke (2014); Roy (2009)].
A large number of identical or similar code clones brought difficulties for the software
maintenance. For example, if a bug is detected in a code fragment, all fragments similar to it
should be checked for the same bug [Li, Lu, Myagmar et al. (2006)]. Duplicated fragments
can also significantly increase the work to be done when enhancing or adapting code. Many

1 Inner Mongolia Normal University, Hohhot, 010022, China.
2 Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, 182-

8585, Japan.
* Corresponding Author: Ye Zhai. Email: cieczy@imnu.edu.cn.
Received: 31 January 2020; Accepted: 09 May 2020.

2000 CMC, vol.64, no.3, pp.1999-2012, 2020

other software engineering tasks, such as program understanding, code quality analysis (fewer
clones may mean better quality code), aspect mining (clones may indicate the presence of an
aspect), plagiarism detection, copyright infringement investigation, software evolution
analysis, code compaction (for example, in mobile devices), virus detection and bug detection
may require necessary and proper management of the cloned code. Many researchers
consider code clones should be removed. However, sometimes there are dependencies
relations among each of which belong to the different clones, and simple removal of the code
may cause more serious errors [Yoshida, Higo, Kamiya et al. (2005)].
Existing research shows that it is impractical to refactor all clones in software system, and not
all clones need to be refactored [Higo, Ueda, Kusumoto et al. (2007)]. Blindly refactoring
may affect other useful codes in the software, and lead to software quality degradation. An
empirical study of Kim et al. [Kim, Sazawal and Notkin (2005)] revealed two points: first one
is that some clones are short-lived, and merging them wouldn’t improve the maintainability;
second one is that most of long-living clones are not suited to be refactored because there is
no abstraction function of the programming language. Therefore, it is especially critical to
identify the clones suitable for refactoring before effective maintenance of the clones.
In this paper, we provide an approach based on Bayesian to refactor clone code for
software developers. The main purpose of our study is to provide valuable reference
information for software development and maintenance, so as to reduce maintenance
costs, improve software code quality and obtain greater economic benefits.
The rest of the paper is organized as follows. Section II contains the terminology, Section
III discusses the experimental steps, Section IV analyzes the experimental results, and
Section V concludes the paper by mentioning possible future work.

2 Related works
2.1 Clone code definition and classification
Since the extensive use of clones has an important impact on the quality of software
products, the related research on clone has become a more active branch in the field of
code analysis in recent years. A code clone is a set of source code fragments identical or
similar to each other from the viewpoint of software maintainability. The types of clone
can be divided from different perspectives. Currently, there are two main perspectives of
classification. One is to divide code into Type-1, Type-2, Type-3 and Type-4 according
to code similarity [Kim, Sazawal and Notkin (2005)], Tab. 1 shows the definition; the
other is to divide code into file clone, class clone, function clone, block clone and
statement clone according to detection granularity.

Table 1: Definition of clone type
Type Description
Type-1 The exact same code fragment except the space and comment changes
Type-2 The code fragment with the same syntax structure except the blanks, comments,

identifiers, and type substitutions
Type-3 Code fragments with the same syntactic structure except blanks, comments,

identifiers, and type substitutions, but with added, deleted, or modified with a
small number of statements

Type-4 Code fragments with the same function but different syntax structures

A Recommendation Approach Based on Bayesian Networks 2001

2.2 Clone detection
Clone detection can find clones in the source code and giving feedback in the form of a
clone pair or a clone group [Kamiya, Kusumoto and Inoue (2002)]. At present, the
research of clone detection has been attracting great interests, and many detection
technologies have been proposed, including text-based clone detection [Johnson (1993)],
Token-based clone detection [Li, Lu, Myagmar et al. (2006)], Abstract Syntax Trees
(AST) detection [Koschke, Falke and Frenzel (2006)], Program Dependence Graphs
(PDG) detection [Roy (2009)], low-level language-based detection [Davis and Godfrey
(2010)], Metrics-based detection [Abd-El-Hafiz (2012)].

2.3 Clone refactor
The concept of refactor is proposed by Opdyke [Opdyke (1992)] to improve the quality
of the code by changing the internal structure of the program code without changing the
external behavior of the program code. At present, there are many studies on clone
refactor. Bian [Bian (2014)] extracted a clone suitable for refactor with a simple
calculation method. Bakota [Bakota (2011)] extracted clones suitable for refactoring
based on evolutionary analysis, which is suitable to Type-1 and Type-2 clone. Mondal et
al. [Mondal, Roy and Schneider (2015)] divided the SPCP clone into refactored data set
and a tracking data set according to the location of the clone fragments. Higo et al. [Higo,
Ueda, Kusumoto et al. (2007)] proposed an approach for extracting clones based on clone
metrics for refactor. Meng [Meng (2014)] proposes a method based on SOM (Self
Organized Mapping) clustering to seek refactorable code clone.
Liu et al. [Liu, Liu, Zhang et al. (2016)] proposed an approach to evaluate the reconfigure
ability of clone code. This approach systematically evaluates the reconfigure ability of
clones in current version, and ranks it from low to high according to the refactor level of
clones. But the effort laid the foundation for recommending refactor clone.

2.4 Bayesian network
Bayesian network is also called belief network. Bayesian classifier is a simple and powerful
classification method [Oliver, Patrick and Bruce (2009)]. It is one of the most effective
theoretical models in the field of reasoning. Shen et al. [Shen, Nagai and Gao (2019)]
improve computer visualization of architecture based on the Bayesian network. Burak et al.
[Burak, Turhan, Ayse et al. (2009)] used Bayesian network to predict the code that needs to
be refactored in Java system, and achieved certain results. The team used the decision tree
to recommend refactor clones in the early stage, but the prediction effect is not very good,
so this paper uses Bayesian network to recommend refactor clones.
There are two main steps in constructing or training Bayesian network:
Step 1: Determine the topological relationship between random variables to form DGA,
which is to find a set of conditional probabilities. The calculation formula is as follows：
𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,…,𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1,𝑥𝑥2)…𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, 𝑥𝑥2,…,𝑥𝑥𝑛𝑛−1) (1)
Step 2: The Bayesian network is trained to complete the construction of conditional
probability table. The calculation formula is as follows:
𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,…,𝑥𝑥𝑛𝑛) = ∏ 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖))𝑛𝑛

𝑖𝑖=1   (2)

2002 CMC, vol.64, no.3, pp.1999-2012, 2020

where Parents represent the union of direct precursor nodes of xi.

3 Recommend clone based on Bayesian network
This paper proposes an approach for recommending clone code, which is divided into
five steps, as shown in Fig. 1.

Figure 1: Overall analysis process

3.1 Clone detection
We use Nicad [Roy and Cordy (2008)] for clone detection, which can detect Type-1,
Type-2 and Type-3 clones more accurately. This tool takes multiple versions of software
as input to get clone group information, which includes file name, function name, start
line, end line and other information as well as clone fragment related information. The
data are stored in the form of Extensible Markup Language (XML) format to facilitate the
extraction and carry out follow-up research. The Fig. 2 shows the details.

Figure 2: Clone code detection results

3.2 Identify the refactor clone code
In this paper, the specific process of identifying refactor instances of clone is divided into
the following three steps:
Step 1. Refactor code instances are defined based on adjacent version keys. If any two
clone fragments are refactored, they are refactored instance.
Step 2. Generate refactoring candidate set. In this experiment, five famous open source
systems are selected and all public versions of these systems are collected. To identify
clone refactoring instances in the selected target system, we use the measurement tool
Moose\Metrics [Demeyer, Ducasse and Nierstrasz (2005)] to extract classes, methods,

A Recommendation Approach Based on Bayesian Networks 2003

attributes and calculate necessary metrics from the source code to produce refactoring
candidate sets.
Step 3. Optimize refactoring candidate set.
After generating the refactoring candidate set, it will be further filtered and optimized
according to the following three conditions:
1. Two siblings of the clone class between adjacent versions disappear
2. For methods within the clone fragment, the number of source code lines is reduced,

and at least one method is added only in this method
3. A new source class in the raw clone is created and used as a parent class.
These three conditions are selected because they contain all the refactoring patterns
associated with clone refactor. By manually checking clone refactor candidates with this
metric-based approach, Demeyer et al. [Demeyer, Ducasse and Nierstrasz (2005)] found
that this method can detect all fowler refactor modes suitable for clone refactor, including
Extract Method, Extract Superclass, Pull-Up Method, Replace Method with Method
Object, Template Method et al. If any of these conditions is met, then a clone class C is
considered as a candidate.

3.3 Extract feature
Feature extraction is a common data preprocessing method in the field of machine
learning and pattern recognition. It is a necessary step to train machine learning models.
Through the study of two large industrial software, Wang et al. [Wang, Dang and Zhang
(2012)] proposed that the harmfulness of using clones could be related to the
characteristics of clone fragment and the characteristics of content. Steidl et al. [Steidl
and Gode (2013)] used the characteristics of clone fragment and clone relationships to
automatically identify the bug fixes of clones and verified them. These features are
related to the harmfulness of the clone, and can also be an important basis for
recommending refactor.
Clone code is not static, it is constantly evolving, and it is not enough to reflect the
refactor of clones from a single version of the feature. Therefore, this paper reflects the
possibility of refactor clones from the four dimensions of clone relationship, clone
context, clone fragment and clone evolution. The clone evolution includes clone life,
clone evolution frequency, and clone evolution mode. These three characteristics reflect
the impact of changes in the evolution of the clone on the quality of the software, which
will help to analyze the possibility that the clones need to be refactored. Detailed
characteristics information is shown in Tab. 2.

2004 CMC, vol.64, no.3, pp.1999-2012, 2020

Table 2: Detailed feature description

Feature type Feature

Clone relationship

1. Number of clone fragments in the clone class

2. Edit distance between clone method names

3. Whether the clone group is a clone of Type-3

4. Whether the clone fragment is in the same file, or an adjacent file

Clone context

5. Whether it is a clone fragment following the flow control statement

6. The life cycle of the original file containing the clone fragment

7. The number of lines of code that contain the method of the clone
code fragment

8. Size of clone code fragment out of size of a method

Clone fragment

9. Number of lines of the clone fragment

10. The size of the token of the clone fragment

11. Whether a clone fragment contains a complete control block

12. The complexity of clone code

13. The percentage of method call statements in the clone fragment

14. The percentage of the calculated statement in the clone fragment

15. Whether the clone fragment starts with a control flow statement

Clone evolution

16.Life of clone

17. Clone evolution frequency

18. Clone evolution model

Extract feature is based on clone detection and refactor annotation. Clone detection result
is the basic clone data in this study, including the number and location of the clone.
Whether the clone group is Type-3 or the token size of the clone fragment is directly
extracted from the clone detection result. We use the code tool SourceMonitor to extract
other features. SourceMonitor is a tool that measures code written in multiple languages
(C++, C, C#, VB.net, Java, Visual, Basic, and HTML) and outputs different code metrics
for different languages. Taking the clone code as input, SourceMonitor will output the
static characteristics value of the corresponding clone code. Fig. 3 shows the results of
SourceMonitor’s measurement of partial clone code. The <Lines>, <Max Complexity>
and <%Comments> tag of the SourceMonitor tool indicated code lines, cyclomatic
complexity and percentage of comments. But you need to manually extract for feature 11
(whether a clone fragment contains a complete control block).
The evolutionary features extracted in this paper are three categories: clone life,

A Recommendation Approach Based on Bayesian Networks 2005

frequency of change, and evolution mode. The extraction method is mainly extracted by
the clone function extractor FCGE, which is developed by our team. The extraction
results are shown in Fig. 4.

Figure 3: Partial clone code measurement results

poatgresql-9.3.2.CG[1]<- - -(Static)---poatgresql-9.3.1.CG[1]<- - -(Static)---poatgresql-9.3.0.CG[1]<- - -(Static)---poatgresql-9.2.6.CG[1]<- - -(Static)---
poatgresql-9.2.5.CG[1]<- - -(Static)---poatgresql-9.2.4.CG[1]<- - -(Static)---poatgresql-9.2.3.CG[1]<- - -(Inconsistent)---poatgresql-9.2.2.CG[1]<- - -(Add)---
poatgresql-9.2.1.CG[1]<- - -(Static)---poatgresql-9.2.0.CG[1]<- - -()---poatgresql-9.1.11.CG[1]<- - -(Static)---poatgresql-9.1.9.CG[1]<- - -(Static)---poatgresql-
9.1.8.CG[1]<- - -(Subtract)---poatgresql-9.1.7.CG[1]<- - -(Static)---poatgresql-9.1.6.CG[1]<- - -(Static)---poatgresql-9.1.5.CG[1]<- - -(Inconsistent)---
poatgresql-9.1.4.CG[1]<- - -(Static)---poatgresql-9.1.3.CG[1]<- - -(Inconsistent)---poatgresql-9.1.2.CG[1]

Figure 4: Clone evolution feature extraction results

3.4 Training classifier
After extracting features and completing the construction of feature datasets, we select
the machine learning model of Bayesian network to recommend clone refactor code.
Dependency analysis and search-based scoring methods are the two main types of
methods commonly used in Bayesian networks. In this study, a score-based search
method is used, which can search the exact network structure. Because of the large
architectural space, heuristic algorithms are needed to search for the best Bayesian
network architecture. We use a heuristic algorithm to represent the K2 algorithm. The
pseudo code of the K2 algorithm is shown in Tab. 3, where μ represents the upper bound
of the number of variable nodes and ν represents a complete set of data.

2006 CMC, vol.64, no.3, pp.1999-2012, 2020

Table 3: K2 algorithm
input: X={X1, X2, …..Xn}
output: Bayesian network
1. ￡← Borderless graph consisting of nodes X1, X2, ..., Xn
2. for j=1 to n
3. π←Φ
4. Vold←CH(<Xj,πj>|ν）
5. while(true)
6. i←argmax1≤i≤j,Xi∈πj CH（<Xj,πj∪{Xi}>|ν）
7. Vnew←CH(<Xj，πj∪{Xi}>|ν)
8. if (Vnew>Vold and |πj|<μ)
9. Vold←Vnew
10. πj←πi ∪{Xi}
11. Adding edges in ν to Xi→Xj
12. else
13. break
14. end if
15. end while
16. end for
17. estimated £ parameter θ
18. return (£, θ)

3.5 Evaluation of classification results
When predicting unknown data samples, some are correctly classified and some are
misclassified. Therefore, in order to evaluate the performance of the clone refactor prediction
model, we use the recall rate, precision, and F commonly as evaluation indicators. The
mixing matrix corresponding to the values and the like is as shown in Tab. 4.

Table 4: Mixed matrix

Forecast result Positive class Anti-class

Positive class True Positive (TP) False Negative (FN)

Anti-class False Positive (FP) True Negative (TN)

The definitions of precision, recall and F are as follows:
 (3)

Re TPcall
TP FN

=
+

 (4)

*Pr *Re
Pr Re

2 ecision callF
ecision call

=
+

 (5)

A Recommendation Approach Based on Bayesian Networks 2007

Among them, recall measure classifiers correctly predict the proportion of clone refactor,
and recall is a common index in classification problems, which reflects the overall
classification performance of classifiers to data sets.

4 Experiment and analysis
4.1 Experimental data selection
The five open source software are selected in this experiment, FFmpeg, Smalltalk,
Claws-mail, Fdisk and Lighttpd. Tab. 5 shows the basic information.

Table 5: Basic information of the experimental software

4.2 Experimental results
In this paper, different feature subsets are selected and each subject is used to train a new
classifier. This experiment selects the characteristics of four subsets. These subsets are
clone relationship, clone context, clone fragment and clone evolution. The experimental
results are shown in Tabs. 6 and 7.

Table 6: Results of classification training for clone refactor instances

Software All features Static feature Evolution
information Clone

relationship
Clone
fragment

Clone context

Precision recall Precision Recall precision recall precision Recall precision recall

FFmpeg 0.925 0.920 0.715 0.804 0.920 0.913 0.865 0.856 0.801 0.795

Smalltalk 0.905 0.897 0.685 0.640 0.895 0.885 0.842 0.815 0.812 0.734

Claws-mail 0.935 0.918 0.729 0.801 0.928 0.909 0.870 0.819 0.785 0.834

Fdisk 0.928 0.925 0.699 0.621 0.920 0.918 0.867 0.899 0.821 0.835

Lighttpd 0.945 0.930 0.805 0.563 0.930 0.908 0.898 0.889 0.818 0.858

From these two tables, the following conclusions can be drawn:
 Classifiers without any type of feature training in the five experiment softwares are

always superior to classifiers trained by other feature types.

Software language Features Lines of code
FFmpeg C Multimedia tool software 543560
Smalltalk C Program integration development environment 3078858
Claws-mail C Mail client 220235
Fdisk C Disk management tool 187958
Lighttpd C Web server 53378

2008 CMC, vol.64, no.3, pp.1999-2012, 2020

Table 7: Results of classification training for non-refactored instances

 Compared with the classifier trained by all feature types, the result of the classifier
trained by clone fragment type features is the most similar.

 The classifier of the clone context feature type and the classifier training of the
evolution feature type training are slightly lower than the classifiers trained by all
feature types.

 The classifier of clone relationship feature type training, which makes the
performance of classifier get a small part of improvement.

Based on the above conclusions, it is concluded that the characteristics of the clone
fragment are independent of the clone relationship, clone content and evolution
information. The generated result is used to recommend the refactored clone.
In this experiment, K-fold cross-validation is selected to evaluate the verification. The
basic idea of this method is to divide the input data set into training set and test set.
Because the test set and the training set are invisible to the classifier, the object of cross-
validation is performed. The object is the result of the training set output. The
experimental steps are as follows:
Step 1. Divide the data set D into k mutually similar reciprocal subsets, namely D=D1 and
D2 and D3... and Dk, and there is no intersection between each subset.
Step 2. Use the union of k-1 subsets as the training set each time, and the remaining one
as the test set, thus obtaining the k group training/test set.
Step 3. Perform k training and testing, and finally return the mean of the k results.
Step 4. Use different partitions multiple times at random.
This experiment uses K-fold cross-validation to evaluate the classifier prediction model,
where K=10. We found that the error obtained by 10% is the smallest after many
experiments on large data sets and using different technologies, so the experiment divides
the data set into 10 parts. The verification results are shown in Tabs. 8 and 9. The
accuracy, recall, and F metric of the refactored and non-refactored instances are shown in
the two tables.

Software All features Static feature Evolution
information Clone

relationship
Clone
fragment

Clone context

Precision recall Precision Recall precision recall precision Recall precision recall

FFmpeg 0.930 0.925 0.625 0.701 0.927 0.913 0.875 0.863 0.873 0.855

Smalltalk 0.912 0.905 0.798 0.686 0.910 0.905 0.875 0.889 0.862 0.878

Claws-mail 0.928 0.913 0.798 0.585 0..920 0.907 0.901 0.894 0.896 0.883

Fdisk 0.917 0.914 0.805 0.425 0.911 0.905 0.885 0.895 0.881 0.890

Lighttpd 0.945 0.925 0.585 0.861 0.941 0.919 0.909 0.905 0.901 0.884

A Recommendation Approach Based on Bayesian Networks 2009

Table 8: Results of the refactor group test

Table 9: Results of the non-refactor group test

Software Precision Recall F-Measure
FFmpeg
Smalltalk
Claws-mail
Fdisk
Lighttpd

0.879
0.895
0.918
0.901
0.928

0.902
0.899
0.920
0.909
0.930

0.911
0.902
0.923
0.913
0.931

From Tab. 8, it can be concluded that the accuracy of the ten-fold cross-validation of
refactor example has increased from 88.5% to 92.1%, which is 3.6 percentage points
higher. The recall rate increased from 89.7% to 93.5%, up 3.8 percentage points. The F
value increased from 90.1 to 93.8%, 3.2 percentage points higher. From Tab. 9, it can be
concluded that the accuracy of the ten-fold cross-validation of non-refactored instance
increased from 87.9% to 92.8%, growth rate is 4.9 percentage points. The recall rate
increased from 89.9% to 93.0%, up 3.1 percentage points. The F-value increased from
90.2% to 93.1%, 2.9 percentage points higher. Therefore, it is concluded that the
classifier constructed in this study is better than the random selection.

4.3 Comparative analysis of similar experiments
At present, there are few researches on using machine learning methods to recommend
and predict the refactor clone code. Wang et al. [Wang and Godfrey (2014)] proposed a
representative method use machine learning methods to predict the clones to be
refactored. They used Iclones detection and propose an automated approach to
recommend clones for refactoring by training a decision tree-based classifier. In this
study, Nicad is used to detect the clone code. At the same time, we extracted the features
are not completely consistent with Wang’s. The project studied in this paper is the C
project and Wang used Java.
Liu et al. [Liu, Liu, Zhang et al. (2016)] of the team used the Bayesian network to predict
the clones to be refactored and evaluated it using the quality model EMISQ. The clone
detection is Fclones, and its feature selection is based on ISO software quality standards.
The characteristics of this paper are extracted from the static and evolution categories, so
only the recommended clone refactor is compared. The projects used in this paper and
Liu et al. [Liu, Liu, Zhang et al. (2016)] are all C projects, and all used Bayesian network

Software Precision Recall F-Measure
FFmpeg
Smalltalk
Claws-mail
Fdisk
Lighttpd

0.885
0.921
0.912
0.901
0.899

0.897
0.935
0.919
0.915
0.913

0.901
0.938
0.921
0.920
0.918

2010 CMC, vol.64, no.3, pp.1999-2012, 2020

model for prediction. The experimental platform is the same operating system:
Ubuntu14.04 64-bit, memory: 8 GB, CPU:2 cores.
In order to prove the effectiveness of the experimental results, we chose three source
software for comparison experiments, which are same as used in Liu et al. [Liu, Liu,
Zhang et al. (2016)]. The version information is shown in Tab. 10.

Table 10: Recommended software information for cloning refactored experiments

Software Start version End version Commits Refactoring instance

Xorriso 1.4.15 1.4.39 53378 308

Smalltalk 2.0.11 3.2.5 3078858 381

Bison 1.9.100 3.9.3 220235 289

Through the comparative experiment, the results are shown in Tab. 11. Compared with
the EMISQ method, the precision, recall and f-value of Xoriso are increased by 9%,
11.4% and 8.4% respectively. Compared with the EMISQ method, the precision of the
proposed clone refactor software Smalltalk is increased by 9.1%, 7% and 5.2%
respectively. Compared with the EMISQ method, the precision of the software, it is
increased by 11.7%, 7% and 5.9% respectively. In conclusion, the recall, precision and F-
value of clone refactor method are higher than those of EMISQ method.

Table 11: Recommended cloning and refactor of similar experimental results

Software Approach Precision recall F

Xorriso EMISQ 0.926 0.882 0.904
Method of this paper 0.975 0.996 0.988

Smalltalk EMISQ 0.889 0.990 0.934

Method of this paper 0.980 0.997 0.986
Bison EMISQ 0.865 0.991 0.927

Method of this paper 0.972 0.998 0.986

5 Conclusions and future work
The difficulty of software maintenance and the complexity of the project can be reduced
by refactoring. This paper proposes an approach to recommend refactoring clone based
on Bayesian network. The clones in the project are detected by clone detection tool, the
clone that needs to be refactored are found in three steps and then are labeled. At the
same time, the refactoring tool SourceMonitor and FCGE are used to extract features and
build sample data set. Finally, more than 640 clone instances are tested by using ten-fold
cross-validation. It is found that the accuracy, recall rate and F-value of the proposed
classifier based on Bayesian network can reach more than 90%, which proves the
effectiveness of this approach. The findings from our study are important for better
management of code clones as well as for better maintenance of software systems.

A Recommendation Approach Based on Bayesian Networks 2011

There are still some shortcomings in the research content and experiment of this paper,
for example, we can only recommend the refactoring clones in the C-language
development project at present. In future research, we will continue to improve this work.
We are targeting at recommending not only C-language development projects, but also
Java and python projects.

Funding Statement: This work was supported by the National Natural Science
Foundation (61363017) of China. The author is Liu, D. S. and the website is
https://isisn.nsfc.gov.cn.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Abd-El-Hafiz, S. K. (2012): A metrics-based data mining approach for software clone
detection. International Computer Software and Applications Conference, pp. 35-41.
Bakota, T. (2011): Tracking the evolution of code clones. SOFSEM: Theory and
Practice of Computer Science, vol. 6543, pp. 86-98.
Bian, Y. X. (2014): Research on Process Extraction Method of Reconfigurable Clone
code (Ph.D. Thesis). Harbin Institute of Technology, Harbin.
Cordy, J. R.; Roy, C. K. (2011): Tuning research tools for scalability and performance:
The NiCad experience, Science of Computer Programming, pp.158-171.
Davis, I. J.; Godfrey, M. W. (2010): From whence it came: detecting source code clones
by analyzing assembler. Proceedings of 17th Working Conference on Reverse Engineering,
pp. 242-246.
Demeyer, S.; Ducasse, S.; Nierstrasz, O. (2005): Object-oriented reengineering:
patterns and techniques. 21st IEEE International Conference on Software Maintenance,
pp. 723-724.
Higo, Y.; Ueda, Y.; Kusumoto, S.; Inoue, K. (2007): Simultaneous modification
support based on code clone analysis. 14th Asia-Pacific Software Engineering
Conference, pp. 262-269.
Johnson, J. H. (1993): Identifying redundancy in source code using
fingerprints. Proceedings of the Conference of the Centre for Advanced Studies on
Collaborative Research: Software Engineering, vol. 1, pp. 171-183.
Kamiya, T.; Kusumoto, S.; Inoue, K. (2002): CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on Software
Engineering, vol. 28, no. 7, pp. 654-670.
Kim, M.; Sazawal, V.; Notkin, D. (2005): An empirical study of code clone
genealogies. 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 187-196.
Koschke, R.; Falke, R.; Frenzel, P. (2006): Clone detection using abstract syntax trees.
Proceedings of 13th Working Conference on Reverse Engineering, pp. 253-262.

https://isisn.nsfc.gov.cn/egrantindex/funcindex/prjsearch-list

2012 CMC, vol.64, no.3, pp.1999-2012, 2020

Li, Z.; Lu, S.; Myagmar, S.; Zhou, Y. (2006): CP-miner: finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on Software Engineering, vol. 32,
no. 3, pp. 176-192.
Liu, D.; Liu, D.; Zhang, L.; Hou, M.; Wang, C. (2016): The prediction of code clone
quality based on Bayesian network. International Journal of Software Engineering and
its Applications, vol. 10, no. 4, pp. 47-56.
Meng, F. (2014): Using self-organized mapping to seek refactorable code clone. Fourth
International Conference on Communication Systems and Network Technologies, pp.
851-855.
Mondal, M.; Roy, C. K.; Schneider, K. A. (2015): SPCP-Miner: a tool for mining code
clones that are important for refactor or tracking. IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineerin, pp. 484-488.
Oliver, P.; Patrick, N.; Bruce, M. (2009): Bayesian Networks: A Practical Guide to
Applications, John Wiley and Sons, Ltd.
Opdyke, W. F. (1992): Refactor Object Frame Works. Illinois: University of Illinois at
Urban-Champaign.
Roy, C. K. (2009): Detection and analysis of near-miss software clones. 25th IEEE
International Conference on Software Maintenance, pp. 447-450.
Roy, C. K.; Zibran, M. F.; Koschke, R. (2014): The vision of software clone
management: past, present, and future. Software Evolution Week-IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering, pp. 18-33.
Roy, C. K.；Cordy, J. R. (2008): NICAD: Accurate detection of near-miss intentional
clones using flexible pretty-printing and code normalization. 16th IEEE International
Conference on Program Comprehension, pp. 172-181.
Shen, T.; Nagai, Y. K.; Gao, C. (2019): Improve computer visualization of architecture
based on the Bayesian network. Computers, Materials & Continua, vol. 58, no. 2, pp. 307-318.
Steidl, D.; Gode, N. (2013): Feature-based detection of bugs in clones. 7th International
Workshop on Software Clones, pp. 76-82.
Turhan, B.; Bener, A. (2009): Analysis of naive Bayes’ assumptions on software fault
data: an empirical study. Data & Knowledge Engineering, vol. 68, no. 2, pp. 278-290.
Wang, W.; Godfrey, M. W. (2014): Recommending clones for refactoring using design,
context, and history. IEEE International Conference on Software Maintenance and
Evolution, pp. 331-340.
Wang, X. Y.; Dang, Y. N.; Zhang, L. (2012): Can I clone this piece of code here?
Proceedings of the IEEE: ACM International Conference on Automated Software
Engineering, pp. 170-179.
Yoshida, N.; Higo, Y.; Kamiya, T.; Kusumoto, S.; Inoue, K. (2005): On refactoring
support based on code clone dependency relation. 11th IEEE International Software
Metrics Symposium, pp. 10-16.

https://www.sciencedirect.com/science/journal/0169023X/68/2

	A Recommendation Approach Based on Bayesian Networks for Clone Refactor
	Ye Zhai0F , *, Dongsheng Liu1 , Celimuge Wu1F and Rongrong She1

	References

