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Abstract: Reusing code fragments by copying and pasting them with or without minor 
adaptation is a common activity in software development. As a result, software systems 
often contain sections of code that are very similar, called code clones. Code clones are 
beneficial in reducing software development costs and development risks. However, 
recent studies have indicated some negative impacts as a result. In order to effectively 
manage and utilize the clones, we design an approach for recommending refactoring 
clones based on a Bayesian network. Firstly, clone codes are detected from the source 
code. Secondly, the clones that need to be refactored are identified, and the static and 
evolutions features are extracted to build the feature database. Finally, the Bayesian 
network classifier is used for training and evaluating the classification results. Based on 
more than 640 refactor examples of five open source software developed in C, we 
observe a considerable enhancement. The results show that the accuracy of the approach 
is larger than 90%. We believe our approach will provide a more accurate and reasonable 
code refactoring and maintenance advice for software developers. 
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1 Introduction  
Code clone has become a common method during software development. If two or more 
code fragments in a software system’s codebase are exactly or nearly similar to one 
another, we call them code clones [Kim, Sazawal and Notkin (2005)]. A group of similar 
code fragments forms a clone class. Code clones are mainly created because of the 
frequent copy/paste activities of the programmers during software development and 
maintenance. Whatever may be the reasons behind cloning, code clones are of great 
importance from the perspectives of software maintenance and evolution [Roy, Zibran 
and Koschke (2014); Roy (2009)]. 
A large number of identical or similar code clones brought difficulties for the software 
maintenance. For example, if a bug is detected in a code fragment, all fragments similar to it 
should be checked for the same bug [Li, Lu, Myagmar et al. (2006)]. Duplicated fragments 
can also significantly increase the work to be done when enhancing or adapting code. Many 
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other software engineering tasks, such as program understanding, code quality analysis (fewer 
clones may mean better quality code), aspect mining (clones may indicate the presence of an 
aspect), plagiarism detection, copyright infringement investigation, software evolution 
analysis, code compaction (for example, in mobile devices), virus detection and bug detection 
may require necessary and proper management of the cloned code. Many researchers 
consider code clones should be removed. However, sometimes there are dependencies 
relations among each of which belong to the different clones, and simple removal of the code 
may cause more serious errors [Yoshida, Higo, Kamiya et al. (2005)]. 
Existing research shows that it is impractical to refactor all clones in software system, and not 
all clones need to be refactored [Higo, Ueda, Kusumoto et al. (2007)]. Blindly refactoring 
may affect other useful codes in the software, and lead to software quality degradation. An 
empirical study of Kim et al. [Kim, Sazawal and Notkin (2005)] revealed two points: first one 
is that some clones are short-lived, and merging them wouldn’t improve the maintainability; 
second one is that most of long-living clones are not suited to be refactored because there is 
no abstraction function of the programming language. Therefore, it is especially critical to 
identify the clones suitable for refactoring before effective maintenance of the clones. 
In this paper, we provide an approach based on Bayesian to refactor clone code for 
software developers. The main purpose of our study is to provide valuable reference 
information for software development and maintenance, so as to reduce maintenance 
costs, improve software code quality and obtain greater economic benefits. 
The rest of the paper is organized as follows. Section II contains the terminology, Section 
III discusses the experimental steps, Section IV analyzes the experimental results, and 
Section V concludes the paper by mentioning possible future work. 

2 Related works 
2.1 Clone code definition and classification 
Since the extensive use of clones has an important impact on the quality of software 
products, the related research on clone has become a more active branch in the field of 
code analysis in recent years. A code clone is a set of source code fragments identical or 
similar to each other from the viewpoint of software maintainability.  The types of clone 
can be divided from different perspectives. Currently, there are two main perspectives of 
classification. One is to divide code into Type-1, Type-2, Type-3 and Type-4 according 
to code similarity [Kim, Sazawal and Notkin (2005)], Tab. 1 shows the definition; the 
other is to divide code into file clone, class clone, function clone, block clone and 
statement clone according to detection granularity.  

Table 1: Definition of clone type 
Type Description 
Type-1 The exact same code fragment except the space and comment changes 
Type-2 The code fragment with the same syntax structure except the blanks, comments, 

identifiers, and type substitutions 
Type-3 Code fragments with the same syntactic structure except blanks, comments, 

identifiers, and type substitutions, but with added, deleted, or modified with a 
small number of statements 

Type-4 Code fragments with the same function but different syntax structures 
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2.2 Clone detection 
Clone detection can find clones in the source code and giving feedback in the form of a 
clone pair or a clone group [Kamiya, Kusumoto and Inoue (2002)]. At present, the 
research of clone detection has been attracting great interests, and many detection 
technologies have been proposed, including text-based clone detection [Johnson (1993)], 
Token-based clone detection [Li, Lu, Myagmar et al. ( 2006)], Abstract Syntax Trees 
(AST) detection [Koschke, Falke and Frenzel (2006)], Program Dependence Graphs 
(PDG) detection [Roy (2009)],  low-level language-based detection [Davis and Godfrey 
(2010)], Metrics-based detection [Abd-El-Hafiz (2012)]. 

2.3 Clone refactor 
The concept of refactor is proposed by Opdyke [Opdyke (1992)] to improve the quality 
of the code by changing the internal structure of the program code without changing the 
external behavior of the program code. At present, there are many studies on clone 
refactor. Bian [Bian (2014)] extracted a clone suitable for refactor with a simple 
calculation method. Bakota [Bakota (2011)] extracted clones suitable for refactoring 
based on evolutionary analysis, which is suitable to Type-1 and Type-2 clone. Mondal et 
al. [Mondal, Roy and Schneider (2015)] divided the SPCP clone into refactored data set 
and a tracking data set according to the location of the clone fragments. Higo et al. [Higo, 
Ueda, Kusumoto et al. (2007)] proposed an approach for extracting clones based on clone 
metrics for refactor. Meng [Meng (2014)] proposes a method based on SOM (Self 
Organized Mapping) clustering to seek refactorable code clone. 
Liu et al. [Liu, Liu, Zhang et al. (2016)] proposed an approach to evaluate the reconfigure 
ability of clone code. This approach systematically evaluates the reconfigure ability of 
clones in current version, and ranks it from low to high according to the refactor level of 
clones. But the effort laid the foundation for recommending refactor clone. 

2.4 Bayesian network 
Bayesian network is also called belief network. Bayesian classifier is a simple and powerful 
classification method [Oliver, Patrick and Bruce (2009)]. It is one of the most effective 
theoretical models in the field of reasoning. Shen et al. [Shen, Nagai and Gao (2019)] 
improve computer visualization of architecture based on the Bayesian network. Burak et al. 
[Burak, Turhan, Ayse et al. (2009)] used Bayesian network to predict the code that needs to 
be refactored in Java system, and achieved certain results. The team used the decision tree 
to recommend refactor clones in the early stage, but the prediction effect is not very good, 
so this paper uses Bayesian network to recommend refactor clones. 
There are two main steps in constructing or training Bayesian network: 
Step 1: Determine the topological relationship between random variables to form DGA, 
which is to find a set of conditional probabilities. The calculation formula is as follows： 
𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,…,𝑥𝑥𝑛𝑛) = 𝑝𝑝(𝑥𝑥1)𝑝𝑝(𝑥𝑥2|𝑥𝑥1)𝑝𝑝(𝑥𝑥3|𝑥𝑥1,𝑥𝑥2)…𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, 𝑥𝑥2,…,𝑥𝑥𝑛𝑛−1)                         (1) 
Step 2: The Bayesian network is trained to complete the construction of conditional 
probability table. The calculation formula is as follows: 
𝑝𝑝(𝑥𝑥1, 𝑥𝑥2,…,𝑥𝑥𝑛𝑛) = ∏ 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑖𝑖))𝑛𝑛

𝑖𝑖=1                                                                      (2) 
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where Parents represent the union of direct precursor nodes of xi. 

3 Recommend clone based on Bayesian network 
This paper proposes an approach for recommending clone code, which is divided into 
five steps, as shown in Fig. 1. 

 
Figure 1: Overall analysis process 

3.1 Clone detection 
We use Nicad [Roy and Cordy (2008)] for clone detection, which can detect Type-1, 
Type-2 and Type-3 clones more accurately. This tool takes multiple versions of software 
as input to get clone group information, which includes file name, function name, start 
line, end line and other information as well as clone fragment related information. The 
data are stored in the form of Extensible Markup Language (XML) format to facilitate the 
extraction and carry out follow-up research. The Fig. 2 shows the details. 

 
Figure 2: Clone code detection results 

3.2 Identify the refactor clone code 
In this paper, the specific process of identifying refactor instances of clone is divided into 
the following three steps: 
Step 1. Refactor code instances are defined based on adjacent version keys. If any two 
clone fragments are refactored, they are refactored instance. 
Step 2. Generate refactoring candidate set. In this experiment, five famous open source 
systems are selected and all public versions of these systems are collected. To identify 
clone refactoring instances in the selected target system, we use the measurement tool 
Moose\Metrics [Demeyer, Ducasse and Nierstrasz (2005)] to extract classes, methods, 
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attributes and calculate necessary metrics from the source code to produce refactoring 
candidate sets. 
Step 3. Optimize refactoring candidate set.  
After generating the refactoring candidate set, it will be further filtered and optimized 
according to the following three conditions: 
1. Two siblings of the clone class between adjacent versions disappear 
2. For methods within the clone fragment, the number of source code lines is reduced, 

and at least one method is added only in this method 
3. A new source class in the raw clone is created and used as a parent class. 
These three conditions are selected because they contain all the refactoring patterns 
associated with clone refactor. By manually checking clone refactor candidates with this 
metric-based approach, Demeyer et al. [Demeyer, Ducasse and Nierstrasz (2005)] found 
that this method can detect all fowler refactor modes suitable for clone refactor, including 
Extract Method, Extract Superclass, Pull-Up Method, Replace Method with Method 
Object, Template Method et al. If any of these conditions is met, then a clone class C is 
considered as a candidate. 

3.3 Extract feature 
Feature extraction is a common data preprocessing method in the field of machine 
learning and pattern recognition. It is a necessary step to train machine learning models. 
Through the study of two large industrial software, Wang et al. [Wang, Dang and Zhang 
(2012)] proposed that the harmfulness of using clones could be related to the 
characteristics of clone fragment and the characteristics of content. Steidl et al. [Steidl 
and Gode (2013)] used the characteristics of clone fragment and clone relationships to 
automatically identify the bug fixes of clones and verified them. These features are 
related to the harmfulness of the clone, and can also be an important basis for 
recommending refactor. 
Clone code is not static, it is constantly evolving, and it is not enough to reflect the 
refactor of clones from a single version of the feature. Therefore, this paper reflects the 
possibility of refactor clones from the four dimensions of clone relationship, clone 
context, clone fragment and clone evolution. The clone evolution includes clone life, 
clone evolution frequency, and clone evolution mode. These three characteristics reflect 
the impact of changes in the evolution of the clone on the quality of the software, which 
will help to analyze the possibility that the clones need to be refactored. Detailed 
characteristics information is shown in Tab. 2. 
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Table 2: Detailed feature description 

Feature type Feature 

Clone relationship 

1. Number of clone fragments in the clone class 

2. Edit distance between clone method names 

3. Whether the clone group is a clone of Type-3 

4. Whether the clone fragment is in the same file, or an adjacent file 

Clone context 

5. Whether it is a clone fragment following the flow control statement 

6. The life cycle of the original file containing the clone fragment 

7. The number of lines of code that contain the method of the clone 
code fragment 

8. Size of clone code fragment out of size of a method  

Clone fragment 

9. Number of lines of the clone fragment 

10. The size of the token of the clone fragment 

11. Whether a clone fragment contains a complete control block 

12. The complexity of clone code 

13. The percentage of method call statements in the clone fragment 

14. The percentage of the calculated statement in the clone fragment 

15. Whether the clone fragment starts with a control flow statement 

Clone evolution 

16.Life of clone 

17. Clone evolution frequency 

18. Clone evolution model 

Extract feature is based on clone detection and refactor annotation. Clone detection result 
is the basic clone data in this study, including the number and location of the clone. 
Whether the clone group is Type-3 or the token size of the clone fragment is directly 
extracted from the clone detection result. We use the code tool SourceMonitor to extract 
other features. SourceMonitor is a tool that measures code written in multiple languages 
(C++, C, C#, VB.net, Java, Visual, Basic, and HTML) and outputs different code metrics 
for different languages. Taking the clone code as input, SourceMonitor will output the 
static characteristics value of the corresponding clone code. Fig. 3 shows the results of 
SourceMonitor’s measurement of partial clone code. The <Lines>, <Max Complexity> 
and <%Comments> tag of the SourceMonitor tool indicated code lines, cyclomatic 
complexity and percentage of comments. But you need to manually extract for feature 11 
(whether a clone fragment contains a complete control block). 
The evolutionary features extracted in this paper are three categories: clone life, 
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frequency of change, and evolution mode. The extraction method is mainly extracted by 
the clone function extractor FCGE, which is developed by our team. The extraction 
results are shown in Fig. 4. 

 
Figure 3: Partial clone code measurement results 

poatgresql-9.3.2.CG[1]<- - -(Static)---poatgresql-9.3.1.CG[1]<- - -(Static)---poatgresql-9.3.0.CG[1]<- - -(Static)---poatgresql-9.2.6.CG[1]<- - -(Static)---
poatgresql-9.2.5.CG[1]<- - -(Static)---poatgresql-9.2.4.CG[1]<- - -(Static)---poatgresql-9.2.3.CG[1]<- - -(Inconsistent)---poatgresql-9.2.2.CG[1]<- - -(Add)---
poatgresql-9.2.1.CG[1]<- - -(Static)---poatgresql-9.2.0.CG[1]<- - -()---poatgresql-9.1.11.CG[1]<- - -(Static)---poatgresql-9.1.9.CG[1]<- - -(Static)---poatgresql-
9.1.8.CG[1]<- - -(Subtract)---poatgresql-9.1.7.CG[1]<- - -(Static)---poatgresql-9.1.6.CG[1]<- - -(Static)---poatgresql-9.1.5.CG[1]<- - -(Inconsistent)---
poatgresql-9.1.4.CG[1]<- - -(Static)---poatgresql-9.1.3.CG[1]<- - -(Inconsistent)---poatgresql-9.1.2.CG[1]

 
Figure 4: Clone evolution feature extraction results 

3.4 Training classifier 
After extracting features and completing the construction of feature datasets, we select 
the machine learning model of Bayesian network to recommend clone refactor code. 
Dependency analysis and search-based scoring methods are the two main types of 
methods commonly used in Bayesian networks. In this study, a score-based search 
method is used, which can search the exact network structure. Because of the large 
architectural space, heuristic algorithms are needed to search for the best Bayesian 
network architecture. We use a heuristic algorithm to represent the K2 algorithm. The 
pseudo code of the K2 algorithm is shown in Tab. 3, where μ represents the upper bound 
of the number of variable nodes and ν represents a complete set of data. 
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Table 3: K2 algorithm 
input: X={X1, X2, …..Xn} 
output: Bayesian network 
1. ￡← Borderless graph consisting of nodes X1, X2, ..., Xn 
2. for j=1 to n 
3.  π←Φ 
4. Vold←CH(<Xj,πj>|ν） 
5. while(true) 
6. i←argmax1≤i≤j,Xi∈πj CH（<Xj,πj∪{Xi}>|ν） 
7. Vnew←CH(<Xj，πj∪{Xi}>|ν) 
8.  if (Vnew>Vold and |πj|<μ) 
9. Vold←Vnew 
10. πj←πi ∪{Xi} 
11.  Adding edges in ν to Xi→Xj 
12. else 
13. break 
14. end if 
15. end while 
16. end for 
17. estimated £ parameter θ 
18. return (£, θ) 

3.5 Evaluation of classification results 
When predicting unknown data samples, some are correctly classified and some are 
misclassified. Therefore, in order to evaluate the performance of the clone refactor prediction 
model, we use the recall rate, precision, and F commonly as evaluation indicators. The 
mixing matrix corresponding to the values and the like is as shown in Tab. 4.  

Table 4: Mixed matrix 

Forecast result Positive class Anti-class 

Positive class True Positive (TP) False Negative (FN) 

Anti-class False Positive (FP) True Negative (TN) 

The definitions of precision, recall and F are as follows: 
                                                                                                                 (3) 

Re TPcall
TP FN

=
+

                                                                                                                (4) 

*Pr *Re
Pr Re

2 ecision callF
ecision call

=
+

                                                                                                     (5) 
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Among them, recall measure classifiers correctly predict the proportion of clone refactor, 
and recall is a common index in classification problems, which reflects the overall 
classification performance of classifiers to data sets. 

4 Experiment and analysis 
4.1 Experimental data selection 
The five open source software are selected in this experiment, FFmpeg, Smalltalk, 
Claws-mail, Fdisk and Lighttpd. Tab. 5 shows the basic information. 

Table 5: Basic information of the experimental software 

4.2 Experimental results 
In this paper, different feature subsets are selected and each subject is used to train a new 
classifier. This experiment selects the characteristics of four subsets. These subsets are 
clone relationship, clone context, clone fragment and clone evolution. The experimental 
results are shown in Tabs. 6 and 7. 

Table 6: Results of classification training for clone refactor instances 

Software All features Static feature Evolution 
information Clone 

relationship 
Clone 
fragment 

Clone context 

Precision recall Precision Recall precision recall precision Recall precision recall 

FFmpeg 0.925 0.920 0.715 0.804 0.920 0.913 0.865 0.856 0.801 0.795 

Smalltalk 0.905 0.897 0.685 0.640 0.895 0.885 0.842 0.815 0.812 0.734 

Claws-mail 0.935 0.918 0.729 0.801 0.928 0.909 0.870 0.819 0.785 0.834 

Fdisk 0.928 0.925 0.699 0.621 0.920 0.918 0.867 0.899 0.821 0.835 

Lighttpd 0.945 0.930 0.805 0.563 0.930 0.908 0.898 0.889 0.818 0.858 

From these two tables, the following conclusions can be drawn:  
 Classifiers without any type of feature training in the five experiment softwares are 

always superior to classifiers trained by other feature types. 

 

 

 

Software language Features Lines of code 
FFmpeg  C Multimedia tool software 543560 
Smalltalk C Program integration development environment 3078858 
Claws-mail C Mail client 220235 
Fdisk C Disk management tool 187958 
Lighttpd C Web server 53378 
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Table 7: Results of classification training for non-refactored instances 

 Compared with the classifier trained by all feature types, the result of the classifier 
trained by clone fragment type features is the most similar. 

 The classifier of the clone context feature type and the classifier training of the 
evolution feature type training are slightly lower than the classifiers trained by all 
feature types. 

 The classifier of clone relationship feature type training, which makes the 
performance of classifier get a small part of improvement. 

Based on the above conclusions, it is concluded that the characteristics of the clone 
fragment are independent of the clone relationship, clone content and evolution 
information. The generated result is used to recommend the refactored clone. 
In this experiment, K-fold cross-validation is selected to evaluate the verification. The 
basic idea of this method is to divide the input data set into training set and test set. 
Because the test set and the training set are invisible to the classifier, the object of cross-
validation is performed. The object is the result of the training set output. The 
experimental steps are as follows: 
Step 1. Divide the data set D into k mutually similar reciprocal subsets, namely D=D1 and 
D2 and D3... and Dk, and there is no intersection between each subset. 
Step 2. Use the union of k-1 subsets as the training set each time, and the remaining one 
as the test set, thus obtaining the k group training/test set. 
Step 3. Perform k training and testing, and finally return the mean of the k results. 
Step 4. Use different partitions multiple times at random.  
This experiment uses K-fold cross-validation to evaluate the classifier prediction model, 
where K=10. We found that the error obtained by 10% is the smallest after many 
experiments on large data sets and using different technologies, so the experiment divides 
the data set into 10 parts. The verification results are shown in Tabs. 8 and 9. The 
accuracy, recall, and F metric of the refactored and non-refactored instances are shown in 
the two tables. 

 
 

Software All features Static feature Evolution 
information Clone 

relationship 
Clone 
fragment 

Clone context 

Precision recall Precision Recall precision recall precision Recall precision recall 

FFmpeg 0.930 0.925 0.625 0.701 0.927 0.913 0.875 0.863 0.873 0.855 

Smalltalk 0.912 0.905 0.798 0.686 0.910 0.905 0.875 0.889 0.862 0.878 

Claws-mail 0.928 0.913 0.798 0.585 0..920 0.907 0.901 0.894 0.896 0.883 

Fdisk 0.917 0.914 0.805 0.425 0.911 0.905 0.885 0.895 0.881 0.890 

Lighttpd 0.945 0.925 0.585 0.861 0.941 0.919 0.909 0.905 0.901 0.884 
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Table 8: Results of the refactor group test 

Table 9: Results of the non-refactor group test 

Software Precision Recall F-Measure 
FFmpeg 
Smalltalk  
Claws-mail 
Fdisk 
Lighttpd 

0.879 
0.895 
0.918 
0.901 
0.928 

0.902 
0.899 
0.920 
0.909 
0.930 

0.911 
0.902 
0.923 
0.913 
0.931 

From Tab. 8, it can be concluded that the accuracy of the ten-fold cross-validation of 
refactor example has increased from 88.5% to 92.1%, which is 3.6 percentage points 
higher. The recall rate increased from 89.7% to 93.5%, up 3.8 percentage points. The F 
value increased from 90.1 to 93.8%, 3.2 percentage points higher. From Tab. 9, it can be 
concluded that the accuracy of the ten-fold cross-validation of non-refactored instance 
increased from 87.9% to 92.8%, growth rate is 4.9 percentage points. The recall rate 
increased from 89.9% to 93.0%, up 3.1 percentage points. The F-value increased from 
90.2% to 93.1%, 2.9 percentage points higher. Therefore, it is concluded that the 
classifier constructed in this study is better than the random selection. 

4.3 Comparative analysis of similar experiments 
At present, there are few researches on using machine learning methods to recommend 
and predict the refactor clone code. Wang et al. [Wang and Godfrey (2014)] proposed a 
representative method use machine learning methods to predict the clones to be 
refactored. They used Iclones detection and propose an automated approach to 
recommend clones for refactoring by training a decision tree-based classifier. In this 
study, Nicad is used to detect the clone code. At the same time, we extracted the features 
are not completely consistent with Wang’s. The project studied in this paper is the C 
project and Wang used Java. 
Liu et al. [Liu, Liu, Zhang et al. (2016)] of the team used the Bayesian network to predict 
the clones to be refactored and evaluated it using the quality model EMISQ. The clone 
detection is Fclones, and its feature selection is based on ISO software quality standards. 
The characteristics of this paper are extracted from the static and evolution categories, so 
only the recommended clone refactor is compared. The projects used in this paper and 
Liu et al. [Liu, Liu, Zhang et al. (2016)] are all C projects, and all used Bayesian network 

Software Precision Recall F-Measure 
FFmpeg 
Smalltalk  
Claws-mail 
Fdisk 
Lighttpd 

0.885 
0.921 
0.912 
0.901 
0.899 

0.897 
0.935 
0.919 
0.915 
0.913 

0.901 
0.938 
0.921 
0.920 
0.918 
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model for prediction. The experimental platform is the same operating system: 
Ubuntu14.04 64-bit, memory: 8 GB, CPU:2 cores. 
In order to prove the effectiveness of the experimental results, we chose three source 
software for comparison experiments, which are same as used in Liu et al. [Liu, Liu, 
Zhang et al. (2016)]. The version information is shown in Tab. 10. 

Table 10: Recommended software information for cloning refactored experiments 

Software Start version End version Commits Refactoring instance 

Xorriso 1.4.15 1.4.39 53378 308 

Smalltalk 2.0.11 3.2.5 3078858 381 

Bison 1.9.100 3.9.3 220235 289 

Through the comparative experiment, the results are shown in Tab. 11. Compared with 
the EMISQ method, the precision, recall and f-value of Xoriso are increased by 9%, 
11.4% and 8.4% respectively. Compared with the EMISQ method, the precision of the 
proposed clone refactor software Smalltalk is increased by 9.1%, 7% and 5.2% 
respectively. Compared with the EMISQ method, the precision of the software, it is 
increased by 11.7%, 7% and 5.9% respectively. In conclusion, the recall, precision and F- 
value of clone refactor method are higher than those of EMISQ method. 

Table 11: Recommended cloning and refactor of similar experimental results 

Software Approach Precision recall F 

Xorriso EMISQ 0.926 0.882 0.904 
Method of this paper 0.975 0.996 0.988 

Smalltalk EMISQ 0.889 0.990 0.934 

Method of this paper 0.980 0.997 0.986 
Bison EMISQ 0.865 0.991 0.927 

Method of this paper 0.972 0.998 0.986 

5 Conclusions and future work 
The difficulty of software maintenance and the complexity of the project can be reduced 
by refactoring. This paper proposes an approach to recommend refactoring clone based 
on Bayesian network. The clones in the project are detected by clone detection tool, the 
clone that needs to be refactored are found in three steps and then are labeled. At the 
same time, the refactoring tool SourceMonitor and FCGE are used to extract features and 
build sample data set. Finally, more than 640 clone instances are tested by using ten-fold 
cross-validation. It is found that the accuracy, recall rate and F-value of the proposed 
classifier based on Bayesian network can reach more than 90%, which proves the 
effectiveness of this approach. The findings from our study are important for better 
management of code clones as well as for better maintenance of software systems. 
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There are still some shortcomings in the research content and experiment of this paper, 
for example, we can only recommend the refactoring clones in the C-language 
development project at present. In future research, we will continue to improve this work. 
We are targeting at recommending not only C-language development projects, but also 
Java and python projects. 
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