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Abstract: Host cardinality estimation is an important research field in network 
management and network security. The host cardinality estimation algorithm based on 
the linear estimator array is a common method. Existing algorithms do not take memory 
footprint into account when selecting the number of estimators used by each host. This 
paper analyzes the relationship between memory occupancy and estimation accuracy and 
compares the effects of different parameters on algorithm accuracy. The cardinality 
estimating algorithm is a kind of random algorithm, and there is a deviation between the 
estimated results and the actual cardinalities. The deviation is affected by some 
systematical factors, such as the random parameters inherent in linear estimator and the 
random functions used to map a host to different linear estimators. These random factors 
cannot be reduced by merging multiple estimators, and existing algorithms cannot 
remove the deviation caused by such factors. In this paper, we regard the estimation 
deviation as a random variable and proposed a sampling method, recorded as the linear 
estimator array step sampling algorithm (L2S), to reduce the influence of the random 
deviation. L2S improves the accuracy of the estimated cardinalities by evaluating and 
remove the expected value of random deviation. The cardinality estimation algorithm 
based on the estimator array is a computationally intensive algorithm, which takes a lot of 
time when processing high-speed network data in a serial environment. To solve this 
problem, a method is proposed to port the cardinality estimating algorithm based on the 
estimator array to the Graphics Processing Unit (GPU). Experiments on real-world high-
speed network traffic show that L2S can reduce the absolute bias by more than 22% on 
average, and the extra time is less than 61 milliseconds on average.   
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1 Introduction 
The Internet is one of the important infrastructures of the modern information society, 
and its security has become an important prerequisite for the national economy and social 
development [Bhuyan, Bhattacharyya and Kalita (2014)]. With the rapid development of 
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China’s economy, the number of Internet users in China has increased rapidly. According 
to the statistics from the China Internet Network Information Center (CNNIC) [CNNIC 
(2019)], as of June 2019, the number of Internet users in China has reached 854 million. 
These network users will generate massive network traffic every day [Pacifici, Lehrieder 
and Dán (2016)]. Managing and analyzing such a high-bandwidth network is a daunting 
task. The rapid development of the Internet has also brought network security into a new 
era. Network and information security events, such as botnet [Vormayr, Zseby and Fabini 
(2017)], information leakage [Ciriani, Vimercati, Foresti et al. (2010)], industry network 
attacks [Xu, Ren, Wang et al. (2019)], are threatening the network’s security. 
Lots of researchers propose excellent and efficient algorithms to protect network security. 
Calculation and analysis of network traffic properties is an important foundation of 
network security and management. The cardinality of a host in the network [Xiao, Chen, 
Zhou et al. (2017)] is one of the important network attributes which has received much 
attention. Suppose there are two networks (ANet and BNet), and they communicate with 
each other through an edge router (R). Let aip represent a host in ANet, bip represent a 
host in BNet. When taking R as the traffic observation point, the cardinality of an aip in 
ANet is the number of hosts in BNet which communicating with aip in a period through 
R; the cardinality of a bip in BNet is the number of hosts in ANet which communicating 
with bip in a period through R. Without losing generality, the cardinality in this paper 
refers to the cardinality of aip in ANet. An IP address pair like <aip, bip> can be 
extracted from each packet passing through R, and cardinalities of different hosts could 
be calculated by scanning these IP address pairs stream extracted from packets stream. 
When ANet and BNet are high-speed networks, such as the Internet between two cities 
[Bianco, Bonald, Cuda et al. (2013)], it is difficult to accurately calculate the cardinality 
of each aip in real-time. To ensure the real-time performance of the calculation, 
estimating algorithms are proposed. 
The cardinality estimation algorithm based on the estimator array is a common 
cardinality calculation method. This method calculates the cardinality of different hosts 
by using a fixed number of estimators. Each estimator is used by several aip to reduce 
memory consumption, and each aip uses several estimators to improve estimation 
accuracy. Existing algorithms do not take memory footprint into account when selecting 
the number of estimators used by each host. Based on the relationship between memory 
occupancy and estimated accuracy, this paper analyzes the influence of different row 
numbers of estimator array. The cardinality estimation algorithm based on the estimator 
array is a computationally intensive algorithm, which takes a lot of computational time to 
run in real-time when processing high-speed network data in a serial environment. In this 
paper, a method is proposed to port the cardinality estimation algorithm based on the 
estimator array to the Graphics Processing Unit (GPU) [Mittal (2017)], and the real-time 
cardinality estimation on the high-speed network is realized. GPU was originally 
designed for image processing, and now it is widely used in the field of parallel 
computing and artificial intelligence. The main contributions of this article are as follows: 
(1) Analyzed the influence of the number of linear estimator array’s rows on the 
estimation results under the condition of fixed memory. 
(2) Proposed a novel algorithm, the linear estimator array step sampling algorithm (L2S), 
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to improve the accuracy of estimated cardinalities by deviation sampling. 
(3) A framework for deploying a cardinality estimation algorithm based on a linear 
estimator array on the GPU is proposed, and real-time cardinality estimation of the high-
speed network is realized. 
(4) Experiments on real-world high-speed network traffic are presented to demonstrate 
that L2S can improve the accuracy greatly with little time consumption. 
This paper is organized as follows. In Section 2, the existing works are introduced. In 
Section 3, the algorithm of cardinality estimation based on the array of estimators is 
introduced. The method to analyze the parameters of estimator array is given by 
calculating the relationship between the number of estimators used by each host and the 
number of distinct IP address pairs. Section 4 describes how the linear estimator array 
step sampling algorithm (L2S) works to improve accuracy by cardinality sampling. In 
Section 5 of this paper, from the perspective of parallel computing, a method of 
transplanting the cardinality estimation algorithm based on estimator array to GPU is 
proposed. Section 6 gives the results and analysis of experiments, and Section 7 
summarizes this paper. 

2 Related work 
Host cardinality is an important network attribute and used in many applications, such as 
Distributed Denial of Service (DDoS) detection [Zargar, Joshi and Tipper (2013)], Peer 
to Peer (P2P) management [Zhuang and Chang (2019)], network security [Xie, Yan, Yao 
et al. (2019)] and so on. For low-speed network or without real-time processing 
requirement, the red-black tree can be used to store all IP address pairs, and accurately 
calculate the cardinality of each host. This method can accurately get the cardinality of 
each host, and there is no error in the results. This algorithm is called the precise 
algorithm. For high-speed networks or embedded devices, the precise algorithm has the 
following disadvantages. First, large memory consumption. For each corresponding bip 
of each aip, the precise algorithm needs to save them in memory. Because the high-speed 
network contains a large number of hosts, the precise algorithm needs a large amount of 
memory to store this information. If there is a network attack, such as the flood attack 
which forges the source address, the number of IP address pairs of some aip will grow 
rapidly and occupy too much memory. Second, memory access is frequent. For each IP 
address pair, the precise algorithm needs to find out whether the corresponding bip has 
ever appeared in memory. It is an I/O-intensive algorithm, and the speed of memory 
access will limit the speed of the precise algorithm. The traffic of high-speed network is a 
kind of big data [Wang, Wang, Sherratt et al. (2020)], and it is inefficient to store all 
traffic when running in real-time. Hence, each IP address pair can only be scanned once 
when running online. 
Therefore, the precise algorithm is not suitable for high-speed networks. To reduce 
memory usage and improve the speed of the algorithm, many scholars proposed the host 
cardinality estimation algorithm based on data sharing structures. This kind of algorithm 
uses fixed-size memory to estimate different hosts’ cardinalities. In this paper, the 
algorithm that can estimate cardinalities of different hosts at the same time is called the 
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cardinality estimation algorithm. The algorithm that can only estimate the cardinality of a 
single host is an estimator. 
The estimator is the basis of the cardinality estimation algorithm. Each estimator can be 
regarded as a set of counters. Commonly used estimators include PCSA [Qian, Ngan, Liu 
et al. (2011)], HyperLogLog [Cohen and Nezri (2019)] and Linear Estimator (LE) 
[Tarkoma, Rothenberg and Lagerspetz (2012)]. Among them, the LE algorithm, also 
called linear estimator, is widely used in various cardinality estimation algorithms 
because of its high accuracy and simple operation. LE uses 𝑔𝑔 counters to record and 
estimate the cardinality, and every counter in LE is a bit. Let LEi represent the ith bit in 
LE. When initialized, each bit is 0. When scanning the corresponding bip, each bip is 
randomly mapped to a bit and the value of that bit is set to 1. After scanning all 
corresponding bip, LE uses the following formula to estimate the cardinality. Where 𝑛𝑛0 
represents the number of bits with a value of 0. 

Est = −𝑔𝑔 ∗ log �
𝑛𝑛0
𝑔𝑔
�  

The cardinality estimation algorithm uses the estimator to estimate the cardinality of each 
host. From the use of the estimator, the cardinality estimation algorithm can be divided 
into two categories, namely, the cardinality estimation algorithm based on counter 
sharing [Shin, Im and Yoon (2014)] and the cardinality estimation algorithm based on 
estimator sharing [Liu, Qu, Gong et al. (2016)]. The cardinality estimation algorithm 
based on counter sharing assigns a virtual estimator to each host. Each counter of the 
virtual estimator is mapped to a counter in the counter pool, i.e., each counter will be 
shared by virtual estimators of multiple hosts for cardinality estimation. The cardinality 
estimation algorithm based on counter sharing uses a fixed number of estimators to 
estimate cardinalities of different hosts. In the cardinality estimation algorithm based on 
estimator sharing, each estimator will be used for cardinality estimation of multiple hosts, 
and each host will also use multiple estimators to estimate cardinality. The cardinality 
estimation algorithm based on estimator sharing can not only reduce the estimation error 
by using multiple estimators jointly but also recover the candidate super points by 
reasonably setting the mapping mode from each host to the estimator. In this paper, the 
cardinality estimation algorithm based on estimator sharing using LE as the estimator is 
studied, a novel high accuracy algorithm by cardinality sampling is proposed, and a real-
time operation mode of transplanting the algorithm to GPU is given. 

3 LE array cardinality estimating 
The LE can be used to estimate the cardinality of a host. The number of bits contained in 
LE determines the accuracy of its estimation results and the maximum cardinality it can 
estimate. For example, when the number of bits in LE is 29, according to the estimation 
formula of LE, the maximum estimation value that LE can give is 3194. When the 
cardinality of a host is greater than 3194, LE needs to use more bits to accurately estimate 
the cardinality of the host. To get high estimation accuracy, we need to allocate enough 
bits for LE, because we don’t know the exact value of a host before estimating its 
cardinality. The more bits LE contains, the more memory it takes up. 
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Although it is better to use LE with a large number of bits for the high-cardinality host, it 
will waste a lot of memory to estimate the cardinality of small cardinality hosts using LE 
with the same number of bits. At the same time, the high-speed network will contain a 
large number of hosts, and most of them have small cardinalities. Therefore, allocating a 
single LE to each host will waste a lot of memory and reduce the efficiency of the 
algorithm. 
To improve memory usage, each LE is used for cardinality estimation of multiple hosts. 
However, this will lead to an overestimation of the cardinality. To reduce the 
overestimation caused by LE sharing, each host also uses multiple LE for cardinality 
estimation at the same time. Using LE array to estimate cardinality is proposed under this 
principle. 

3.1 Process of cardinality estimating 
The LE matrix composed of r row and c column is called LE array, which is recorded as 
Linear estimator Array (LA). Fig. 1 shows the structure of LA. Each LE in LA will be 
shared by multiple hosts. Among them, r determines how many LE each host will use for 
cardinality estimation, and c determines how many hosts each LE will be used for 
cardinality estimation on average. The algorithm that uses LA for cardinality estimation is 
called Linear estimator Array Algorithm (LAA). In other words, LA is the main data 
structure used in LAA. 
For high-speed networks, LAA can estimate the cardinality of each host in the network. 
Make aip a host in a high-speed network. LAA takes a LE from each line of LA to record 
and estimate the cardinality of aip. Therefore, for aip, r different LE are corresponding to 
it in LA. These LE are called the association LE set of aip and are recorded as RLE(aip). 
RLE(aip) is defined as follows. 

 

Figure 1: Linear Estimator array used to estimate different hosts’ cardinalities 
Definition 1. (Association LE). For a given host aip, the LE set used to record and 
estimate its cardinality in all rows of LA is the association LE set of aip, which is 
recorded as RLE(aip) ={LE0(aip), LE1(aip), LE2(aip),…, LEi(aip),…, LEr−1(aip)}. LEi(aip) 
is the LE used to estimate the cardinality of aip in the ith row of LA. 
LAA consists of two processes: scanning IP address pairs and estimating host cardinality. 
For each IP address pair in a time window, LAA will update its LE.  
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Before scanning IP pair, LAA first allocates the space needed by LA in memory and then 
initializes LA, i.e., all bits of each LE in LA are reset to 0. After LA initialization, LAA 
starts to scan each IP address pair. For IP address pair<aip, bip>, LAA selects r LE from 
LA according to aip to form RLE(aip), and updates these LE with bip, to record the 
cardinality of aip. After scanning all IP address pairs in the time window, the cardinality 
information of each host is saved in LA. For a given host aip, LAA can estimate its 
cardinality according to LA. 
Because LE in LA will be shared by multiple hosts, to reduce the impact of LE sharing, 
LAA uses the result of merging multiple LE to estimate the cardinality. Let ULE(aip) 
represent the union of all LE in RLE(aip). For the host aip, before estimating its 
cardinality, LAA first sets each bit in the ULE(aip) to 1 and then merges the ULE(aip) 
with each LE in the RLE(aip) in the way of “bit AND” (“&”). LAA estimates the 
cardinality of aip based on ULE(aip). 
By merging LE in RLE(aip), we can reduce the impact of LE sharing. The larger the c is, 
the fewer hosts are corresponding to each LE. The larger the r is, the fewer bits set by 
other hosts will be included in the union LE. That is to say, the larger c and r, the higher 
the accuracy of estimation. But the larger the c and r, the larger the memory occupied by 
LA. When the memory size of LA is determined, will the changes of r and c affect the 
accuracy of cardinality estimation? These are discussed in the next section. 

3.2 Influence of row number 
The number of rows in LA will affect the accuracy of cardinality estimation. The actual 
calculation is not that the bigger the r, the better. The larger the r is, the more LE will be 
updated when each IP address pair is processed. In addition to increasing the calculation 
time, it may also reduce the accuracy of the algorithm. 
When the memory size occupied by LA is constant, reasonably setting of r and c can 
improve the accuracy of the algorithm. To facilitate the discussion, the relevant symbols 
and parameters are given first. Let V represent the total number of LE in LA, i.e., V=r×c; 
N represent the number of different IP address pairs in a time window. For a stable 
network, the fluctuation range of N should be relatively stable in a certain period. This 
value can be obtained from the statistical observation of the past flow and can be reset 
when the observed value changes beyond the acceptable range. Therefore, N is assumed 
to be constant in the following discussion. 
Let RLE represent the set composed of one LE selected from each row of LA randomly, 
and ULE represent the union LE of RLE by bitwise “AND” operation. Let PSU indicate 
the probability that a bit in the ULE is set to 1. The smaller the PSU, the closer the union 
LE of each aip is to the LE it uses exclusively. Therefore, PSU can be used as an analysis 
measure. It is proved that, with certain V, reasonably setting r can reduce PSU and reduce 
the error caused by LE sharing.  
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Lemma 1 When there are N different IP address pairs in a time window, the probability 

that a bit in the ULE is set to 1 is 𝑷𝑷𝑷𝑷𝑷𝑷 = �𝟏𝟏 − �𝟏𝟏 − 𝟏𝟏
𝒈𝒈
�
𝑵𝑵
𝒄𝒄�

𝒓𝒓

. 

Proof. Let 𝑛𝑛1 be the number of IP address pairs corresponding to each LE in LA. In LA, 
each row is updated by N different IP address pairs. When the IP address pair is 
uniformly mapped to different LE by hash function [Huang, Yang and Zheng (2018)], 
𝑛𝑛1 = 𝑁𝑁

𝑐𝑐
 . The probability that each bit in LE is set by an IP address pair is 1

𝑔𝑔
, then the 

probability that a bit is not set by 𝑛𝑛1 IP address pairs is �1 − 1
𝑔𝑔
�
𝑛𝑛1

. In the merged ULE, 
only when the bits of the corresponding position in the row are all 1, the merged bits will 
be 1. Hence,  

𝑃𝑃𝑃𝑃𝑃𝑃 = �1− �1 − 1
𝑔𝑔
�
𝑁𝑁
𝑐𝑐�

𝑟𝑟

.                                                                                           (1)                            

                                
Theorem 1 If the number of LE in LA is V, i.e., r×c = V, and there are N different IP 
address pairs in a time window, then PSU gets the minimum value when 𝒓𝒓 = −𝑽𝑽∗𝒍𝒍𝒍𝒍𝒈𝒈 (𝟐𝟐)

𝑵𝑵∗𝒍𝒍𝒍𝒍𝒈𝒈 (𝟏𝟏−𝟏𝟏𝒈𝒈)
. 

Proof. When V and N is fixed, 𝑃𝑃𝑃𝑃𝑃𝑃 = (1 − �1 − 1
𝑔𝑔
�
𝑟𝑟∗𝑁𝑁
𝑉𝑉 )𝑟𝑟 . Let L = 𝑁𝑁

𝑉𝑉
, G = 1 − 1

𝑔𝑔
, the 

derivative of PSU is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

= (1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿)𝑟𝑟 ∗ (log(1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿)− 𝑟𝑟 ∗ 𝐿𝐿 ∗ 𝐺𝐺𝑟𝑟∗𝐿𝐿 ∗ log (𝐺𝐺) ∗

（1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿）
−1

).  

When 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

= 0, 𝑃𝑃𝑃𝑃𝑃𝑃 reaches its minimal value. Because of 1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿 > 0, when 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

=
0, we have the following equation. 
log(1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿) = 𝑟𝑟 ∗ 𝐿𝐿 ∗ 𝐺𝐺𝑟𝑟∗𝐿𝐿 ∗ log (𝐺𝐺) ∗ (1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿)−1 (2) 

Solving the Eq. (2), we have 𝑟𝑟 = −𝑉𝑉∗log (2)
𝑁𝑁∗ln (1−1𝑔𝑔)

.  

For LAA, setting the r reasonably according to the number of IP address pairs can 
improve its accuracy. It can be seen from Theorem 1 that when the total number of LE is 
fixed, PSU does not always decrease with the increase of r. When the r is larger than a 
threshold, PSU will increase with the increase of r. At the same time, the larger r is, the 
more LE are needed to be merged when calculating the ULE. This increases the time 
taken by the algorithm. Hence, we should consider PSU and calculation time when 
setting r. 

4 Step sampling revision 
LAA uses several LE to calculate the cardinality of each aip to reduce the error caused by 
LE sharing. However, the error of LAA is also affected by some other factors, such as the 
random parameters inherent in LE and the random functions used to map aip to LE in LA. 
These random factors cannot be reduced by merging multiple LE. Therefore, we need to 
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use other methods to eliminate the impact of these random factors, to further improve the 
accuracy of cardinality estimation. To eliminate these errors, we need to estimate the 
errors first. The method of sampling is one of the best ways to estimate a random 
variable. According to the characteristics of the cardinality estimation process, a 
sampling method called step sampling is proposed to improve the accuracy of LAA 
estimation results. To distinguish the sampling revision algorithm from LAA, this paper 
calls the algorithm, which uses step sampling to adjust LAA estimation results, L2S 
algorithm (LAA with Step Sampling). Compared with LAA, L2S has two additional 
processes: cardinality sampling and estimation revision. Let’s introduce the two 
processes respectively. 

4.1 Cardinality sampling 
After scanning all IP address pairs in a time window, LAA will estimate the cardinality of 
each aip. Let 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 denote a host with cardinality 𝑛𝑛 in the current time window in ANet, 
and 𝐴𝐴𝐴𝐴𝑃𝑃𝑛𝑛 denote a set of aip with cardinality 𝑛𝑛 in the current time window. For an aip 
with a cardinality of 𝑛𝑛, there will be some deviation between its estimated value 𝑛𝑛′ and 𝑛𝑛 
due to the systematic error of LE and the random functions used by LAA. Let ∆𝑛𝑛 
represent this deviation and ∆𝑛𝑛= 𝑛𝑛′ − 𝑛𝑛.  
Different 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 have different 𝑛𝑛′ and ∆𝑛𝑛. Therefore, 𝑛𝑛′ and ∆𝑛𝑛 could be regarded as two 
random variables. If we can estimate the expected value  of ∆𝑛𝑛 (E(∆𝑛𝑛)), and use 𝑛𝑛′ −
E(∆𝑛𝑛) to rectify 𝑛𝑛′, we can get an estimated value closer to 𝑛𝑛 than 𝑛𝑛′. However, LAA 
itself cannot estimate E (∆𝑛𝑛). This is because LAA doesn’t know the actual cardinality of 
aip when running in real-time, and there may be too little hosts in 𝐴𝐴𝐴𝐴𝑃𝑃𝑛𝑛  to estimate 
E (∆𝑛𝑛) correctly. 
Therefore, this paper presents a method to estimate E (∆𝑛𝑛) by sampling. When estimating 
E (∆𝑛𝑛) , it is necessary to obtain enough values of ∆𝑛𝑛 . When 𝑛𝑛  is determined, the 
calculation of ∆𝑛𝑛 is to calculate 𝑛𝑛′. Hence, the sampling method in this paper will first 
construct a sample set (𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 ) consisting of several hosts whose cardinalities are 𝑛𝑛 , 
𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 = {𝑠𝑠𝑎𝑎𝑎𝑎1𝑛𝑛, 𝑠𝑠𝑎𝑎𝑎𝑎2𝑛𝑛, 𝑠𝑠𝑎𝑎𝑎𝑎3𝑛𝑛,⋯ }. Each 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 has 𝑛𝑛 different bip. The set of these 𝑛𝑛 
different bip is called bip vector. Different sampled host has different bip vector.  
After LAA scanning all IP address pairs in the current time window, we use LAA to 
estimate the cardinality of the hosts in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛. Each 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 ∈ 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 could be regarded as an 
aip. LAA selects r different LE from LA and merges them by bitwise “AND” operation to 
acquire the union LE (ULE). Then each bip in the bip vector of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 is used as the input 
data to update ULE. After scanning bip vector, the estimated cardinality of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛  is 
calculated from ULE by Eq. (1). 
Estimating the cardinality of each host in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 according to the above method, we will 
obtain a set of 𝑛𝑛′. Since 𝑛𝑛 is constant, E (∆𝑛𝑛) = E (𝑛𝑛′) − 𝑛𝑛. When estimating the value of 
E (𝑛𝑛′), we can use the average or median of the estimated values of this sample set. 
To let the sampling results better evaluate E (∆𝑛𝑛), each host in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛  has 𝑛𝑛 randomly 
selected bip, and the IP address 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖 of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 is also randomly generated. The number of 
hosts in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛, i.e., the number of samples, will also affect the accuracy of the estimated 
value of E(∆𝑛𝑛) . Use β to represent the number of hosts in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 . According to the 
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theorem of large numbers, the larger β is, the more accurate the calculation of E (∆𝑛𝑛) is, 
but the greater the cost is. Therefore, the value of β needs to be determined flexibly 
according to specific application scenarios. 
Estimating the cardinality of each host in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 is processed after LAA scanning all IP 
address pairs in the current time window. To avoid introducing additional errors, it not 
supposed to modify LE in LA when estimating E (𝑛𝑛′). Therefore, it is necessary to find 
out RLE (𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖), merge each LE in RLE (𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖) to get the ULE. Then update the ULE with 
those corresponding bip of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖, and use the updated ULE to estimate the cardinality of 
𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖. In this way, the influence of bip of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖 on LA could be avoided. 

4.2 Estimation revision 
The cardinalities of different aip vary from one to thousands. If every cardinality is 
sampled, lots of resources will be wasted. Therefore, this paper proposes a method, called 
step sampling, to estimate the deviation. The step sampling method first sets a lower 
cardinality limit RC0 and an upper limit RC1. Then, starting from RC0, estimate the 
deviation of cardinality every other certain distance until the cardinality to be estimated is 
greater than or equal to RC1. The distance here is the estimated step recorded as α. RC0 
is an integer greater than or equal to 1, and RC1 is an integer greater than RC0. The 
purpose of setting RC0 and RC1 is to improve the efficiency of sampling, avoid wasting 
resources to estimate those cardinality deviations that may exceed the maximum 
cardinality of aip. RC0 can be determined based on the minimum cardinality to be 
calculated, while RC1 can be determined based on the maximum cardinality of aip 
estimated by LAA. 
When α and β are determined, the cardinality to be sampled and the number of samples 
of each cardinality are also determined. If 𝑛𝑛𝑖𝑖 is the cardinality of the 𝑎𝑎th sample, then 
𝑛𝑛𝑖𝑖 = 𝑅𝑅𝑅𝑅0 + (𝑎𝑎 − 1) ∗ α  and 𝑛𝑛𝑖𝑖 ≤ 𝑅𝑅𝑅𝑅1 . According to the method in the previous 
subsection, E(𝑛𝑛𝑖𝑖′) is estimated by β samples of 𝑛𝑛𝑖𝑖.  
The estimated value of aip can be adjusted according to 𝑛𝑛𝑖𝑖 and E (𝑛𝑛𝑖𝑖′). Assuming that the 
estimated value of an aip is 𝑛𝑛′ , rearrange E (𝑛𝑛𝑖𝑖′) in ascending order. If there are two 
integers 𝑗𝑗  and 𝑘𝑘  such that E �𝑛𝑛𝑗𝑗′� ≤ 𝑛𝑛𝑖𝑖′ ≤ E(𝑛𝑛𝑘𝑘′ ) , and E (𝑛𝑛𝑗𝑗′)  and E (𝑛𝑛𝑘𝑘′ )  are in two 
adjacent positions after sorting, then 𝑛𝑛𝑖𝑖′  can be adjusted according to the following 
formula. 𝑛𝑛𝑖𝑖′′ is the revised value. 

𝑛𝑛𝑖𝑖′′ = 𝑛𝑛𝑗𝑗 +
�𝑛𝑛𝑘𝑘 − 𝑛𝑛𝑗𝑗� ∗ (n′ − E�𝑛𝑛𝑗𝑗′�)

E(𝑛𝑛𝑘𝑘′ )− E(𝑛𝑛𝑗𝑗′)
 (3) 

Eq. (3) uses linear relation to modify 𝑛𝑛𝑖𝑖′ according to sample distribution. The estimated 
value of each aip can be adjusted according to Eq. (3) to reduce the random error of LAA 
and improve the accuracy of estimation. 
α  and β  determine the sample capacity. Generally speaking, the larger the sample 
capacity is, the smaller the error is, but the more resources are consumed. For a 
cardinality 𝑛𝑛, when the confidence (δ), the allowable error (ε) and the total standard 
deviation (σ) of the estimated value are given, according to the statistical principle, the 
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sample capacity (µ) for 𝑛𝑛  is µ ≥ �𝑍𝑍𝛿𝛿/2∗σ
𝜀𝜀

�
2

. 𝑍𝑍𝛿𝛿/2  is the bilateral critical value of the 
standard normal distribution at the level of δ. The sample capacity of α cardinalities is 
α ∗ µ. Because L2S estimates the error every α cardinalities, β = α ∗ µ. The value of α 
can be adjusted according to the historical operating results.  
L2S can run in parallel to improve sampling speed. In the next section, we will discuss 
how to run L2S on GPU. 

5 Translate LAA and L2S on GPU 
In actual operation, LAA needs to be able to estimate the number of connection pairs of 
the host in real-time. Real-time running means that in a time window, the cumulative 
time of LAA scanning IP address pair and the time of estimating the host cardinality are 
less than or equal to the length of the time window. If LAA can not run in real-time, 
packet loss will occur, thus reducing the accuracy of detection results. For the high-speed 
network, millions of packets pass through the network boundary every second, and there 
are a large number of hosts in the high-speed network. Each packet corresponds to an IP 
address pair. LAA needs to scan these packets in real-time and estimate the cardinality of 
different hosts. Although the time complexity of accessing memory when LAA scans the 
IP address pair is O(1), it needs a lot of computation when mapping the host to different 
LE and the peer IP to a bit in LE. It can be seen that LAA is a computation-intensive 
algorithm. When running on the CPU, LAA scans each IP address pair serially. However, 
due to the limited computing power of CPU, LAA cannot process high-speed network 
data in real-time. Therefore, we need to use a platform with more computing resources to 
improve the running speed of LAA. The heterogeneous computing platform based on 
GPU and CPU is an ideal parallel computing platform for processing computing-
intensive tasks. 
Parallel computing is a common way to improve the speed of an algorithm. According to 
Bernstein’s theorem, for the computation-intensive tasks without data access conflict, 
porting them to the parallel environment can obtain a high speedup ratio. The process of 
scanning IP address pairs and estimating host cardinality of LAA can be completed on 
GPU. LAA does not need to read data from LA when scanning IP address pairs, hence 
there will be no read-write conflict in Bernstein’s theorem. When LAA updates LA, it will 
only set some bits in LA to 1. So the process of scanning IP address pairs of LAA can run 
in parallel. LAA does not need to write to LA when estimating the host cardinality, hence 
it conforms to Bernstein’s theorem and can run in parallel. 
GPU is a kind of parallel processor with a large number of computing units [Silber-
Chaussumier, Muller and Habel (2013)], which is suitable for processing computing-
intensive tasks without data conflicts. Therefore, transplanting LAA to GPU is an ideal 
way to improve the running speed of the algorithm. According to the characteristics of 
LAA and GPU, this paper proposes a way to transplant LAA to GPU. 

5.1 Scanning IP pair on GPU 
When LAA scans the IP address pairs on the CPU, it will scan each IP address pair in 
turn, i.e., every packet passing through R will extract the IP address pair and update LA. 
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However, GPU can only access graphic memory, can’t directly access CPU memory. 
Therefore, to enable LAA to scan IP address pairs on GPU, it is necessary to store LA on 
GPU’s graphic memory and copy IP address pairs to video memory. LA can be initialized 
on GPU memory at the beginning of the algorithm. However, the network packets will 
come continuously in the time window. If the IP address pair is copied to the graphic 
memory one by one, it will waste a lot of computing time. Therefore, this paper allocates 
a buffer of the same size on CPU and GPU to store IP address pairs. When the buffer on 
the CPU side is full or reaches the time window boundary, copy the IP address pair buffer 
on the CPU side to the IP address pair buffer on the GPU side, and start GPU threads to 
process IP address pairs. The number of IP address pairs in the buffer is the number of 
GPU threads to start. From the previous analysis, we can see that there is no overwriting 
problem between different GPU threads, hence each GPU thread can accurately scan the 
IP address pair. 

5.2 Estimating host cardinality on GPU 
When estimating each host’s cardinality, LAA reads data from the LA without writing 
data to the LA. After GPU scanning all IP address pairs in the current time window, LA 
will contain the cardinality information of the host. At this time, different GPU threads 
can be used to estimate the cardinality of different hosts. 
When estimating the cardinality of each host, a temporary LE is needed to store the union 
LE. Therefore, when using GPU to estimate the host cardinality, we need to allocate a 
temporary LE for each thread. To improve the running efficiency of the algorithm on 
GPU, a fixed number of LE is allocated before estimating the cardinalities of hosts. When 
estimating the host cardinality, each GPU thread uses a temporary LE separately. Due to 
the limited number of threads that GPU can start at the same time, and the excessive 
allocation of temporary LE will also occupy a large amount of memory space, this paper 
groups the hosts that need to estimate the cardinality. For each group of hosts, start the 
same number of GPU threads for cardinality estimation. This not only improves the 
efficiency of operation but also reduces the occupation of graphic memory. 

5.3 Step sampling on GPU 
Cardinality sampling and estimation revision are unique to L2S. Estimation revision only 
needs to modify the estimated cardinality of each aip according to Eq. (3). However, due 
to the influence of sampling parameters α and β, cardinality sampling can calculate a 
large number of cardinalities of sampling hosts, and the amount of calculation is far more 
than the amount of calculation needed for estimation revision. The speed of L2S can be 
improved by transplanting the cardinality sampling process to GPU. The cardinality 
sampling process does not modify the LA, so it can run on GPU. Fig. 2 illustrates how to 
obtain the estimated cardinalities of sampled hosts on GPU. 
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Figure 2: Parallel estimating the cardinalities of sampled hosts 
When estimating the cardinality of a sampled host, we need to know the IP address sip, 
the cardinality 𝑛𝑛 and the bip vector. In Fig. 2, the sip, 𝑛𝑛, and bip vector form a row of 
sampling data. Because the number of sampled hosts may be larger than the number of 
threads that GPU can start at one time, the sampling data is divided into different groups. 
Each group contains k sampled hosts. GPU processes the sampling data group by group. 
GPU starts k threads at a time, and one thread processes a row of sampling data. k can be 
determined according to the memory capacity of the GPU and the physical computing 
unit. 
When estimating the cardinality of each sampling host, we need a temporary LE to store 
the merged LE. Therefore, we also allocate k LE on the GPU, that is, the temporary LE 
vector in Fig. 2. A GPU thread will read r different LE in LA according to sip, and then 
write the merged LE to a temporary LE. The bip vector of the sip is used to update the 
temporary LE. After scanning the bip vector, the cardinality of sip is estimated based on 
the temporary LE. As can be seen from Fig. 2, the sample data and LA will only be read, 
not modified. It ensures that k GPU threads can run at the same time to estimate the 
cardinality of the sampled host. 
According to the above method, LAA and L2S can be transplanted to GPU to realize the 
real-time cardinalities estimation of high-speed networks. 
The network traffic is divided into fixed-size time windows, and the network traffic in 
each time window is processed separately. Therefore, for high-speed network traffic, L2S 
can run in real-time when the time it takes in a time window is less than the size of a time 
window.  
Although the static data is used in our experiments, L2S does not use the specific 
information of the network traffic such as the IP addresses distribution and only scans the 
network data once, so L2S can dynamically process the high-speed network data. 
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6 Experiment 
This paper uses a set of real-world high-speed network data to evaluate the performance 
of LAA and L2S. The network data used in this article is the data set downloaded from the 
WIDE website [Fontugne, Abry, Fukuda et al. (2017)]. WIDE data set is a real-time 
network data stream collected from 1 Gb/s high-speed network. The network data used in 
this paper is the network traffic that lasts for 10 minutes from 13:00 on May 9, 2018, and 
April 9, 2019, respectively. Denote by WIDE 20180509 and WIDE 20190409 these two 
experiment data. Tab. 1 lists the information of our experiment data, including the IP 
number in ANet and BNet(‖𝐴𝐴𝐴𝐴𝑃𝑃‖ and ‖𝐵𝐵𝐴𝐴𝑃𝑃‖), packets number(#Pkt), unique IP pair 
number, average cardinality of each aip and so on. 

Table 1: Details of experiment network traffic 

Traffic ‖𝑨𝑨𝑨𝑨𝑷𝑷‖ ‖𝑩𝑩𝑨𝑨𝑷𝑷‖ #Pkt Unique 
IP pair 

Average 
cardinality 

WIDE 
20180509 146978 1675748 157858284 1967100 13.38 

WIDE 
20190409 137477 1723667 164246725 2042693 14.86 

 
According to the way of Section 5, this experiment is carried out on GPU. The GPU in 
the experiment is Nvidia GTX 950 m, with 2 GB graphic memory and 640 CUDA cores. 
In this experiment, g is set to 210 and V is set to 213.  

6.1 The influence of row number 
To compare the impact of different rows on the accuracy of the estimation results, LAA is 
tested when r increases from 1 to 40. 

6.1.1 Estimating accuracy 
 It can be seen from the analysis in Section 3 that with the increase of the number of LA 
rows, the estimation accuracy of LAA is not monotonically increasing. Figs. 3 and 4 show 
that LAA’s estimating result with rows 1, 3 and 40 on these two experiment data 
respectively. x-coordinate of each subgraph represents the actual cardinality, and y-
coordinate represents the estimated cardinality of different aip. The closer the points in 
the graph are to the straight line x=y, the higher the accuracy of the estimation is. 
As can be seen from Figs. 3 and 4, when r is 1, the estimated value of LAA deviates 
greatly from the real value. When the number of rows increases to 3, the estimated value 
of LAA is close to the real value. With the further increase in the number of rows, the 
estimated value of LAA is not more close to the real value. This shows that increasing the 
number of rows does not always reduce the error. 
To compare the accuracy of the estimation more accurately, we use average bias to 
measure the experiment results. For a host aip whose cardinality is 𝑛𝑛 and the estimated 
value is 𝑛𝑛′, its estimation bias the (𝑛𝑛′ − 𝑛𝑛)/𝑛𝑛. There are many aip in a time window, the 
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mean of these estimation bias of all aip is called average bias. To compare the fluctuation 
of estimation bias, the standard of estimation bias of all aip is calculated. Generally 
speaking, the lower the average bias is, the higher estimation accuracy is.  
However, the average bias can’t fully reflect the accuracy of the estimation, because the 
overestimation and underestimation will offset each other and reduce the average 
deviation. For this reason, we define absolute bias as |𝑛𝑛′ − 𝑛𝑛|/𝑛𝑛  where 𝑛𝑛  is the 
cardinality of aip, 𝑛𝑛′ is its estimated value, |𝑛𝑛′ − 𝑛𝑛| is the absolute value of the difference 
between 𝑛𝑛 and 𝑛𝑛′. The mean value of the absolute bias of all aip is called the average 
absolute bias, and the standard deviation of the absolute bias of all aip is called the 
absolute bias standard deviation. Average absolute bias and standard deviation of 
absolute bias can reflect the influence of overestimation and underestimation on the 
accuracy of results. 

 

Figure 3: The estimating cardinalities distribution under different row numbers on 
experiment data WIDE 20180509 
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Figure 4: The estimating cardinalities distribution under different row numbers on 
experiment data WIDE 20190409 
In the experiment, we use average bias, average absolute bias, the standard deviation of 
bias, the standard deviation of absolute bias to compare the estimation under different 
row numbers. Average bias, average absolute bias, the standard deviation of bias, the 
standard deviation of absolute bias of LAA’s estimated result on two experiment data are 
shown in Figs. 5 and 6. 

 

Figure 5: Estimating accuracy under different row number on experiment data WIDE 
20180509 
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Figure 6: Estimating accuracy under different row number on experiment data WIDE 
20190409 
In Figs. 5 and 6, x-coordinate represents the number of rows of LA, and y-coordinate 
represents the average bias, average absolute bias, the standard deviation of bias, the 
standard deviation of absolute bias respectively. In each figure, the first and second 
subplots (i.e., the average bias and the average absolute bias subplots) have the same y-
coordinate limitations; the third and the fourth subplots (i.e., the standard deviation of 
bias and standard deviation of absolute bias subplots) have the same y-coordinate 
limitations. So, it’s easy to compare the differences between the average bias and the 
average absolute bias or the standard deviation of bias and the standard deviation of 
absolute bias. 
It can be seen from Figs. 5 and 6 that the average bias, average absolute bias, the standard 
deviation of bias, the standard deviation of absolute bias all have the same variation trend 
that decreasing first and then increasing. The smaller the average bias, average absolute 
bias, the standard deviation of bias and the standard deviation of absolute bias are, the 
better the estimated result is. Consequently, it is not that the larger the number of rows, 
the higher the accuracy of estimation. Choosing an appropriate r is helpful to improve the 
accuracy.  
By comparing the first and second subplots in both Figs. 5 and 6, we can see that the 
average absolute bias is higher than the average bias. This is because, in the average 
absolute bias, the overestimated value and the underestimated value will not offset each 
other like that in the average bias which makes the calculation result lower. However, the 
absolute bias moves the underestimation to the same side of the overestimation, which 
makes the standard deviation of the absolute bias smaller than the standard deviation of 
the bias, as shown in the third and fourth subplots of Figs. 5 and 6. 
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6.1.2 Running time 
An increase in the number of rows also increases the time spent on the algorithm because 
more hash functions will be called to locate these LE. Figs. 7 and 8 show the running 
time of LAA on two datasets under different row numbers. 

 

Figure 7: Experiment running time under different row number on experiment data 
WIDE 20180509  

 

Figure 8: Experiment running time under different row number on experiment data 
WIDE 20190409 
The running time is divided into two parts: IP address pairs scanning time and cardinality 
estimating time. The sum of them is called the total using time. The time of all the three 
subplots in both Figs. 7 and 8 are increasing with the row number. A bigger row number 
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requires more running time. It can be seen from Figs. 7 and 8 that the IP address pair 
scanning time is much longer than the cardinality estimating time. Actually, in our 
experiments, the IP address pair scanning time is 117 to 745 times the cardinality 
estimating time. Hence, the IP address pair scanning time has more influence on the total 
time.  
Because this paper transplanted LAA to GPU, even when the number of rows is 40, the 
time used by LAA is not more than 3760 milliseconds, i.e. not more than 3.76 seconds. 
For example, in our experiment, when the number of rows is 3, the time used by LAA is 
only 570 and 609 milliseconds, and the speed of processing packets is 263.98 and 257.35 
mpps (mpps means millions of packets per second); when the number of rows is 4, the 
time used by LAA is only 657 and 695 milliseconds, and the speed of processing packets 
is 229.00 and 225.50 mpps. Therefore, the hosts’ cardinalities of a high-speed network 
can be estimated accurately in real-time by transplanting LAA to GPU using the method 
proposed in this paper. 

6.2 Sampling revision experiment 
In the previous subsection, we illustrate the accuracy and running time of the unadjusted 
LAA under different r. The accuracy of the estimated result can be improved by sampling 
revision. In this subsection, we will show and analyze the experiments of sampling 
adjustment. 

6.2.1 Sampling revision accuracy 
As can be seen from Figs. 5 and 6, LAA can achieve high accuracy when the number of 
rows is between 3 and 5. To analyze the improvement of sampling revision on the 
estimation results, in the experiment of L2S, we set the row number of L2S to 4. In L2S, 
sampling parameters (i.e., α and β) will affect the accuracy of the revision results. To 
compare the improvement of the results by different sampling parameters, we test the 
results when α are 5, 10, 20 and 30, and β are 5, 10, 20 and 30. The tuple composed of α 
and β, recorded as <α, β>, is called sampling step number pair. Under each sampling step 
number pair, we also compare the influence of expected estimating value calculated by 
using mean and median of sampling cardinality, which are expressed by L2S-mean and 
L2S-median respectively.  
To compare the accuracy of L2S, we compare the estimation results with DCDS [Wang, 
Guan, Zhao et al. (2014)], VBFA [Liu, Qu, Gong et al. (2016)] and GSE [Shin, Im and 
Yoon (2014)]. Figs. 9 and 10 describes the accuracy of different algorithms under two 
sets of experimental traffic. Subplots in Figs. 9 and 10 represent the average bias, average 
absolute bias, the standard deviation of bias and the standard deviation of absolute bias of 
different algorithms. The x-coordinate of each subgraph represents the sampling step 
number pair. 
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Figure 9: The accuracy of different algorithms on WIDE 20180509 

 

Figure 10: The accuracy of different algorithms on WIDE 20190409 
The average bias is mainly used to measure the deviation of the estimated cardinality 
from the accurate value after the offset between the overestimation and the 
underestimation. The average bias may be higher or lower than zero. To compare the 
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average bias of different algorithms, the average bias in this experiment is the absolute 
value of the average bias. Different from the average absolute bias, the absolute value of 
the average bias can not reflect the overestimation and underestimation. The calculation 
method is to get the average bias first and then take the absolute value of it. Let ‖𝐴𝐴𝐴𝐴𝑃𝑃‖ 
indicate the number of aip, 𝑛𝑛𝑖𝑖′  indicate the estimated cardinality of the ith aip whose 
actual cardinality is 𝑛𝑛𝑖𝑖 . Then the absolute value of the average bias is calculated as 
| 1
‖𝐴𝐴𝐴𝐴𝑑𝑑‖

∑  𝑛𝑛𝑖𝑖
′ − 𝑛𝑛𝑖𝑖
𝑛𝑛𝑖𝑖

𝑖𝑖≤‖𝐴𝐴𝐴𝐴𝑑𝑑‖
𝑖𝑖=1 |. While the calculation method of average absolute bias is to take 

the absolute value of bias first and then calculate the average value, and the calculation 
formula is 1

‖𝐴𝐴𝐴𝐴𝑑𝑑‖
∑  |𝑛𝑛𝑖𝑖

′ − 𝑛𝑛𝑖𝑖|
𝑛𝑛𝑖𝑖

𝑖𝑖≤‖𝐴𝐴𝐴𝐴𝑑𝑑‖
𝑖𝑖=1 . 

As can be seen from Fig. 9, for all algorithms, the average absolute bias is higher than the 
absolute value of the average bias. This further shows that the average absolute bias can 
more comprehensively reflect the accuracy of the estimated result. In Figs. 9 and 10, the 
average bias of GSE is lower than that of DCD, VBFA and LAA, but the average absolute 
bias of GSE is higher than that of VBFA. It shows that the algorithm with a good effect on 
the average bias does not necessarily have a good effect on the average absolute bias. 
From the perspective of the difference between the estimated results and the accurate 
cardinalities, the average bias of LAA is higher than that of DCD, VBFA and GSE, and the 
average absolute bias is higher than that of VBFA and GSE in Figs. 9. In 10, the average 
deviation of LAA is lower than that of DCDS and VBFA, and the average absolute bias is 
lower than that of DCDS and GSE. It shows that the estimating deviation of LAA is 
similar to the existing algorithms. 
From the perspective of the bias fluctuation, the bias standard deviation of LAA is lower 
than that of DCDS, VBFA and GSE in Figs. 9 and 10. The standard deviation of LAA’s 
absolute bias is only higher than that of VBFA and GSE in Fig. 10. This shows that the 
bias fluctuation degree of LAA is similar to the existing algorithms. Hence the unrevised 
LAA has similar accuracy to the existing algorithms. 
The accuracy of LAA can be improved by step sampling revision, i.e., L2S algorithm, as 
can be seen in Figs. 9 and 10. In Figs. 9 and 10, the average bias and the average absolute 
bias of L2S are far lower than that of LAA, and also lower than that of the existing 
algorithms. To analyze the accuracy improvement of L2S more clearly, we define a 
reduction ratio to measure L2S’s reduction of the average (absolute) bias and the standard 
deviation of (absolute) bias.  
Let 𝑏𝑏 denote LAA’s average (absolute) bias or standard deviation of (absolute) bias, and 
𝑏𝑏′ denote the L2S’s average (absolute) deviation or standard deviation of (absolute) bias. 
The reduction ratio of average (absolute) deviation or standard deviation of (absolute) 
bias is 𝑏𝑏−𝑏𝑏

′

𝑏𝑏
∗ 100%. Tabs. 2 and 3 list the reduction ratios of average (absolute) bias and 

(absolute) bias standard deviation when L2S uses the mean and median to calculate the 
sampling estimated value respectively, i.e., L2S-mean and L2S-median. 
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Table 2: The reduction ratio of L2S-mean under different step sampling number pairs 

Traffic 𝛂𝛂 𝛃𝛃 

Reduction ratio (%) 

Average 
bias 

Average 
absolute 

bias 

Standard 
deviation of 

bias 

Standard 
deviation of 

absolute bias 

WIDE 
20180509 

5 

5 84.5343 25.2805 1.1839 11.0196 
10 86.0690 27.2830 0.3388 8.4549 
20 80.9236 27.6081 0.7477 8.2548 
30 84.2686 26.5870 -0.2500 7.9424 

10 

5 79.2214 24.5646 -2.8063 5.1661 
10 83.7857 26.8396 0.6485 8.9984 
20 86.7852 28.3776 0.2992 7.6786 
30 84.4045 29.0200 0.7416 7.6341 

20 

5 81.2704 22.9752 -2.7075 6.7371 
10 78.6285 27.7243 -1.1564 5.1835 
20 82.8489 26.5201 0.1650 8.4357 
30 79.2547 27.4230 0.5684 7.9179 

30 

5 70.4353 24.2113 0.3266 8.5014 
10 80.7459 23.9957 -1.7801 7.2516 
20 82.7373 26.7248 -1.1597 6.3820 
30 77.8209 26.9974 1.2011 8.9283 

WIDE 
20190409 

5 

5 78.4453 17.7376 1.7933 9.9254 
10 70.9934 19.2954 3.4324 9.7545 
20 73.9361 20.4180 4.8573 11.6815 
30 78.5078 22.3068 7.0708 14.3850 

10 

5 72.8970 16.0212 -0.5614 6.5487 
10 70.4164 22.5287 6.9191 12.2325 
20 80.8363 21.3062 5.3494 12.6068 
30 76.3502 21.3695 5.4616 12.0394 

20 

5 84.5242 19.7203 2.3243 9.0862 
10 67.8432 20.1071 5.8656 12.8564 
20 76.2632 21.9059 6.7538 13.9120 
30 75.0729 20.8549 5.7517 13.1114 

30 

5 75.7847 18.2680 3.5947 12.4518 
10 70.6110 19.6590 5.5664 13.5118 
20 75.4908 20.8525 5.8816 13.4577 
30 67.6125 21.1392 6.1882 12.0212 

Average 78.1037 23.3007 2.2690 9.8146 
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Table 3: The reduction ratio of L2S-median under different step sampling number pairs 

Traffic 𝛂𝛂 𝛃𝛃 

Reduction ratio (%) 

Average bias Average 
absolute bias 

Standard 
deviation of 

bias 

Standard deviation 
of absolute bias 

WIDE 
20180509 

5 

5 81.1368 23.7788 -1.8132 7.4136 
10 81.0298 26.0022 -0.1139 8.2019 
20 79.9764 27.5576 0.9168 8.4122 
30 80.6521 26.2436 -0.7859 7.0174 

10 

5 81.2569 24.2709 -1.4003 7.6574 
10 75.8532 24.8377 0.4826 9.2013 
20 90.5733 29.4038 1.5437 9.0030 
30 82.5229 28.6878 0.0209 6.6486 

20 

5 70.7298 20.4700 -2.9421 6.7008 
10 77.5631 27.7050 -0.5367 5.9217 
20 72.7454 24.4144 -0.8531 7.0828 
30 74.7670 25.7732 -0.9052 6.3526 

30 

5 57.9694 21.0573 -1.1739 5.9026 
10 73.6337 22.9663 -1.3028 7.6757 
20 86.2858 27.1624 -0.7163 7.0517 
30 75.3508 26.7250 0.9407 8.3796 

WIDE 
20190409 

5 

5 76.9161 16.0260 -1.7356 4.8602 
10 64.8568 16.0759 -0.0881 5.7030 
20 72.7161 19.4176 3.8826 10.8474 
30 76.9121 20.2890 4.4684 11.6042 

10 

5 68.8702 13.7384 -3.4430 3.0591 
10 78.1906 21.2185 4.5088 10.6257 
20 76.3189 19.6535 4.5921 12.6416 
30 83.7041 21.6179 5.1494 12.1466 

20 

5 66.7204 17.6459 0.7521 5.6942 
10 73.3315 18.8713 2.1836 8.2809 
20 75.9669 21.0745 5.7323 12.9288 
30 71.4559 21.2953 6.0788 12.4489 

30 

5 67.5964 15.4570 0.2683 7.9219 
10 69.0036 19.2537 4.5829 11.7114 
20 78.4889 22.2511 6.4213 13.1355 
30 71.2093 21.4953 6.0090 11.9817 

Average 75.4470 22.2636 1.2726 8.5692 

It can be seen from Tabs. 2 and 3 that the average (absolute) bias and (absolute) bias 
standard deviation of L2S-mean and L2S-median are all reduced. Among them, the 
reduction ratio of the average bias is the largest, which distributing from 57% to 90%, 
and the average bias reduction ratio of L2S-mean and L2S-median reach 78% and 75%, 
respectively. In Tab. 2, L2S-mean reduces the average absolute bias by more than 16%, 
the highest reduction ratio reaches 29%, and the average reduction ratio reaches 23%; in 
Tab. 3, L2S-mean reduces the average absolute bias by more than 13%, the highest 
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reduction ratio reaches 29%, and the average reduction ratio reaches 22%. Hence L2S-
mean and L2S-median also have better performance on the average absolute bias. 
From the perspective of reducing the fluctuation of estimation bias, L2S-mean and L2S-
median also reduce the bias standard deviation. In Tabs. 2 and 3, although the bias 
standard deviation of L2S-mean and L2S-median is sometimes slightly higher than that of 
LAA, in general, the average of the bias standard deviation of L2S-mean and L2S-median 
is reduced by 2% and 1%, respectively. For L2S-mean and L2S-median, the reduction of 
absolute bias standard deviation is better than that of bias standard deviation. In Tab. 2, 
L2S-mean reduces the absolute bias standard deviation by more than 5%, the highest 
reduction ratio reaches 14%, and the average reduction ratio reaches 9%; in Tab. 3, L2S-
mean reduces the absolute bias standard deviation by more than 3%, the highest reduction 
ratio reaches 13%, and the average reduction ratio reaches 8%. It can be seen from these 
experiments that L2S-mean and L2S-median also have an obvious good performance on 
absolute bias standard deviation. 
It can be seen from the above analysis that the sampling revision algorithm, L2S, can not 
only improve the accuracy of the estimated results but also make the output results more 
stable. 

6.2.2 Sampling using time 
L2S can improve the accuracy of cardinality estimation with little additional sampling 
time. Tab. 4 shows the sampling time of L2S under different sampling parameters. L2S-
mean and L2S-median use the same sampling data, so they have the same sampling time 
as shown in Tab. 4. 

Table 4: Sampling time of L2S 

𝛂𝛂 𝛃𝛃 
Using Time (ms) 

WIDE 20180509 WIDE 20190409 

5 

5 46.8586 45.6432 

10 80.7491 81.8959 

20 152.6805 157.3154 

30 219.5991 243.2497 

10 

5 19.0714 19.4652 

10 38.8418 36.9717 

20 68.5209 71.9618 

30 106.3597 110.5204 

20 

5 12.3004 10.2543 

10 21.4017 19.8806 

20 38.7598 38.4134 

30 52.8206 53.3638 

30 

5 7.9199 8.0159 

10 14.4797 15.7779 

20 23.2719 24.1849 
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30 35.7670 36.5461 
Average 58.7126 60.8413 

It can be seen from Tab. 4 that when α is the same, the sampling time increases with the 
increase of β. But when β are the same, the sampling time decreases with the increase of 
α. This is because when the sample step is determined, the bigger the β, the more the 
total quantity of samples; when β  is determined, the larger the α , the less the total 
quantity of samples. The sampling time is directly proportional to the total quantity of 
samples. Therefore, the sampling time decreases with the increase of α and increases with 
the increase of β. In Tab. 4, the maximum sampling time of L2S is no more than 244 
milliseconds (ms), the minimum is less than 9 ms, and the average sampling time is not 
more than 61 ms. Therefore, L2S can use a few additional times to improve the accuracy 
of LAA. It can be seen from the experimental results that the time used by L2S, including 
the time of the IP address pairs scanning, cardinalities estimating and the sampling 
process, is far less than the size of a time window, so L2S can run in real-time. 

7 Conclusion 
LAA algorithm is an efficient cardinality calculation method. LAA uses a fixed number of 
LE to calculate the cardinality of different hosts. Each LE will be used by multiple hosts to 
reduce memory consumption, and each host will also use multiple LE to improve 
estimation accuracy. But the accuracy of LAA is affected by some random factors. To 
reduce the influence of these random factors, this paper proposed a novel algorithm L2S 
which can improve the accuracy of LAA by cardinalities sampling. Both LAA and L2S are 
computation-intensive algorithms that can run in parallel. To improve the speed of LAA and 
L2S, this paper proposes a method to transplant them to GPU. When running on GPU, L2S 
can reduce the absolute bias of LAA by more than 22% with only 61 milliseconds extra 
time on average. High accuracy cardinality estimation is the foundation of many network 
security applications. In future work, we will study the applications of L2S in network 
security, such as intrusion detection, situation awareness, etc. 
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