

Computers, Materials & Continua CMC, vol.64, no.3, pp.1819-1844, 2020

CMC. doi:10.32604/cmc.2020.010727 www.techscience.com/journal/cmc

High Accuracy Network Cardinalities Estimation by Step
Sampling Revision on GPU

Jie Xu1, *, Qun Wang1, Yifan Wang1 and Khan Asif 2

Abstract: Host cardinality estimation is an important research field in network
management and network security. The host cardinality estimation algorithm based on
the linear estimator array is a common method. Existing algorithms do not take memory
footprint into account when selecting the number of estimators used by each host. This
paper analyzes the relationship between memory occupancy and estimation accuracy and
compares the effects of different parameters on algorithm accuracy. The cardinality
estimating algorithm is a kind of random algorithm, and there is a deviation between the
estimated results and the actual cardinalities. The deviation is affected by some
systematical factors, such as the random parameters inherent in linear estimator and the
random functions used to map a host to different linear estimators. These random factors
cannot be reduced by merging multiple estimators, and existing algorithms cannot
remove the deviation caused by such factors. In this paper, we regard the estimation
deviation as a random variable and proposed a sampling method, recorded as the linear
estimator array step sampling algorithm (L2S), to reduce the influence of the random
deviation. L2S improves the accuracy of the estimated cardinalities by evaluating and
remove the expected value of random deviation. The cardinality estimation algorithm
based on the estimator array is a computationally intensive algorithm, which takes a lot of
time when processing high-speed network data in a serial environment. To solve this
problem, a method is proposed to port the cardinality estimating algorithm based on the
estimator array to the Graphics Processing Unit (GPU). Experiments on real-world high-
speed network traffic show that L2S can reduce the absolute bias by more than 22% on
average, and the extra time is less than 61 milliseconds on average.

Keywords: Network security, cardinality estimating, parallel computing, sampling revision.

1 Introduction
The Internet is one of the important infrastructures of the modern information society,
and its security has become an important prerequisite for the national economy and social
development [Bhuyan, Bhattacharyya and Kalita (2014)]. With the rapid development of

1 Jiangsu Police Institute, Nanjing, 210031, China.
2 Department of Computer Application, Crescent Institutes of Science and Technology, Chennai, 600048, India.
* Corresponding Author: Jie Xu. Email: xujieip@yeah.net.
Received: 24 March 2020; Accepted: 29 April 2020.

1820 CMC, vol.64, no.3, pp.1819-1844, 2020

China’s economy, the number of Internet users in China has increased rapidly. According
to the statistics from the China Internet Network Information Center (CNNIC) [CNNIC
(2019)], as of June 2019, the number of Internet users in China has reached 854 million.
These network users will generate massive network traffic every day [Pacifici, Lehrieder
and Dán (2016)]. Managing and analyzing such a high-bandwidth network is a daunting
task. The rapid development of the Internet has also brought network security into a new
era. Network and information security events, such as botnet [Vormayr, Zseby and Fabini
(2017)], information leakage [Ciriani, Vimercati, Foresti et al. (2010)], industry network
attacks [Xu, Ren, Wang et al. (2019)], are threatening the network’s security.
Lots of researchers propose excellent and efficient algorithms to protect network security.
Calculation and analysis of network traffic properties is an important foundation of
network security and management. The cardinality of a host in the network [Xiao, Chen,
Zhou et al. (2017)] is one of the important network attributes which has received much
attention. Suppose there are two networks (ANet and BNet), and they communicate with
each other through an edge router (R). Let aip represent a host in ANet, bip represent a
host in BNet. When taking R as the traffic observation point, the cardinality of an aip in
ANet is the number of hosts in BNet which communicating with aip in a period through
R; the cardinality of a bip in BNet is the number of hosts in ANet which communicating
with bip in a period through R. Without losing generality, the cardinality in this paper
refers to the cardinality of aip in ANet. An IP address pair like <aip, bip> can be
extracted from each packet passing through R, and cardinalities of different hosts could
be calculated by scanning these IP address pairs stream extracted from packets stream.
When ANet and BNet are high-speed networks, such as the Internet between two cities
[Bianco, Bonald, Cuda et al. (2013)], it is difficult to accurately calculate the cardinality
of each aip in real-time. To ensure the real-time performance of the calculation,
estimating algorithms are proposed.
The cardinality estimation algorithm based on the estimator array is a common
cardinality calculation method. This method calculates the cardinality of different hosts
by using a fixed number of estimators. Each estimator is used by several aip to reduce
memory consumption, and each aip uses several estimators to improve estimation
accuracy. Existing algorithms do not take memory footprint into account when selecting
the number of estimators used by each host. Based on the relationship between memory
occupancy and estimated accuracy, this paper analyzes the influence of different row
numbers of estimator array. The cardinality estimation algorithm based on the estimator
array is a computationally intensive algorithm, which takes a lot of computational time to
run in real-time when processing high-speed network data in a serial environment. In this
paper, a method is proposed to port the cardinality estimation algorithm based on the
estimator array to the Graphics Processing Unit (GPU) [Mittal (2017)], and the real-time
cardinality estimation on the high-speed network is realized. GPU was originally
designed for image processing, and now it is widely used in the field of parallel
computing and artificial intelligence. The main contributions of this article are as follows:
(1) Analyzed the influence of the number of linear estimator array’s rows on the
estimation results under the condition of fixed memory.
(2) Proposed a novel algorithm, the linear estimator array step sampling algorithm (L2S),

High Accuracy Network Cardinalities Estimation by Step 1821

to improve the accuracy of estimated cardinalities by deviation sampling.
(3) A framework for deploying a cardinality estimation algorithm based on a linear
estimator array on the GPU is proposed, and real-time cardinality estimation of the high-
speed network is realized.
(4) Experiments on real-world high-speed network traffic are presented to demonstrate
that L2S can improve the accuracy greatly with little time consumption.
This paper is organized as follows. In Section 2, the existing works are introduced. In
Section 3, the algorithm of cardinality estimation based on the array of estimators is
introduced. The method to analyze the parameters of estimator array is given by
calculating the relationship between the number of estimators used by each host and the
number of distinct IP address pairs. Section 4 describes how the linear estimator array
step sampling algorithm (L2S) works to improve accuracy by cardinality sampling. In
Section 5 of this paper, from the perspective of parallel computing, a method of
transplanting the cardinality estimation algorithm based on estimator array to GPU is
proposed. Section 6 gives the results and analysis of experiments, and Section 7
summarizes this paper.

2 Related work
Host cardinality is an important network attribute and used in many applications, such as
Distributed Denial of Service (DDoS) detection [Zargar, Joshi and Tipper (2013)], Peer
to Peer (P2P) management [Zhuang and Chang (2019)], network security [Xie, Yan, Yao
et al. (2019)] and so on. For low-speed network or without real-time processing
requirement, the red-black tree can be used to store all IP address pairs, and accurately
calculate the cardinality of each host. This method can accurately get the cardinality of
each host, and there is no error in the results. This algorithm is called the precise
algorithm. For high-speed networks or embedded devices, the precise algorithm has the
following disadvantages. First, large memory consumption. For each corresponding bip
of each aip, the precise algorithm needs to save them in memory. Because the high-speed
network contains a large number of hosts, the precise algorithm needs a large amount of
memory to store this information. If there is a network attack, such as the flood attack
which forges the source address, the number of IP address pairs of some aip will grow
rapidly and occupy too much memory. Second, memory access is frequent. For each IP
address pair, the precise algorithm needs to find out whether the corresponding bip has
ever appeared in memory. It is an I/O-intensive algorithm, and the speed of memory
access will limit the speed of the precise algorithm. The traffic of high-speed network is a
kind of big data [Wang, Wang, Sherratt et al. (2020)], and it is inefficient to store all
traffic when running in real-time. Hence, each IP address pair can only be scanned once
when running online.
Therefore, the precise algorithm is not suitable for high-speed networks. To reduce
memory usage and improve the speed of the algorithm, many scholars proposed the host
cardinality estimation algorithm based on data sharing structures. This kind of algorithm
uses fixed-size memory to estimate different hosts’ cardinalities. In this paper, the
algorithm that can estimate cardinalities of different hosts at the same time is called the

1822 CMC, vol.64, no.3, pp.1819-1844, 2020

cardinality estimation algorithm. The algorithm that can only estimate the cardinality of a
single host is an estimator.
The estimator is the basis of the cardinality estimation algorithm. Each estimator can be
regarded as a set of counters. Commonly used estimators include PCSA [Qian, Ngan, Liu
et al. (2011)], HyperLogLog [Cohen and Nezri (2019)] and Linear Estimator (LE)
[Tarkoma, Rothenberg and Lagerspetz (2012)]. Among them, the LE algorithm, also
called linear estimator, is widely used in various cardinality estimation algorithms
because of its high accuracy and simple operation. LE uses 𝑔𝑔 counters to record and
estimate the cardinality, and every counter in LE is a bit. Let LEi represent the ith bit in
LE. When initialized, each bit is 0. When scanning the corresponding bip, each bip is
randomly mapped to a bit and the value of that bit is set to 1. After scanning all
corresponding bip, LE uses the following formula to estimate the cardinality. Where 𝑛𝑛0
represents the number of bits with a value of 0.

Est = −𝑔𝑔 ∗ log �
𝑛𝑛0
𝑔𝑔
�

The cardinality estimation algorithm uses the estimator to estimate the cardinality of each
host. From the use of the estimator, the cardinality estimation algorithm can be divided
into two categories, namely, the cardinality estimation algorithm based on counter
sharing [Shin, Im and Yoon (2014)] and the cardinality estimation algorithm based on
estimator sharing [Liu, Qu, Gong et al. (2016)]. The cardinality estimation algorithm
based on counter sharing assigns a virtual estimator to each host. Each counter of the
virtual estimator is mapped to a counter in the counter pool, i.e., each counter will be
shared by virtual estimators of multiple hosts for cardinality estimation. The cardinality
estimation algorithm based on counter sharing uses a fixed number of estimators to
estimate cardinalities of different hosts. In the cardinality estimation algorithm based on
estimator sharing, each estimator will be used for cardinality estimation of multiple hosts,
and each host will also use multiple estimators to estimate cardinality. The cardinality
estimation algorithm based on estimator sharing can not only reduce the estimation error
by using multiple estimators jointly but also recover the candidate super points by
reasonably setting the mapping mode from each host to the estimator. In this paper, the
cardinality estimation algorithm based on estimator sharing using LE as the estimator is
studied, a novel high accuracy algorithm by cardinality sampling is proposed, and a real-
time operation mode of transplanting the algorithm to GPU is given.

3 LE array cardinality estimating
The LE can be used to estimate the cardinality of a host. The number of bits contained in
LE determines the accuracy of its estimation results and the maximum cardinality it can
estimate. For example, when the number of bits in LE is 29, according to the estimation
formula of LE, the maximum estimation value that LE can give is 3194. When the
cardinality of a host is greater than 3194, LE needs to use more bits to accurately estimate
the cardinality of the host. To get high estimation accuracy, we need to allocate enough
bits for LE, because we don’t know the exact value of a host before estimating its
cardinality. The more bits LE contains, the more memory it takes up.

High Accuracy Network Cardinalities Estimation by Step 1823

Although it is better to use LE with a large number of bits for the high-cardinality host, it
will waste a lot of memory to estimate the cardinality of small cardinality hosts using LE
with the same number of bits. At the same time, the high-speed network will contain a
large number of hosts, and most of them have small cardinalities. Therefore, allocating a
single LE to each host will waste a lot of memory and reduce the efficiency of the
algorithm.
To improve memory usage, each LE is used for cardinality estimation of multiple hosts.
However, this will lead to an overestimation of the cardinality. To reduce the
overestimation caused by LE sharing, each host also uses multiple LE for cardinality
estimation at the same time. Using LE array to estimate cardinality is proposed under this
principle.

3.1 Process of cardinality estimating
The LE matrix composed of r row and c column is called LE array, which is recorded as
Linear estimator Array (LA). Fig. 1 shows the structure of LA. Each LE in LA will be
shared by multiple hosts. Among them, r determines how many LE each host will use for
cardinality estimation, and c determines how many hosts each LE will be used for
cardinality estimation on average. The algorithm that uses LA for cardinality estimation is
called Linear estimator Array Algorithm (LAA). In other words, LA is the main data
structure used in LAA.
For high-speed networks, LAA can estimate the cardinality of each host in the network.
Make aip a host in a high-speed network. LAA takes a LE from each line of LA to record
and estimate the cardinality of aip. Therefore, for aip, r different LE are corresponding to
it in LA. These LE are called the association LE set of aip and are recorded as RLE(aip).
RLE(aip) is defined as follows.

Figure 1: Linear Estimator array used to estimate different hosts’ cardinalities
Definition 1. (Association LE). For a given host aip, the LE set used to record and
estimate its cardinality in all rows of LA is the association LE set of aip, which is
recorded as RLE(aip) ={LE0(aip), LE1(aip), LE2(aip),…, LEi(aip),…, LEr−1(aip)}. LEi(aip)
is the LE used to estimate the cardinality of aip in the ith row of LA.
LAA consists of two processes: scanning IP address pairs and estimating host cardinality.
For each IP address pair in a time window, LAA will update its LE.

1824 CMC, vol.64, no.3, pp.1819-1844, 2020

Before scanning IP pair, LAA first allocates the space needed by LA in memory and then
initializes LA, i.e., all bits of each LE in LA are reset to 0. After LA initialization, LAA
starts to scan each IP address pair. For IP address pair<aip, bip>, LAA selects r LE from
LA according to aip to form RLE(aip), and updates these LE with bip, to record the
cardinality of aip. After scanning all IP address pairs in the time window, the cardinality
information of each host is saved in LA. For a given host aip, LAA can estimate its
cardinality according to LA.
Because LE in LA will be shared by multiple hosts, to reduce the impact of LE sharing,
LAA uses the result of merging multiple LE to estimate the cardinality. Let ULE(aip)
represent the union of all LE in RLE(aip). For the host aip, before estimating its
cardinality, LAA first sets each bit in the ULE(aip) to 1 and then merges the ULE(aip)
with each LE in the RLE(aip) in the way of “bit AND” (“&”). LAA estimates the
cardinality of aip based on ULE(aip).
By merging LE in RLE(aip), we can reduce the impact of LE sharing. The larger the c is,
the fewer hosts are corresponding to each LE. The larger the r is, the fewer bits set by
other hosts will be included in the union LE. That is to say, the larger c and r, the higher
the accuracy of estimation. But the larger the c and r, the larger the memory occupied by
LA. When the memory size of LA is determined, will the changes of r and c affect the
accuracy of cardinality estimation? These are discussed in the next section.

3.2 Influence of row number
The number of rows in LA will affect the accuracy of cardinality estimation. The actual
calculation is not that the bigger the r, the better. The larger the r is, the more LE will be
updated when each IP address pair is processed. In addition to increasing the calculation
time, it may also reduce the accuracy of the algorithm.
When the memory size occupied by LA is constant, reasonably setting of r and c can
improve the accuracy of the algorithm. To facilitate the discussion, the relevant symbols
and parameters are given first. Let V represent the total number of LE in LA, i.e., V=r×c;
N represent the number of different IP address pairs in a time window. For a stable
network, the fluctuation range of N should be relatively stable in a certain period. This
value can be obtained from the statistical observation of the past flow and can be reset
when the observed value changes beyond the acceptable range. Therefore, N is assumed
to be constant in the following discussion.
Let RLE represent the set composed of one LE selected from each row of LA randomly,
and ULE represent the union LE of RLE by bitwise “AND” operation. Let PSU indicate
the probability that a bit in the ULE is set to 1. The smaller the PSU, the closer the union
LE of each aip is to the LE it uses exclusively. Therefore, PSU can be used as an analysis
measure. It is proved that, with certain V, reasonably setting r can reduce PSU and reduce
the error caused by LE sharing.

High Accuracy Network Cardinalities Estimation by Step 1825

Lemma 1 When there are N different IP address pairs in a time window, the probability

that a bit in the ULE is set to 1 is 𝑷𝑷𝑷𝑷𝑷𝑷 = �𝟏𝟏 − �𝟏𝟏 − 𝟏𝟏
𝒈𝒈
�
𝑵𝑵
𝒄𝒄�

𝒓𝒓

.

Proof. Let 𝑛𝑛1 be the number of IP address pairs corresponding to each LE in LA. In LA,
each row is updated by N different IP address pairs. When the IP address pair is
uniformly mapped to different LE by hash function [Huang, Yang and Zheng (2018)],
𝑛𝑛1 = 𝑁𝑁

𝑐𝑐
 . The probability that each bit in LE is set by an IP address pair is 1

𝑔𝑔
, then the

probability that a bit is not set by 𝑛𝑛1 IP address pairs is �1 − 1
𝑔𝑔
�
𝑛𝑛1

. In the merged ULE,
only when the bits of the corresponding position in the row are all 1, the merged bits will
be 1. Hence,

𝑃𝑃𝑃𝑃𝑃𝑃 = �1− �1 − 1
𝑔𝑔
�
𝑁𝑁
𝑐𝑐�

𝑟𝑟

. (1)

Theorem 1 If the number of LE in LA is V, i.e., r×c = V, and there are N different IP
address pairs in a time window, then PSU gets the minimum value when 𝒓𝒓 = −𝑽𝑽∗𝒍𝒍𝒍𝒍𝒈𝒈 (𝟐𝟐)

𝑵𝑵∗𝒍𝒍𝒍𝒍𝒈𝒈 (𝟏𝟏−𝟏𝟏𝒈𝒈)
.

Proof. When V and N is fixed, 𝑃𝑃𝑃𝑃𝑃𝑃 = (1 − �1 − 1
𝑔𝑔
�
𝑟𝑟∗𝑁𝑁
𝑉𝑉)𝑟𝑟 . Let L = 𝑁𝑁

𝑉𝑉
, G = 1 − 1

𝑔𝑔
, the

derivative of PSU is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

= (1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿)𝑟𝑟 ∗ (log(1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿)− 𝑟𝑟 ∗ 𝐿𝐿 ∗ 𝐺𝐺𝑟𝑟∗𝐿𝐿 ∗ log (𝐺𝐺) ∗

（1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿）
−1

).

When 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

= 0, 𝑃𝑃𝑃𝑃𝑃𝑃 reaches its minimal value. Because of 1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿 > 0, when 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑟𝑟

=
0, we have the following equation.
log(1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿) = 𝑟𝑟 ∗ 𝐿𝐿 ∗ 𝐺𝐺𝑟𝑟∗𝐿𝐿 ∗ log (𝐺𝐺) ∗ (1 − 𝐺𝐺𝑟𝑟∗𝐿𝐿)−1 (2)

Solving the Eq. (2), we have 𝑟𝑟 = −𝑉𝑉∗log (2)
𝑁𝑁∗ln (1−1𝑔𝑔)

.

For LAA, setting the r reasonably according to the number of IP address pairs can
improve its accuracy. It can be seen from Theorem 1 that when the total number of LE is
fixed, PSU does not always decrease with the increase of r. When the r is larger than a
threshold, PSU will increase with the increase of r. At the same time, the larger r is, the
more LE are needed to be merged when calculating the ULE. This increases the time
taken by the algorithm. Hence, we should consider PSU and calculation time when
setting r.

4 Step sampling revision
LAA uses several LE to calculate the cardinality of each aip to reduce the error caused by
LE sharing. However, the error of LAA is also affected by some other factors, such as the
random parameters inherent in LE and the random functions used to map aip to LE in LA.
These random factors cannot be reduced by merging multiple LE. Therefore, we need to

1826 CMC, vol.64, no.3, pp.1819-1844, 2020

use other methods to eliminate the impact of these random factors, to further improve the
accuracy of cardinality estimation. To eliminate these errors, we need to estimate the
errors first. The method of sampling is one of the best ways to estimate a random
variable. According to the characteristics of the cardinality estimation process, a
sampling method called step sampling is proposed to improve the accuracy of LAA
estimation results. To distinguish the sampling revision algorithm from LAA, this paper
calls the algorithm, which uses step sampling to adjust LAA estimation results, L2S
algorithm (LAA with Step Sampling). Compared with LAA, L2S has two additional
processes: cardinality sampling and estimation revision. Let’s introduce the two
processes respectively.

4.1 Cardinality sampling
After scanning all IP address pairs in a time window, LAA will estimate the cardinality of
each aip. Let 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 denote a host with cardinality 𝑛𝑛 in the current time window in ANet,
and 𝐴𝐴𝐴𝐴𝑃𝑃𝑛𝑛 denote a set of aip with cardinality 𝑛𝑛 in the current time window. For an aip
with a cardinality of 𝑛𝑛, there will be some deviation between its estimated value 𝑛𝑛′ and 𝑛𝑛
due to the systematic error of LE and the random functions used by LAA. Let ∆𝑛𝑛
represent this deviation and ∆𝑛𝑛= 𝑛𝑛′ − 𝑛𝑛.
Different 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 have different 𝑛𝑛′ and ∆𝑛𝑛. Therefore, 𝑛𝑛′ and ∆𝑛𝑛 could be regarded as two
random variables. If we can estimate the expected value of ∆𝑛𝑛 (E(∆𝑛𝑛)), and use 𝑛𝑛′ −
E(∆𝑛𝑛) to rectify 𝑛𝑛′, we can get an estimated value closer to 𝑛𝑛 than 𝑛𝑛′. However, LAA
itself cannot estimate E (∆𝑛𝑛). This is because LAA doesn’t know the actual cardinality of
aip when running in real-time, and there may be too little hosts in 𝐴𝐴𝐴𝐴𝑃𝑃𝑛𝑛 to estimate
E (∆𝑛𝑛) correctly.
Therefore, this paper presents a method to estimate E (∆𝑛𝑛) by sampling. When estimating
E (∆𝑛𝑛) , it is necessary to obtain enough values of ∆𝑛𝑛 . When 𝑛𝑛 is determined, the
calculation of ∆𝑛𝑛 is to calculate 𝑛𝑛′. Hence, the sampling method in this paper will first
construct a sample set (𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛) consisting of several hosts whose cardinalities are 𝑛𝑛 ,
𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 = {𝑠𝑠𝑎𝑎𝑎𝑎1𝑛𝑛, 𝑠𝑠𝑎𝑎𝑎𝑎2𝑛𝑛, 𝑠𝑠𝑎𝑎𝑎𝑎3𝑛𝑛,⋯ }. Each 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 has 𝑛𝑛 different bip. The set of these 𝑛𝑛
different bip is called bip vector. Different sampled host has different bip vector.
After LAA scanning all IP address pairs in the current time window, we use LAA to
estimate the cardinality of the hosts in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛. Each 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 ∈ 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 could be regarded as an
aip. LAA selects r different LE from LA and merges them by bitwise “AND” operation to
acquire the union LE (ULE). Then each bip in the bip vector of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 is used as the input
data to update ULE. After scanning bip vector, the estimated cardinality of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 is
calculated from ULE by Eq. (1).
Estimating the cardinality of each host in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 according to the above method, we will
obtain a set of 𝑛𝑛′. Since 𝑛𝑛 is constant, E (∆𝑛𝑛) = E (𝑛𝑛′) − 𝑛𝑛. When estimating the value of
E (𝑛𝑛′), we can use the average or median of the estimated values of this sample set.
To let the sampling results better evaluate E (∆𝑛𝑛), each host in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 has 𝑛𝑛 randomly
selected bip, and the IP address 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖 of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛 is also randomly generated. The number of
hosts in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛, i.e., the number of samples, will also affect the accuracy of the estimated
value of E(∆𝑛𝑛) . Use β to represent the number of hosts in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 . According to the

High Accuracy Network Cardinalities Estimation by Step 1827

theorem of large numbers, the larger β is, the more accurate the calculation of E (∆𝑛𝑛) is,
but the greater the cost is. Therefore, the value of β needs to be determined flexibly
according to specific application scenarios.
Estimating the cardinality of each host in 𝑃𝑃𝐴𝐴𝑃𝑃𝑛𝑛 is processed after LAA scanning all IP
address pairs in the current time window. To avoid introducing additional errors, it not
supposed to modify LE in LA when estimating E (𝑛𝑛′). Therefore, it is necessary to find
out RLE (𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖), merge each LE in RLE (𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖) to get the ULE. Then update the ULE with
those corresponding bip of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖, and use the updated ULE to estimate the cardinality of
𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖. In this way, the influence of bip of 𝑠𝑠𝑎𝑎𝑎𝑎𝑖𝑖 on LA could be avoided.

4.2 Estimation revision
The cardinalities of different aip vary from one to thousands. If every cardinality is
sampled, lots of resources will be wasted. Therefore, this paper proposes a method, called
step sampling, to estimate the deviation. The step sampling method first sets a lower
cardinality limit RC0 and an upper limit RC1. Then, starting from RC0, estimate the
deviation of cardinality every other certain distance until the cardinality to be estimated is
greater than or equal to RC1. The distance here is the estimated step recorded as α. RC0
is an integer greater than or equal to 1, and RC1 is an integer greater than RC0. The
purpose of setting RC0 and RC1 is to improve the efficiency of sampling, avoid wasting
resources to estimate those cardinality deviations that may exceed the maximum
cardinality of aip. RC0 can be determined based on the minimum cardinality to be
calculated, while RC1 can be determined based on the maximum cardinality of aip
estimated by LAA.
When α and β are determined, the cardinality to be sampled and the number of samples
of each cardinality are also determined. If 𝑛𝑛𝑖𝑖 is the cardinality of the 𝑎𝑎th sample, then
𝑛𝑛𝑖𝑖 = 𝑅𝑅𝑅𝑅0 + (𝑎𝑎 − 1) ∗ α and 𝑛𝑛𝑖𝑖 ≤ 𝑅𝑅𝑅𝑅1 . According to the method in the previous
subsection, E(𝑛𝑛𝑖𝑖′) is estimated by β samples of 𝑛𝑛𝑖𝑖.
The estimated value of aip can be adjusted according to 𝑛𝑛𝑖𝑖 and E (𝑛𝑛𝑖𝑖′). Assuming that the
estimated value of an aip is 𝑛𝑛′ , rearrange E (𝑛𝑛𝑖𝑖′) in ascending order. If there are two
integers 𝑗𝑗 and 𝑘𝑘 such that E �𝑛𝑛𝑗𝑗′� ≤ 𝑛𝑛𝑖𝑖′ ≤ E(𝑛𝑛𝑘𝑘′) , and E (𝑛𝑛𝑗𝑗′) and E (𝑛𝑛𝑘𝑘′) are in two
adjacent positions after sorting, then 𝑛𝑛𝑖𝑖′ can be adjusted according to the following
formula. 𝑛𝑛𝑖𝑖′′ is the revised value.

𝑛𝑛𝑖𝑖′′ = 𝑛𝑛𝑗𝑗 +
�𝑛𝑛𝑘𝑘 − 𝑛𝑛𝑗𝑗� ∗ (n′ − E�𝑛𝑛𝑗𝑗′�)

E(𝑛𝑛𝑘𝑘′)− E(𝑛𝑛𝑗𝑗′)
 (3)

Eq. (3) uses linear relation to modify 𝑛𝑛𝑖𝑖′ according to sample distribution. The estimated
value of each aip can be adjusted according to Eq. (3) to reduce the random error of LAA
and improve the accuracy of estimation.
α and β determine the sample capacity. Generally speaking, the larger the sample
capacity is, the smaller the error is, but the more resources are consumed. For a
cardinality 𝑛𝑛, when the confidence (δ), the allowable error (ε) and the total standard
deviation (σ) of the estimated value are given, according to the statistical principle, the

1828 CMC, vol.64, no.3, pp.1819-1844, 2020

sample capacity (µ) for 𝑛𝑛 is µ ≥ �𝑍𝑍𝛿𝛿/2∗σ
𝜀𝜀

�
2

. 𝑍𝑍𝛿𝛿/2 is the bilateral critical value of the
standard normal distribution at the level of δ. The sample capacity of α cardinalities is
α ∗ µ. Because L2S estimates the error every α cardinalities, β = α ∗ µ. The value of α
can be adjusted according to the historical operating results.
L2S can run in parallel to improve sampling speed. In the next section, we will discuss
how to run L2S on GPU.

5 Translate LAA and L2S on GPU
In actual operation, LAA needs to be able to estimate the number of connection pairs of
the host in real-time. Real-time running means that in a time window, the cumulative
time of LAA scanning IP address pair and the time of estimating the host cardinality are
less than or equal to the length of the time window. If LAA can not run in real-time,
packet loss will occur, thus reducing the accuracy of detection results. For the high-speed
network, millions of packets pass through the network boundary every second, and there
are a large number of hosts in the high-speed network. Each packet corresponds to an IP
address pair. LAA needs to scan these packets in real-time and estimate the cardinality of
different hosts. Although the time complexity of accessing memory when LAA scans the
IP address pair is O(1), it needs a lot of computation when mapping the host to different
LE and the peer IP to a bit in LE. It can be seen that LAA is a computation-intensive
algorithm. When running on the CPU, LAA scans each IP address pair serially. However,
due to the limited computing power of CPU, LAA cannot process high-speed network
data in real-time. Therefore, we need to use a platform with more computing resources to
improve the running speed of LAA. The heterogeneous computing platform based on
GPU and CPU is an ideal parallel computing platform for processing computing-
intensive tasks.
Parallel computing is a common way to improve the speed of an algorithm. According to
Bernstein’s theorem, for the computation-intensive tasks without data access conflict,
porting them to the parallel environment can obtain a high speedup ratio. The process of
scanning IP address pairs and estimating host cardinality of LAA can be completed on
GPU. LAA does not need to read data from LA when scanning IP address pairs, hence
there will be no read-write conflict in Bernstein’s theorem. When LAA updates LA, it will
only set some bits in LA to 1. So the process of scanning IP address pairs of LAA can run
in parallel. LAA does not need to write to LA when estimating the host cardinality, hence
it conforms to Bernstein’s theorem and can run in parallel.
GPU is a kind of parallel processor with a large number of computing units [Silber-
Chaussumier, Muller and Habel (2013)], which is suitable for processing computing-
intensive tasks without data conflicts. Therefore, transplanting LAA to GPU is an ideal
way to improve the running speed of the algorithm. According to the characteristics of
LAA and GPU, this paper proposes a way to transplant LAA to GPU.

5.1 Scanning IP pair on GPU
When LAA scans the IP address pairs on the CPU, it will scan each IP address pair in
turn, i.e., every packet passing through R will extract the IP address pair and update LA.

High Accuracy Network Cardinalities Estimation by Step 1829

However, GPU can only access graphic memory, can’t directly access CPU memory.
Therefore, to enable LAA to scan IP address pairs on GPU, it is necessary to store LA on
GPU’s graphic memory and copy IP address pairs to video memory. LA can be initialized
on GPU memory at the beginning of the algorithm. However, the network packets will
come continuously in the time window. If the IP address pair is copied to the graphic
memory one by one, it will waste a lot of computing time. Therefore, this paper allocates
a buffer of the same size on CPU and GPU to store IP address pairs. When the buffer on
the CPU side is full or reaches the time window boundary, copy the IP address pair buffer
on the CPU side to the IP address pair buffer on the GPU side, and start GPU threads to
process IP address pairs. The number of IP address pairs in the buffer is the number of
GPU threads to start. From the previous analysis, we can see that there is no overwriting
problem between different GPU threads, hence each GPU thread can accurately scan the
IP address pair.

5.2 Estimating host cardinality on GPU
When estimating each host’s cardinality, LAA reads data from the LA without writing
data to the LA. After GPU scanning all IP address pairs in the current time window, LA
will contain the cardinality information of the host. At this time, different GPU threads
can be used to estimate the cardinality of different hosts.
When estimating the cardinality of each host, a temporary LE is needed to store the union
LE. Therefore, when using GPU to estimate the host cardinality, we need to allocate a
temporary LE for each thread. To improve the running efficiency of the algorithm on
GPU, a fixed number of LE is allocated before estimating the cardinalities of hosts. When
estimating the host cardinality, each GPU thread uses a temporary LE separately. Due to
the limited number of threads that GPU can start at the same time, and the excessive
allocation of temporary LE will also occupy a large amount of memory space, this paper
groups the hosts that need to estimate the cardinality. For each group of hosts, start the
same number of GPU threads for cardinality estimation. This not only improves the
efficiency of operation but also reduces the occupation of graphic memory.

5.3 Step sampling on GPU
Cardinality sampling and estimation revision are unique to L2S. Estimation revision only
needs to modify the estimated cardinality of each aip according to Eq. (3). However, due
to the influence of sampling parameters α and β, cardinality sampling can calculate a
large number of cardinalities of sampling hosts, and the amount of calculation is far more
than the amount of calculation needed for estimation revision. The speed of L2S can be
improved by transplanting the cardinality sampling process to GPU. The cardinality
sampling process does not modify the LA, so it can run on GPU. Fig. 2 illustrates how to
obtain the estimated cardinalities of sampled hosts on GPU.

1830 CMC, vol.64, no.3, pp.1819-1844, 2020

Figure 2: Parallel estimating the cardinalities of sampled hosts
When estimating the cardinality of a sampled host, we need to know the IP address sip,
the cardinality 𝑛𝑛 and the bip vector. In Fig. 2, the sip, 𝑛𝑛, and bip vector form a row of
sampling data. Because the number of sampled hosts may be larger than the number of
threads that GPU can start at one time, the sampling data is divided into different groups.
Each group contains k sampled hosts. GPU processes the sampling data group by group.
GPU starts k threads at a time, and one thread processes a row of sampling data. k can be
determined according to the memory capacity of the GPU and the physical computing
unit.
When estimating the cardinality of each sampling host, we need a temporary LE to store
the merged LE. Therefore, we also allocate k LE on the GPU, that is, the temporary LE
vector in Fig. 2. A GPU thread will read r different LE in LA according to sip, and then
write the merged LE to a temporary LE. The bip vector of the sip is used to update the
temporary LE. After scanning the bip vector, the cardinality of sip is estimated based on
the temporary LE. As can be seen from Fig. 2, the sample data and LA will only be read,
not modified. It ensures that k GPU threads can run at the same time to estimate the
cardinality of the sampled host.
According to the above method, LAA and L2S can be transplanted to GPU to realize the
real-time cardinalities estimation of high-speed networks.
The network traffic is divided into fixed-size time windows, and the network traffic in
each time window is processed separately. Therefore, for high-speed network traffic, L2S
can run in real-time when the time it takes in a time window is less than the size of a time
window.
Although the static data is used in our experiments, L2S does not use the specific
information of the network traffic such as the IP addresses distribution and only scans the
network data once, so L2S can dynamically process the high-speed network data.

High Accuracy Network Cardinalities Estimation by Step 1831

6 Experiment
This paper uses a set of real-world high-speed network data to evaluate the performance
of LAA and L2S. The network data used in this article is the data set downloaded from the
WIDE website [Fontugne, Abry, Fukuda et al. (2017)]. WIDE data set is a real-time
network data stream collected from 1 Gb/s high-speed network. The network data used in
this paper is the network traffic that lasts for 10 minutes from 13:00 on May 9, 2018, and
April 9, 2019, respectively. Denote by WIDE 20180509 and WIDE 20190409 these two
experiment data. Tab. 1 lists the information of our experiment data, including the IP
number in ANet and BNet(‖𝐴𝐴𝐴𝐴𝑃𝑃‖ and ‖𝐵𝐵𝐴𝐴𝑃𝑃‖), packets number(#Pkt), unique IP pair
number, average cardinality of each aip and so on.

Table 1: Details of experiment network traffic

Traffic ‖𝑨𝑨𝑨𝑨𝑷𝑷‖ ‖𝑩𝑩𝑨𝑨𝑷𝑷‖ #Pkt Unique
IP pair

Average
cardinality

WIDE
20180509 146978 1675748 157858284 1967100 13.38

WIDE
20190409 137477 1723667 164246725 2042693 14.86

According to the way of Section 5, this experiment is carried out on GPU. The GPU in
the experiment is Nvidia GTX 950 m, with 2 GB graphic memory and 640 CUDA cores.
In this experiment, g is set to 210 and V is set to 213.

6.1 The influence of row number
To compare the impact of different rows on the accuracy of the estimation results, LAA is
tested when r increases from 1 to 40.

6.1.1 Estimating accuracy
 It can be seen from the analysis in Section 3 that with the increase of the number of LA
rows, the estimation accuracy of LAA is not monotonically increasing. Figs. 3 and 4 show
that LAA’s estimating result with rows 1, 3 and 40 on these two experiment data
respectively. x-coordinate of each subgraph represents the actual cardinality, and y-
coordinate represents the estimated cardinality of different aip. The closer the points in
the graph are to the straight line x=y, the higher the accuracy of the estimation is.
As can be seen from Figs. 3 and 4, when r is 1, the estimated value of LAA deviates
greatly from the real value. When the number of rows increases to 3, the estimated value
of LAA is close to the real value. With the further increase in the number of rows, the
estimated value of LAA is not more close to the real value. This shows that increasing the
number of rows does not always reduce the error.
To compare the accuracy of the estimation more accurately, we use average bias to
measure the experiment results. For a host aip whose cardinality is 𝑛𝑛 and the estimated
value is 𝑛𝑛′, its estimation bias the (𝑛𝑛′ − 𝑛𝑛)/𝑛𝑛. There are many aip in a time window, the

1832 CMC, vol.64, no.3, pp.1819-1844, 2020

mean of these estimation bias of all aip is called average bias. To compare the fluctuation
of estimation bias, the standard of estimation bias of all aip is calculated. Generally
speaking, the lower the average bias is, the higher estimation accuracy is.
However, the average bias can’t fully reflect the accuracy of the estimation, because the
overestimation and underestimation will offset each other and reduce the average
deviation. For this reason, we define absolute bias as |𝑛𝑛′ − 𝑛𝑛|/𝑛𝑛 where 𝑛𝑛 is the
cardinality of aip, 𝑛𝑛′ is its estimated value, |𝑛𝑛′ − 𝑛𝑛| is the absolute value of the difference
between 𝑛𝑛 and 𝑛𝑛′. The mean value of the absolute bias of all aip is called the average
absolute bias, and the standard deviation of the absolute bias of all aip is called the
absolute bias standard deviation. Average absolute bias and standard deviation of
absolute bias can reflect the influence of overestimation and underestimation on the
accuracy of results.

Figure 3: The estimating cardinalities distribution under different row numbers on
experiment data WIDE 20180509

High Accuracy Network Cardinalities Estimation by Step 1833

Figure 4: The estimating cardinalities distribution under different row numbers on
experiment data WIDE 20190409
In the experiment, we use average bias, average absolute bias, the standard deviation of
bias, the standard deviation of absolute bias to compare the estimation under different
row numbers. Average bias, average absolute bias, the standard deviation of bias, the
standard deviation of absolute bias of LAA’s estimated result on two experiment data are
shown in Figs. 5 and 6.

Figure 5: Estimating accuracy under different row number on experiment data WIDE
20180509

1834 CMC, vol.64, no.3, pp.1819-1844, 2020

Figure 6: Estimating accuracy under different row number on experiment data WIDE
20190409
In Figs. 5 and 6, x-coordinate represents the number of rows of LA, and y-coordinate
represents the average bias, average absolute bias, the standard deviation of bias, the
standard deviation of absolute bias respectively. In each figure, the first and second
subplots (i.e., the average bias and the average absolute bias subplots) have the same y-
coordinate limitations; the third and the fourth subplots (i.e., the standard deviation of
bias and standard deviation of absolute bias subplots) have the same y-coordinate
limitations. So, it’s easy to compare the differences between the average bias and the
average absolute bias or the standard deviation of bias and the standard deviation of
absolute bias.
It can be seen from Figs. 5 and 6 that the average bias, average absolute bias, the standard
deviation of bias, the standard deviation of absolute bias all have the same variation trend
that decreasing first and then increasing. The smaller the average bias, average absolute
bias, the standard deviation of bias and the standard deviation of absolute bias are, the
better the estimated result is. Consequently, it is not that the larger the number of rows,
the higher the accuracy of estimation. Choosing an appropriate r is helpful to improve the
accuracy.
By comparing the first and second subplots in both Figs. 5 and 6, we can see that the
average absolute bias is higher than the average bias. This is because, in the average
absolute bias, the overestimated value and the underestimated value will not offset each
other like that in the average bias which makes the calculation result lower. However, the
absolute bias moves the underestimation to the same side of the overestimation, which
makes the standard deviation of the absolute bias smaller than the standard deviation of
the bias, as shown in the third and fourth subplots of Figs. 5 and 6.

High Accuracy Network Cardinalities Estimation by Step 1835

6.1.2 Running time
An increase in the number of rows also increases the time spent on the algorithm because
more hash functions will be called to locate these LE. Figs. 7 and 8 show the running
time of LAA on two datasets under different row numbers.

Figure 7: Experiment running time under different row number on experiment data
WIDE 20180509

Figure 8: Experiment running time under different row number on experiment data
WIDE 20190409
The running time is divided into two parts: IP address pairs scanning time and cardinality
estimating time. The sum of them is called the total using time. The time of all the three
subplots in both Figs. 7 and 8 are increasing with the row number. A bigger row number

1836 CMC, vol.64, no.3, pp.1819-1844, 2020

requires more running time. It can be seen from Figs. 7 and 8 that the IP address pair
scanning time is much longer than the cardinality estimating time. Actually, in our
experiments, the IP address pair scanning time is 117 to 745 times the cardinality
estimating time. Hence, the IP address pair scanning time has more influence on the total
time.
Because this paper transplanted LAA to GPU, even when the number of rows is 40, the
time used by LAA is not more than 3760 milliseconds, i.e. not more than 3.76 seconds.
For example, in our experiment, when the number of rows is 3, the time used by LAA is
only 570 and 609 milliseconds, and the speed of processing packets is 263.98 and 257.35
mpps (mpps means millions of packets per second); when the number of rows is 4, the
time used by LAA is only 657 and 695 milliseconds, and the speed of processing packets
is 229.00 and 225.50 mpps. Therefore, the hosts’ cardinalities of a high-speed network
can be estimated accurately in real-time by transplanting LAA to GPU using the method
proposed in this paper.

6.2 Sampling revision experiment
In the previous subsection, we illustrate the accuracy and running time of the unadjusted
LAA under different r. The accuracy of the estimated result can be improved by sampling
revision. In this subsection, we will show and analyze the experiments of sampling
adjustment.

6.2.1 Sampling revision accuracy
As can be seen from Figs. 5 and 6, LAA can achieve high accuracy when the number of
rows is between 3 and 5. To analyze the improvement of sampling revision on the
estimation results, in the experiment of L2S, we set the row number of L2S to 4. In L2S,
sampling parameters (i.e., α and β) will affect the accuracy of the revision results. To
compare the improvement of the results by different sampling parameters, we test the
results when α are 5, 10, 20 and 30, and β are 5, 10, 20 and 30. The tuple composed of α
and β, recorded as <α, β>, is called sampling step number pair. Under each sampling step
number pair, we also compare the influence of expected estimating value calculated by
using mean and median of sampling cardinality, which are expressed by L2S-mean and
L2S-median respectively.
To compare the accuracy of L2S, we compare the estimation results with DCDS [Wang,
Guan, Zhao et al. (2014)], VBFA [Liu, Qu, Gong et al. (2016)] and GSE [Shin, Im and
Yoon (2014)]. Figs. 9 and 10 describes the accuracy of different algorithms under two
sets of experimental traffic. Subplots in Figs. 9 and 10 represent the average bias, average
absolute bias, the standard deviation of bias and the standard deviation of absolute bias of
different algorithms. The x-coordinate of each subgraph represents the sampling step
number pair.

High Accuracy Network Cardinalities Estimation by Step 1837

Figure 9: The accuracy of different algorithms on WIDE 20180509

Figure 10: The accuracy of different algorithms on WIDE 20190409
The average bias is mainly used to measure the deviation of the estimated cardinality
from the accurate value after the offset between the overestimation and the
underestimation. The average bias may be higher or lower than zero. To compare the

1838 CMC, vol.64, no.3, pp.1819-1844, 2020

average bias of different algorithms, the average bias in this experiment is the absolute
value of the average bias. Different from the average absolute bias, the absolute value of
the average bias can not reflect the overestimation and underestimation. The calculation
method is to get the average bias first and then take the absolute value of it. Let ‖𝐴𝐴𝐴𝐴𝑃𝑃‖
indicate the number of aip, 𝑛𝑛𝑖𝑖′ indicate the estimated cardinality of the ith aip whose
actual cardinality is 𝑛𝑛𝑖𝑖 . Then the absolute value of the average bias is calculated as
| 1
‖𝐴𝐴𝐴𝐴𝑑𝑑‖

∑ 𝑛𝑛𝑖𝑖
′ − 𝑛𝑛𝑖𝑖
𝑛𝑛𝑖𝑖

𝑖𝑖≤‖𝐴𝐴𝐴𝐴𝑑𝑑‖
𝑖𝑖=1 |. While the calculation method of average absolute bias is to take

the absolute value of bias first and then calculate the average value, and the calculation
formula is 1

‖𝐴𝐴𝐴𝐴𝑑𝑑‖
∑ |𝑛𝑛𝑖𝑖

′ − 𝑛𝑛𝑖𝑖|
𝑛𝑛𝑖𝑖

𝑖𝑖≤‖𝐴𝐴𝐴𝐴𝑑𝑑‖
𝑖𝑖=1 .

As can be seen from Fig. 9, for all algorithms, the average absolute bias is higher than the
absolute value of the average bias. This further shows that the average absolute bias can
more comprehensively reflect the accuracy of the estimated result. In Figs. 9 and 10, the
average bias of GSE is lower than that of DCD, VBFA and LAA, but the average absolute
bias of GSE is higher than that of VBFA. It shows that the algorithm with a good effect on
the average bias does not necessarily have a good effect on the average absolute bias.
From the perspective of the difference between the estimated results and the accurate
cardinalities, the average bias of LAA is higher than that of DCD, VBFA and GSE, and the
average absolute bias is higher than that of VBFA and GSE in Figs. 9. In 10, the average
deviation of LAA is lower than that of DCDS and VBFA, and the average absolute bias is
lower than that of DCDS and GSE. It shows that the estimating deviation of LAA is
similar to the existing algorithms.
From the perspective of the bias fluctuation, the bias standard deviation of LAA is lower
than that of DCDS, VBFA and GSE in Figs. 9 and 10. The standard deviation of LAA’s
absolute bias is only higher than that of VBFA and GSE in Fig. 10. This shows that the
bias fluctuation degree of LAA is similar to the existing algorithms. Hence the unrevised
LAA has similar accuracy to the existing algorithms.
The accuracy of LAA can be improved by step sampling revision, i.e., L2S algorithm, as
can be seen in Figs. 9 and 10. In Figs. 9 and 10, the average bias and the average absolute
bias of L2S are far lower than that of LAA, and also lower than that of the existing
algorithms. To analyze the accuracy improvement of L2S more clearly, we define a
reduction ratio to measure L2S’s reduction of the average (absolute) bias and the standard
deviation of (absolute) bias.
Let 𝑏𝑏 denote LAA’s average (absolute) bias or standard deviation of (absolute) bias, and
𝑏𝑏′ denote the L2S’s average (absolute) deviation or standard deviation of (absolute) bias.
The reduction ratio of average (absolute) deviation or standard deviation of (absolute)
bias is 𝑏𝑏−𝑏𝑏

′

𝑏𝑏
∗ 100%. Tabs. 2 and 3 list the reduction ratios of average (absolute) bias and

(absolute) bias standard deviation when L2S uses the mean and median to calculate the
sampling estimated value respectively, i.e., L2S-mean and L2S-median.

High Accuracy Network Cardinalities Estimation by Step 1839

Table 2: The reduction ratio of L2S-mean under different step sampling number pairs

Traffic 𝛂𝛂 𝛃𝛃

Reduction ratio (%)

Average
bias

Average
absolute

bias

Standard
deviation of

bias

Standard
deviation of

absolute bias

WIDE
20180509

5

5 84.5343 25.2805 1.1839 11.0196
10 86.0690 27.2830 0.3388 8.4549
20 80.9236 27.6081 0.7477 8.2548
30 84.2686 26.5870 -0.2500 7.9424

10

5 79.2214 24.5646 -2.8063 5.1661
10 83.7857 26.8396 0.6485 8.9984
20 86.7852 28.3776 0.2992 7.6786
30 84.4045 29.0200 0.7416 7.6341

20

5 81.2704 22.9752 -2.7075 6.7371
10 78.6285 27.7243 -1.1564 5.1835
20 82.8489 26.5201 0.1650 8.4357
30 79.2547 27.4230 0.5684 7.9179

30

5 70.4353 24.2113 0.3266 8.5014
10 80.7459 23.9957 -1.7801 7.2516
20 82.7373 26.7248 -1.1597 6.3820
30 77.8209 26.9974 1.2011 8.9283

WIDE
20190409

5

5 78.4453 17.7376 1.7933 9.9254
10 70.9934 19.2954 3.4324 9.7545
20 73.9361 20.4180 4.8573 11.6815
30 78.5078 22.3068 7.0708 14.3850

10

5 72.8970 16.0212 -0.5614 6.5487
10 70.4164 22.5287 6.9191 12.2325
20 80.8363 21.3062 5.3494 12.6068
30 76.3502 21.3695 5.4616 12.0394

20

5 84.5242 19.7203 2.3243 9.0862
10 67.8432 20.1071 5.8656 12.8564
20 76.2632 21.9059 6.7538 13.9120
30 75.0729 20.8549 5.7517 13.1114

30

5 75.7847 18.2680 3.5947 12.4518
10 70.6110 19.6590 5.5664 13.5118
20 75.4908 20.8525 5.8816 13.4577
30 67.6125 21.1392 6.1882 12.0212

Average 78.1037 23.3007 2.2690 9.8146

1840 CMC, vol.64, no.3, pp.1819-1844, 2020

Table 3: The reduction ratio of L2S-median under different step sampling number pairs

Traffic 𝛂𝛂 𝛃𝛃

Reduction ratio (%)

Average bias Average
absolute bias

Standard
deviation of

bias

Standard deviation
of absolute bias

WIDE
20180509

5

5 81.1368 23.7788 -1.8132 7.4136
10 81.0298 26.0022 -0.1139 8.2019
20 79.9764 27.5576 0.9168 8.4122
30 80.6521 26.2436 -0.7859 7.0174

10

5 81.2569 24.2709 -1.4003 7.6574
10 75.8532 24.8377 0.4826 9.2013
20 90.5733 29.4038 1.5437 9.0030
30 82.5229 28.6878 0.0209 6.6486

20

5 70.7298 20.4700 -2.9421 6.7008
10 77.5631 27.7050 -0.5367 5.9217
20 72.7454 24.4144 -0.8531 7.0828
30 74.7670 25.7732 -0.9052 6.3526

30

5 57.9694 21.0573 -1.1739 5.9026
10 73.6337 22.9663 -1.3028 7.6757
20 86.2858 27.1624 -0.7163 7.0517
30 75.3508 26.7250 0.9407 8.3796

WIDE
20190409

5

5 76.9161 16.0260 -1.7356 4.8602
10 64.8568 16.0759 -0.0881 5.7030
20 72.7161 19.4176 3.8826 10.8474
30 76.9121 20.2890 4.4684 11.6042

10

5 68.8702 13.7384 -3.4430 3.0591
10 78.1906 21.2185 4.5088 10.6257
20 76.3189 19.6535 4.5921 12.6416
30 83.7041 21.6179 5.1494 12.1466

20

5 66.7204 17.6459 0.7521 5.6942
10 73.3315 18.8713 2.1836 8.2809
20 75.9669 21.0745 5.7323 12.9288
30 71.4559 21.2953 6.0788 12.4489

30

5 67.5964 15.4570 0.2683 7.9219
10 69.0036 19.2537 4.5829 11.7114
20 78.4889 22.2511 6.4213 13.1355
30 71.2093 21.4953 6.0090 11.9817

Average 75.4470 22.2636 1.2726 8.5692

It can be seen from Tabs. 2 and 3 that the average (absolute) bias and (absolute) bias
standard deviation of L2S-mean and L2S-median are all reduced. Among them, the
reduction ratio of the average bias is the largest, which distributing from 57% to 90%,
and the average bias reduction ratio of L2S-mean and L2S-median reach 78% and 75%,
respectively. In Tab. 2, L2S-mean reduces the average absolute bias by more than 16%,
the highest reduction ratio reaches 29%, and the average reduction ratio reaches 23%; in
Tab. 3, L2S-mean reduces the average absolute bias by more than 13%, the highest

High Accuracy Network Cardinalities Estimation by Step 1841

reduction ratio reaches 29%, and the average reduction ratio reaches 22%. Hence L2S-
mean and L2S-median also have better performance on the average absolute bias.
From the perspective of reducing the fluctuation of estimation bias, L2S-mean and L2S-
median also reduce the bias standard deviation. In Tabs. 2 and 3, although the bias
standard deviation of L2S-mean and L2S-median is sometimes slightly higher than that of
LAA, in general, the average of the bias standard deviation of L2S-mean and L2S-median
is reduced by 2% and 1%, respectively. For L2S-mean and L2S-median, the reduction of
absolute bias standard deviation is better than that of bias standard deviation. In Tab. 2,
L2S-mean reduces the absolute bias standard deviation by more than 5%, the highest
reduction ratio reaches 14%, and the average reduction ratio reaches 9%; in Tab. 3, L2S-
mean reduces the absolute bias standard deviation by more than 3%, the highest reduction
ratio reaches 13%, and the average reduction ratio reaches 8%. It can be seen from these
experiments that L2S-mean and L2S-median also have an obvious good performance on
absolute bias standard deviation.
It can be seen from the above analysis that the sampling revision algorithm, L2S, can not
only improve the accuracy of the estimated results but also make the output results more
stable.

6.2.2 Sampling using time
L2S can improve the accuracy of cardinality estimation with little additional sampling
time. Tab. 4 shows the sampling time of L2S under different sampling parameters. L2S-
mean and L2S-median use the same sampling data, so they have the same sampling time
as shown in Tab. 4.

Table 4: Sampling time of L2S

𝛂𝛂 𝛃𝛃
Using Time (ms)

WIDE 20180509 WIDE 20190409

5

5 46.8586 45.6432

10 80.7491 81.8959

20 152.6805 157.3154

30 219.5991 243.2497

10

5 19.0714 19.4652

10 38.8418 36.9717

20 68.5209 71.9618

30 106.3597 110.5204

20

5 12.3004 10.2543

10 21.4017 19.8806

20 38.7598 38.4134

30 52.8206 53.3638

30

5 7.9199 8.0159

10 14.4797 15.7779

20 23.2719 24.1849

1842 CMC, vol.64, no.3, pp.1819-1844, 2020

30 35.7670 36.5461
Average 58.7126 60.8413

It can be seen from Tab. 4 that when α is the same, the sampling time increases with the
increase of β. But when β are the same, the sampling time decreases with the increase of
α. This is because when the sample step is determined, the bigger the β, the more the
total quantity of samples; when β is determined, the larger the α , the less the total
quantity of samples. The sampling time is directly proportional to the total quantity of
samples. Therefore, the sampling time decreases with the increase of α and increases with
the increase of β. In Tab. 4, the maximum sampling time of L2S is no more than 244
milliseconds (ms), the minimum is less than 9 ms, and the average sampling time is not
more than 61 ms. Therefore, L2S can use a few additional times to improve the accuracy
of LAA. It can be seen from the experimental results that the time used by L2S, including
the time of the IP address pairs scanning, cardinalities estimating and the sampling
process, is far less than the size of a time window, so L2S can run in real-time.

7 Conclusion
LAA algorithm is an efficient cardinality calculation method. LAA uses a fixed number of
LE to calculate the cardinality of different hosts. Each LE will be used by multiple hosts to
reduce memory consumption, and each host will also use multiple LE to improve
estimation accuracy. But the accuracy of LAA is affected by some random factors. To
reduce the influence of these random factors, this paper proposed a novel algorithm L2S
which can improve the accuracy of LAA by cardinalities sampling. Both LAA and L2S are
computation-intensive algorithms that can run in parallel. To improve the speed of LAA and
L2S, this paper proposes a method to transplant them to GPU. When running on GPU, L2S
can reduce the absolute bias of LAA by more than 22% with only 61 milliseconds extra
time on average. High accuracy cardinality estimation is the foundation of many network
security applications. In future work, we will study the applications of L2S in network
security, such as intrusion detection, situation awareness, etc.

Acknowledgement: We thank Khushnood Abbas for contributing to the paper
proofreading. We would like to thank the ICAIS 2020 reviewers and chairs for their
valuable feedback and comments on the paper.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Bhuyan, M. H.; Bhattacharyya, D. K.; Kalita, J. K. (2014): Network anomaly
detection: methods, systems and tools. IEEE Communications Surveys Tutorials, vol. 16,
no. 1, pp. 303-336.

High Accuracy Network Cardinalities Estimation by Step 1843

Bianco, A.; Bonald, T.; Cuda, D.; Indre, R. (2013): Cost, power consumption and
performance evaluation of metro networks. IEEEOSA Journal of Optical
Communications and Networking, vol. 5, no. 1, pp. 81-91.
Ciriani, V.; Vimercati, S. D. C. D.; Foresti, S.; Jajodia, S.; Paraboschi, S. et al.
(2010): Combining fragmentation and encryption to protect privacy in data storage. ACM
Transactions on Information and System Security, vol. 13, no. 3, pp. 22.
CNNIC (2019): China Statistical Report on Internet Development.
Cohen, R.; Nezri, Y. (2019): Cardinality estimation in a virtualized network device
using online machine learning. IEEE ACM Transactions on Networking, vol. 27, no. 5,
pp. 2098-2110.
Fontugne, R.; Abry, P.; Fukuda, K.; Veitch, D.; Cho, K. et al. (2017): Scaling in
internet traffic: a 14 year and 3 day longitudinal study, with multiscale analyses and
random projections. IEEE ACM Transactions on Networking, vol. 25, no. 4, pp. 2152-
2165. http://www.cac.gov.cn/2019-08/30/c_1124938750.htm.
Huang, L.; Yang, Q.; Zheng, W. (2018): Online hashing. IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 6, pp. 2309-2322.
Liu, W.; Qu, W.; Gong, J.; Li, K. (2016): Detection of superpoints using a vector
bloom Filter. IEEE Transactions on Information Forensics and Security, vol. 11, no. 3,
pp. 514-527.
Mittal, S. (2017): A survey of techniques for architecting and managing GPU register
file. IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 1, pp. 16-28.
Pacifici, V.; Lehrieder, F.; Dán, G. (2016): Cache bandwidth allocation for p2p file-
sharing systems to minimize inter-ISP traffic. IEEE/ACM Transactions on Networking,
vol. 24, no. 1, pp. 437-448.
Qian, C.; Ngan, H.; Liu, Y; Ni, L. M. (2011): Cardinality estimation for large-scale
rfid systems. IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 9, pp.
1441-1454.
Shin, S. H.; Im, E. J.; Yoon, M. (2014): A grand spread estimator using a graphics
processing unit. Journal of Parallel and Distributed Computing, vol. 74, no. 2, pp. 2039-
2047.
Silber, F.; Muller, A.; Habel, R. (2013): Generating data transfers for distributed GPU
parallel programs. Journal of Parallel and Distributed Computing, vol. 73, no. 12,
pp. 1649-1660.
Tarkoma, S.; Rothenberg, C. E.; Lagerspetz, E. (2012): Theory and practice of bloom
filters for distributed systems. IEEE Communications Surveys and Tutorials, vol. 14, no.
1, pp. 131-155.
Vormayr, G.; Zseby, T.; Fabini, J. (2017): Botnet communication patterns. IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2768-2796.
Wang, J.; Yang, Y. Q.; Wang, T.; Sherratt, R. S.; Zhang, J. Y. (2020): Big data
service architecture: a survey. Journal of Internet Technology, vol. 21, no. 2, pp. 393-
405.

1844 CMC, vol.64, no.3, pp.1819-1844, 2020

Wang, P.; Guan, X.; Zhao, J.; Tao, J.; Qin, T. (2014): A new sketch method for
measuring host connection degree distribution. IEEE Transactions on Information
Forensics and Security, vol. 9, no. 6, pp. 948-960.
Xiao, Q.; Chen, S.; Zhou, Y.; Chen, M.; Luo, J. et al. (2017): Cardinality estimation
for elephant flows: a compact solution based on virtual register sharing. IEEE/ACM
Transactions on Networking, vol. 25, no. 6, pp. 3738-3752.
Xie, H.; Yan, Z.; Yao, Z.; Atiquzzaman, M. (2019): Data collection for security
measurement in wireless sensor networks: a survey. IEEE Internet of Things Journal, vol.
6, no. 2, pp. 2205-2224.
Xu, Y.; Ren, J.; Wang, G.; Zhang, C.; Yang, J. et al. (2019): A blockchain-based
nonrepudiation network computing service scheme for industrial IoT. IEEE Transactions
on Industrial Informatics, vol. 15, no. 6, pp. 3632-3641.
Zargar, S. T.; Joshi, J.; Tipper, D. (2013): A survey of defense mechanisms against
distributed denial of service (DDoS) flooding attacks. IEEE Communications Surveys
Tutorials, vol. 15, no. 4, pp. 2046-2069.
Zhuang, D.; Chang, J. M. (2019): Enhanced peerhunter: detecting peer-to-peer botnets
through network-flow level community behavior analysis. IEEE Transactions on
Information Forensics and Security, vol. 14, no. 6, pp. 1485-1500.

	High Accuracy Network Cardinalities Estimation by Step Sampling Revision on GPU
	1 Introduction
	2 Related work
	3 LE array cardinality estimating
	3.1 Process of cardinality estimating
	3.2 Influence of row number

	4 Step sampling revision
	4.1 Cardinality sampling
	4.2 Estimation revision

	5 Translate LAA and L2S on GPU
	5.1 Scanning IP pair on GPU
	5.2 Estimating host cardinality on GPU
	5.3 Step sampling on GPU

	6 Experiment
	6.1 The influence of row number
	6.1.1 Estimating accuracy
	6.1.2 Running time

	6.2 Sampling revision experiment
	6.2.1 Sampling revision accuracy
	6.2.2 Sampling using time

	7 Conclusion
	Acknowledgement: We thank Khushnood Abbas for contributing to the paper proofreading. We would like to thank the ICAIS 2020 reviewers and chairs for their valuable feedback and comments on the paper.
	Funding Statement: The authors received no specific funding for this study.
	References

