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Abstract: Container is an emerging virtualization technology and widely adopted in the 
cloud to provide services because of its lightweight, flexible, isolated and highly portable 
properties. Cloud services are often instantiated as clusters of interconnected containers. 
Due to the stochastic service arrival and complicated cloud environment, it is challenging 
to achieve an optimal container placement (CP) scheme. We propose to leverage Deep 
Reinforcement Learning (DRL) for solving CP problem, which is able to learn from 
experience interacting with the environment and does not rely on mathematical model or 
prior knowledge. However, applying DRL method directly dose not lead to a satisfying 
result because of sophisticated environment states and huge action spaces. In this paper, 
we propose UNREAL-CP, a DRL-based method to place container instances on servers 
while considering end to end delay and resource utilization cost. The proposed method is 
an actor-critic-based approach, which has advantages in dealing with the huge action 
space. Moreover, the idea of auxiliary learning is also included in our architecture. We 
design two auxiliary learning tasks about load balancing to improve algorithm 
performance. Compared to other DRL methods, extensive simulation results show that 
UNREAL-CP performs better up to 28.6% in terms of reducing delay and deployment 
cost with high training efficiency and responding speed. 
 
Keywords: Container placement, deep reinforcement learning, auxiliary learning. 

1 Introduction 
Container has become a popular operating system (OS) level technology for providing 
cloud computing services, due to high-performance, scalability, lightweight resource 
allocation and good isolation. Unlike virtual machines (VMs), containers do not require 
the entire OS resources. They are able to share the same OS kernel with each other to 
reduce the provisioning cost and improve resource utilization efficiency. The application 
development platform like Docker allows containers deployed on the top of any 
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infrastructure [Hussein, Mousa and Alqarni (2019)]. Therefore, more and more modern 
service providers tend to deploy services in the form of containers. 
Generally, cloud users require several containers to create a container cluster (CC) to 
deploy a service chain [Zhou, Li and Wu (2019)]. Container placement (CP) problem is 
critical because it has a significant impact on QoS and network performance. In this 
paper, we aim to obtain a placement scheme for containers on servers to improve end to 
end delay while minimizing the deployment cost, which is an NP-hard combinational 
optimization problem. Moreover, CCs with different resource requirement arrive 
randomly, making dynamic network state hard to be captured with a mathematical model.  
Facing the above challenges, deep reinforcement learning (DRL)-based algorithm is 
proved to have great advantages in solving such problems. It does not rely on accurate 
and solvable mathematical model and able to learn from the experiences generated by 
interacting with the environment. And after learning, it can directly derive the CC 
placement strategy with greatest long-term reward based on the current network state.  
In this paper, we propose a DRL-based algorithm to solve the CP problem. First, we 
introduce the Markov decision process (MDP) model to capture network dynamics. 
Secondly, to deal with the high-dimensional state and solution space, we chose the actor-
critic method because it has great advantages in solving dynamic and continuous control 
problems [Xu, Tang, Meng et al. (2018); Mnih, Badia, Mirza et al. (2016)]. However, we 
find that direct application of the state-of-art actor-critic method, asynchronous advantage 
actor-critic (A3C) does not work well for our CP problem. Finally, we consider the 
impact of resource utilization balancing on network performance. Load balancing 
prevents any server from overloading and improves service availability. Meanwhile, it 
also guarantees acceptable server resource utilization, which makes the servers keep fast 
response time. Therefore, we design two auxiliary tasks related to resource utilization 
balancing to speed up the training process and improve the performance of A3C. This 
improvement that using auxiliary tasks to accelerate convergence is called unsupervised 
reinforcement and auxiliary learning (UNREAL) [Jaderberg, Mnih, Czarnecki et al. 
(2016)]. The main contributions of this paper are as follows: 
• We study the CP problem for reducing the end to end delay and service deployment 

cost and establish an optimization model for it. 
• We introduce DRL based solution to CP problem, in order to adapt network changes. 

And we show that direct application of A3C does not work well for CP problem. 
• We present an improved A3C algorithm called UNREAL-CP to achieve optimal 

placement scheme of containers with low delay and deployment cost. 
The rest of this paper is organized as follows. Existing studies are reviewed in Section 2. 
The system model and CP problem definition are presented in Section 3. The UNREAL-
CP algorithm is introduced in Section 4. Section 5 shows the evaluation results and 
Section 6 concludes the paper. 

2 Related work 
Service deployment algorithms often focus on minimizing the total hosting cost (such as 
resource requirements, power consumption, etc.) while trying to maximize total revenue 



 
 
 
A DRL-Based Container Placement Scheme with Auxiliary Tasks                        1659 

(such as throughput, network utility, etc.). One related problem is the VNF placement 
problem. Song et al. [Song, Zhang, Yu et al. (2017)] consider the tradeoff between 
computing resource cost and communication resource cost. In Gu et al. [Gu, Chen, Jin et 
al. (2018)], the VNF placement problem is formulated into a mixed-integer linear 
programming problem and solved by relaxation-based algorithm to deal with the 
computational complexity. Cloud container cluster provisioning belongs to the category 
of virtual network embedding. Zhou et al. [Zhou, Li and Wu (2019)] design an online 
method to address the optimal placement of containers with maximal value of all served 
clusters. Lv et al. [Lv, Zhang, Li et al. (2019)] study the container allocation problem in 
real industrial environment while considering the balance between communication cost 
and resource utilization in large-scale data centers, and propose two algorithms to solve 
the container placement problem and container reassignment problem respectively. 
Zhang et al. [Zhang, Chen, Dong et al. (2019)] propose an improved genetic algorithm to 
search a placement scheme with optimal energy consumption. These existing works 
mainly use mathematical methods such as integer linear programming (ILP) and integer 
nonlinear programming (INLP) model to abstract the problem, and provide mathematical 
method like primal-dual algorithm or heuristic algorithm [Zhou, Li and Wu (2019); Piet, 
Bart and Pieter (2018); Quang, Singh, Bradai et al. (2018)] to solve it. 
However, these existing approaches can only work under the assumption that arriving 
services are predictable or known a priori. Due to the randomness arrival of service 
requests, network state and network flow are time-varying. The deployment methods 
mentioned below have limitations to adapt to these network changes. DRL-based 
algorithm has great advantages in solving such problems because it interacts with the 
environment and learns from experience [Huang, Yuan, Qiao et al. (2018); Li (2017); 
Wei, Wang, Guo et al. (2019)]. In Zhao et al. [Zhao, Liang, Niyato et al. (2018)], double 
deep Q-learning (DDQN) approach is introduced to obtain optimal resource allocation in 
heterogeneous networks. However, DDQN only works for the problem with a low-
dimensional discrete action space. Xu et al. [Xu, Tang, Meng et al. (2018)] propose to 
leverage deep deterministic policy gradient for model-free control in network, but find 
that direct application of DRL-based solution does not lead to satisfying performance. 
Therefore, an effective DRL-based method is needed to capture network dynamics and 
deal with high-dimensional action space. 

3 Problem definition 
3.1 Network model 
The cloud network is modeled as an undirected graph { , }G Z E= . Z  denotes the set of 
servers where computing resources are hosted. There are multiple types of resources, like 
CPU, Memory, RAM and disk. Let R  denote the set of resource types. For each server 
z Z∈ , let zrC  denote the capacity of resource r R∈ . Let E  be the set of links, and 
( , )i je z z E∈  denote the link that connects servers iz  and jz , with bandwidth resource 
( , )i jB z z . 



 
 
 
1660                                                                       CMC, vol.64, no.3, pp.1657-1671, 2020 

3.2 Service model 
Considering a set of discrete time slots {0,1,2,..., ,..., 1}t T − , the arriving service set is H , 
and service h H∈  arrives at time st , requiring a CC. Let hV  be the set of containers in 
service h ’s CC. A container hv V∈  needs h

vrx  units of resource r . Upon each service 
arriving, the service provider determines whether to accept it and the placement scheme 
of service h ’s CC. {0,1}hα ∈  indicates whether service h  is accepted ( 1hα = ) or not 
( 0hα = ). We define the placement decision variables {0,1}, ,h

vz hv V z Zβ ∈ ∀ ∈ ∀ ∈ , where 
1h

vzβ =  if container v  is placed on server z  and 0 otherwise. If all the containers of a 
service are successfully deployed, the service request is satisfied. Fig. 1 shows a 
placement scheme for the CC of service 1. Let ( , )h

i jy v v  denote the bandwidth 
requirement for packet transmission from iv  to jv  in service h ’s CC.  

 

Figure 1: An example of container placement 

3.3 Objective 
3.3.1 Average delay 
If h  is accepted, the processing rate at v  is h

vµ , thence the average packet processing time 
at v  in h ’s CC is 1/h h

v vp µ= . We have the total processing delay of h  as: 

h

h
h v

v V
p p

∈

= ∑ .                 (1) 

The average transmission time the packets experience from iv  to jv  is ( , )h
i jl v v . Let ( )Z v  

denote the server where container v  is placed. If iv  and jv  are hosted on the same server 
( ( ) ( )i jZ v Z v= ), the transmission process is negligible, i.e., ( , ) 0h

i jl v v = . Therefore, the 
total transmission delay of h  is: 

, ,
( , )

i j h i j

h
h i j

v v V v v
l l v v

∈ ≠

= ∑ .                (2) 
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In conclusion, the average packet delay of accepted service h  is h h hd p l= + . 

If h  is rejected, the delay of h  can be defined as its maximum tolerable delay h told d= . 

3.3.2 Resource cost 
For container v  in h , each unit of resource r  it uses requires the cost of h

vrf . Similarly, 
cost per unit bandwidth is ( , )h

i jf v v . Therefore, the total cost of satisfied service h  is: 

, , , ,
( , ) ( , )

i j
i j h

h h h h h h h
h vr vr vz i j i j v z v z

v V r R z Z v v V z Z
f f x f v v y v vβ β β

∈ ∈ ∈ ∈ ∈

= +∑ ∑ .            (3) 

Notations are summarized in Tab. 1. 
Table 1: Summary of notations 

Z  set of servers 
R  set of computational resource types 
E  set of links 

zrC  capacity of resource r  at server z  
( , )i jB z z  bandwidth of link between servers iz  and jz  

H  set of services 
hV  set of containers in service h ’s CC 
h
vrx  units of resource r  that v  in service s ’s CC needs 

( , )h
i jy v v  bandwidth requirement from iv  to jv  

hα  1hα =  if service h  is accepted, and 0 otherwise 
h
vzβ  1h

vzβ =  if container v  is placed on server z  and 0 otherwise 
h
vµ  the processing rate at v  

( , )h
i jl v v  average transmission time packets experience from iv  to jv  

hd  total delay of service h  

( )Z v  the server where container v  is placed 
h

vrf  cost per unit of resource r  

( , )h
i jf v v  cost per unit of bandwidth 

3.3.3 Optimization problem 
Based on the above definitions, our objective is to minimize the total cost of all deployed 
CCs and the total delay. We transfer the multiple objectives into a single scalar and 
define the objective to be minimized as a weighted sum of cost and delay: 
min[ ]f h d h

h H h H
f dω ω

∈ ∈

+∑ ∑ .                (4) 

Subject to: 
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1, ,h
vz

z Z
h H v Vβ

∈

≤ ∀ ∈ ∀ ∈∑ ,             (4a) 

, ,h
i vz

z Z
h H v Vα β

∈

= ∀ ∈ ∀ ∈∑ ,             (4b) 

, ,
s

h h
vr vz zr

h H v V
x C r R z Zβ

∈ ∈

≤ ∀ ∈ ∀ ∈∑∑ ,             (4c) 

( ) ( )
,

( , ) ( ( ), ( )), ( ( ), ( ))
i i j j

i j s

h h h
i j v z v v z v i j i j

h H v v V
y v v B z v z v e z v z v Eβ β

∈ ∈

≤ ∀ ∈∑ ∑ .         (4d) 

Constraint (4a) guarantees that a container can be deployed in at most one server. 
Constraint (4b) indicates that only when all the containers of a service’s CC are 
successfully deployed, the service request is satisfied. Constraints (4c) and (4d) ensure 
that each CC’s resource occupation cannot exceed network resources. 

4 Algorithm description 
4.1 A3C algorithm 
In a standard DRL setup, there is an agent interacting with environment. And the optimal 
problem is modeled as a Markov process (MDP) which is typically expressed as 
{ , , , }s a r p , where s  is state space, a  is action space, r  is instantaneous reward, and p  is 
state transition probability. At each epoch i , agent observes the state is , executes the 
action ia  and get the next state 1is +  and instantaneous reward ir . Using ir , the agent 
updates an n-step return which is defined as the discounted sum of rewards: 

:
1

n
k

i i n i k
k

G rγ+ +
=

= ∑ ,                (5) 

where [0,1]γ ∈  is a discount factor. This process continues until agent reaches a terminal 
state and restarts after it. The agent’s objective is to find a mapping from state to action, 

which is called policy ( )sπ , to maximize the expected return :
0

k
i i k

k
G rγ

∞

∞ +
=

= ∑ .  

The action-value function :( , ) [ | , , ]i i iQ s a E G s s a aπ π∞= = =  is the expected return 
following action a  from state s . In the seminal work, value-based model-free 
reinforcement learning methods (like Q-learning) approximate the action-value function 
using ( , ; )Q s a θ  with parameters θ . The parameters θ  are learned by minimizing a mean-
squared error, for example optimizing a loss function in n-step Q-learning: 

2
: ' 1[( max ( ', '; ) ( , ; )) ]n

Q i i n a iL E G Q s a Q s aγ θ θ+ −= + − ,              (6) 

where 's  is the next state after s .  
Compared to value-based methods, policy gradient methods parameterize the policy as  

( | ; )a sπ θ , update parameters θ  and adjust the policy to maximize the expected reward by 
performing gradient ascent on :[ ]iE G ∞ .  

However, value-based DRL methods can only work for problems with a low-dimensional 
action space, since it needs to find the action that maximizes the action-value function, 
which requires an iteration process to solve a non-linear programming problem at every 
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epoch. Policy-based methods can handle a large action space, but can only update 
parameters after each episode is completed, resulting in a very slow learning speed.  
Since the total number of CC placement decision is | | | || | hH VZ × , our optimization problem is 
difficult to be solved by value or policy-only methods. So, we consider tackling it by an actor-
critic approach, asynchronous advantage actor-critic algorithm, which uses a parameterized 
actor network to generate actions, so it can handle high dimension action space; at the same 
time, critic’s value function estimation supports actor to update the gradient. 
The parameterized actor function is implemented by CNN and expressed as ( | )is ππ θ . To 
measure the quality of the existing policy ( )isπ , value function ( ) :( ) [ ]i s iV s E Gπ ∞=  is 
defined to indicate the expected discounted return for following policy π  from current 
state is . In actor-critic method, value function is estimated by parameterized critic: 

( | )V
iV s θ .  The parameters of the actor and critic are learned by iteratively minimizing a 

sequence of loss functions, where actor’s and critic’s loss functions respectively defined 
as: 

[log ( | )( ( | ))]V
actor i i iL E s G V sππ θ θ= − ,               (7) 

2[( ( | )) ]V
critic i iL E G V s θ= − .                (8) 

To make the process of propagating rewards to relevant state much more efficient, iG  is 

updated toward the n-step return which defined as 
1

0
( | )

n
k n V

i k i n
k

r V sγ γ θ
−

+ +
=

+∑ . This results in 

a single reward r  directly affecting the values of n preceding states. 
In conclusion, the loss function of A3C is defined as  

3 [ ( ( | ))]A C actor critic iL L L E H s πβ π θ= + − ,              (9) 

where H  is the entropy and hyperparameter β  controls the strength of the entropy 
regularization term, which is used to prevent policy convergence too early. 
To eliminate the correlation between samples, A3C algorithm relies on asynchronous 
actor-learners and accumulated updates for improving training stability. Compared with 
previous solutions that use experience replay to reduce time correlation, the asynchronous 
RL Framework saves storage space. Besides stabilizing learning, we obtain a reduction in 
training time, which is roughly linear in the number of parallel actor-learners. 
In order to utilize the A3C algorithm, we model our placement problem as an MDP and 
design the state space, action space and reward function. The design of state, action and 
reward is important to the success of DRL methods. A valuable design should capture 
network states and key compositions CC placement without useless information. 
State space: The sate consists of two components: network resource status and service 
requests. { , }net sers s s= , where { , ( , ) | , , , }net zr i j i js C B z z z z z Z r R= ∈ ∈  and 

{ , ( , ) | , , , , }h h
ser vr i j i j hs x y v v v v v V h H r R= ∈ ∈ ∈ . 
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Action space: The action is defined as a placement scheme for all services’ CC, i.e., the 
solution to the optimization problem. The action vector { , }h

h vza α β= , where 
, , ,hv V h H z Z∈ ∈ ∈ . 

Reward function: When agent performs the action according to the current state and 
accomplish CC placement, it will get instant reward. For the goal of DRL is to maximize 
cumulative reward, we use the difference between the objective function at current state 
and that of next state: ( ) ( ' ')f h d h f h d h

h H h H h H h H
r f d f dω ω ω ω

∈ ∈ ∈ ∈

= + − +∑ ∑ ∑ ∑ . 

Although A3C algorithm performs well in many tasks as a state-of-art DRL method, our 
experimental results show that applying A3C directly to CC placement does not bring 
satisfactory performance. Its convergence speed is intolerable when the solution space is 
large. According to the analysis, we speculate that it is due to the following reasons: 
• In the general A3C training process, the agent only considers maximizing cumulative 

reward to achieve the best policy, and doesn’t clearly know how to explore. 
• Although A3C uses an asynchronous method to reduce the correlation between 

samples, it cancels the replay buffer, which can increase the efficiency and stability 
of learning. 

In response to such problems, we propose an improved A3C algorithm for CC placement 
problem. 

4.2 UNREAL-CP 
In the general RL training process, the agent only considers maximizing cumulative 
reward to achieve the best policy, a simple random noise based exploration method does 
not work well for our CP problem. But the environment may also contain other available 
training information. Firstly, to address the problem of low exploration efficiency, we 
introduce the idea of auxiliary learning to guide the exploration direction of the agent in 
the base task. The agent is trained to maximize the reward of multiple tasks that face the 
same goal. This method does not require additional supervision and is an unsupervised 
learning method, called unsupervised reinforcement and auxiliary learning (UNREAL). 
In addition to auxiliary tasks, we also use the replay buffer to improve the accuracy of 
value function and the efficiency of auxiliary tasks 
Given a set of auxiliary control tasks C , we define an auxiliary control task c C∈  by 
reward function ( )cr , with the agent’s policy ( )cπ  for it. The overall objective is to 

maximize total performance across all tasks: 
( ) ( )arg max { | } { | }c c

c
c C

E G E G
θ

π λ π
∈

+ ∑ . Where 

( ) ( )

0

c i c
i

i
G rγ

∞

=

= ∑  is the discount return of auxiliary task c , and θ  is the Common parameter 

of ( )cπ  and π . By sharing parameters, the agent improves the performance of the policy 
π  by optimizing the performance on the auxiliary task. For the auxiliary task c , we 
sample minibatch of transitions from replay buffer and use the Q-learning to optimize the 
action-value function ( , ) [ | , ]i i iQ s a E G s s a a= = = . For each control task c , we optimize 
an n-step Q-learning loss: 
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1
( ) ( ) ( ) ( ) 2

' 1
0

[( max ( ', ', ) ( , , )) ]
n

c k c n c c
Q i k a i i

k
L E r Q s a Q s aγ γ θ θ

−

+ −
=

= + −∑ .          (10) 

In our problem, the balance of server resource utilization has a great impact on network 
performance. First of all, load balancing can prevent any one server from being 
overloaded or crashed, thereby increasing service availability. Second, when resource 
utilization is high, servers usually generate exponential response time. Load balancing 
ensures servers’ acceptable resource utilization, resulting in a shorter response time. 
Third, under a balanced workload, no server becomes a bottleneck, which improves the 
overall network throughput. 
Based on the significance of load balancing to network performance, we design the 
following auxiliary tasks: 

4.2.1 Resource utilization control 
If the resource utilization in one server is significantly higher than that in others, then it 
will become a bottleneck in the service and seriously reduce the overall network 
performance. So, we want the variance of resource utilization for all servers to be as 
small as possible.  
The variance of resource utilization for type- r  resource of all servers is given by 

2( )
| |

zr r

z Z

U U
Z∈

−∑ ,               (11) 

where zrU  is the utilization of r  on server z  and given by  

, h

h h
vr vz

h H v V
zr

zr

x
U

C

β
∈ ∈=
∑

,              (12) 

rU  is r ’s mean utilization of all servers and | |Z  is the number of servers. The total 
resource utilization variance is the sum of that for all resource types, which is expressed as: 

2( )
( )

| |
zr r

r R z Z

U UVar U
Z∈ ∈

−
= ∑∑ .             (13) 

The objective of this auxiliary task is to minimize the total variance of total resource 
utilization (i.e., min ( )Var U ), so we refer to it as resource utilization control. The reward 
function of this task is defined as 

( ) ( ) '( )RUCr Var U Var U= − ,             (14) 
where '( )Var U  is the total utilization variance of next state. 

4.2.2 Available resource balance control 
The amount of different types of available resources in each server also needs to be 
balanced. If there are no RAM resources available, the remaining CPU resources in the 
server are useless for coming service requests. For two kinds of resources ir  and jr , let 
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( , )i jr rδ  denote the expected ratio between ir  and jr . The available resource balance 
index for resources ir  and jr  is defined as: 

max{0, ( , )}
i jzr zr i j

z Z
A A r rδ

∈

− ×∑ ,             (15) 

where 
, h

h h
zr zr vr vz

h H v V
A C x β

∈ ∈

= − ∑  is the available resource r  on server z . This index can 

reflect whether different resources are used according to the expected ratio. The total 
available resource balance index is the sum of the index of all possible pairs of different 
resources: 

, ,
( ) max{0, ( , )}

i j
i j i j

zr zr i j
r r R r r z Z

Bal A A A r rδ
∀ ∈ ≠ ∈

= − ×∑ ∑ .           (16) 

Finally, the reward function of available resource balance control task is defined as: 
( ) ( ) '( )RBCr Bal A Bal A= − ,              (17) 

where '( )Bal A  is the total available resource balance index of next state. 
Based on the above definitions, the UNREAL algorithm for CC placement problem aims 
to maximize total performance across all these auxiliary tasks, and optimize a single 
combined loss function with respect to the joint parameters θ . The loss function 
combines the A3C loss 3A CL  together with auxiliary resource utilization control loss RUCL  
and available resource balance control loss RBCL : 

3UNREAL A C RUC RUC RBC RBCL L L Lλ λ= + + .             (18) 

In summary, Our UNREAL-CP algorithm is expressed as algorithm 1: 
Algorithm.1 UNREAL-CP 
Input: set of servers Z , set of services H  

Output: CC placement scheme hα , h
vzβ  

Initialize: zrC , ( , )i jB z z  and other parameters 

repeat 
for each actor-critic thread: 

Reset gradients: 0d πθ ← , 0Vdθ ←  

Synchronize thread-specific parameters 'π πθ θ= and 'V Vθ θ=  

startt t=  

Get state ts  

repeat 

Get ta  according to policy ( | )ts ππ θ  

Execute action ta  , receive reward tr , ( )c
tr  and new state 1ts +  

Store transition ( )
1{ , , ( , ), }c

t t t t ts a r r s +  to replay buffer 

1t t← +  
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until terminal ts  or maxstartt t t− ==  

'

0,  for terminal 
( | ),  for non-terminal 

t
V

t t

s
G

V s sθ


= 


 

for { 1,..., }starti t t∈ −  do 

iG r Gγ← +  

Accumulate gradients w. r. t. 'πθ and 'Vθ  

end for 
Perform asynchronous update of πθ using d πθ  and of Vθ  using Vdθ  

end for 
for auxiliary Q-learning thread: 

Reset gradients: 0cdθ ←  

Synchronize thread-specific parameters 'c Vθ θ=  

Sample minibatch of transitions ( )
1{ , , ( , ), }c

i i i i is a r r s +  from replay buffer 

( )
'

0,  for terminal 
max ( , ; ),  for non-terminal 

ic
c

i i i

s
G

Q s a sθ


= 


 

1
( ) ( ) ( )

0

n
c k c n c

i k
k

G r Gγ γ
−

+
=

← +∑  

Perform update of Vθ  using 
( ) ' 2

'

( ( , ; ))c c
V i i

c

G Q s a
d

θ
θ

θ
∂ −

←
∂

 

end for 
1T T← +  

until maxT T>  

5 Performance evaluation 
In order to evaluate the performance of the proposed algorithm, we used the python 
language to perform experiments on a regular desktop with an Intel Core 2.6 Ghz CPU with 
8 GB memory. The CNN network in the architecture is implemented by TensorFlow. 
In the experiment, the default number of servers is 10. The types of resource include 
CPU, Memory, SSD, network I/O and so on. The amount of each kind of resource on 
each node is between 50 and 100, and the link bandwidth between all nodes is 100-300. 
We assume that each CC contains 1-10 containers and each container consumes three 
types of resources. The resource consumption is set according to the task’s demand in the 
real-world trace. The traffic volume between containers is set in the range of [5,15].  
We compare our algorithm with original A3C and auxiliary learning algorithms that only 
include resource utilization control (RUC) or resource balance control (RBC), and for fair 
comparison, all settings (such as state, action, reward, and CNN parameters) are consistent. 



 
 
 
1668                                                                       CMC, vol.64, no.3, pp.1657-1671, 2020 

End-to-end average packet delay, total deployment cost and the weighted sum of the 
delay and cost are set as indicators to measure the performance of each algorithm under 
different amounts of containers. In addition, we compare the performance of A3C and 
UNREAL-CP in terms of learning efficiency and cumulative reward. 
From Fig. 2, we can see that compared to the other three algorithms, UNREAL-CP 
reduces deployment cost significantly. For example, when each CC contains 5 containers, 
UNREAL-CP reduces the deployment cost by 28.1%, 39.2% and 51.6% respectively 
compared to A3C with RUC, RBC and original A3C.  

 

Figure 2: Total deployment cost under different algorithms 

Fig. 3 shows the average end-to-end delay under different number of containers. We can 
see that when the number of containers is small, the delays under the placement strategies 
obtained by the four algorithms are similar. However, the gap between different 
algorithms becomes larger when the number of containers increases. This is because the 
UNREAL-CP algorithm considers the resource balance. When the number of containers 
in service increases, some overloaded servers will become the bottleneck of the network, 
affecting the traffic transmission, while balancing network load can effectively avoid 
such problems. 
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Figure 3: Average delay under different algorithms 

Because UNREAL-CP performs better in reducing placement costs and average latency, 
it finally achieves an average reduction about the sum of cost and delay by 11.9%, 19.1% 
and 28.6% respectively, which is shown in Fig. 4.  

 

Figure 4: Weighted sum of cost and delay under different algorithms 

From Fig. 5, we can observe that UNREAL-CP has better convergence performance. 
UNREAL-CP reaches a better placement solution with higher reward within 60 episodes, 
while A3C uses more time and only obtains a local optimal solution. It means that the 
auxiliary tasks we designed significantly improves the learning efficiency of the agent in 
container placement problem. 



 
 
 
1670                                                                       CMC, vol.64, no.3, pp.1657-1671, 2020 

  
(a) Loss function    (b)Reward 

Figure 5: Learning performance of two DRL algorithms 

6 Conclusion 
In this paper, we present UNREAL-CP, a DRL approach for placing container clusters in 
cloud, taking deployment cost and average E2E delay into consideration. A3C algorithm 
architecture is used because it makes decisions under the guidance of both actor and 
critic’s DNNs, and has great advantages in solving dynamic and continuous control 
problems. Since network load balancing has a significant impact on reducing network 
latency, we propose two auxiliary tasks, resource utilization control and available 
resource balance control to improve the convergence performance of A3C. The results of 
extensive experiments show that the proposed UNREAL-CP algorithm can effectively 
reduce the deployment cost and E2E delay up to 28.6%. Compared with original A3C, 
the convergence speed of our algorithm is also improved. 
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