

Computers, Materials & Continua CMC, vol.64, no.3, pp.1657-1671, 2020

CMC. doi:10.32604/cmc.2020.09840 www.techscience.com/journal/cmc

A DRL-Based Container Placement Scheme with Auxiliary Tasks

Ningcheng Yuan1, Chao Jia2, *, Jizhao Lu3, Shaoyong Guo1, Wencui Li3,
Xuesong Qiu1 and Lei Shi4

Abstract: Container is an emerging virtualization technology and widely adopted in the
cloud to provide services because of its lightweight, flexible, isolated and highly portable
properties. Cloud services are often instantiated as clusters of interconnected containers.
Due to the stochastic service arrival and complicated cloud environment, it is challenging
to achieve an optimal container placement (CP) scheme. We propose to leverage Deep
Reinforcement Learning (DRL) for solving CP problem, which is able to learn from
experience interacting with the environment and does not rely on mathematical model or
prior knowledge. However, applying DRL method directly dose not lead to a satisfying
result because of sophisticated environment states and huge action spaces. In this paper,
we propose UNREAL-CP, a DRL-based method to place container instances on servers
while considering end to end delay and resource utilization cost. The proposed method is
an actor-critic-based approach, which has advantages in dealing with the huge action
space. Moreover, the idea of auxiliary learning is also included in our architecture. We
design two auxiliary learning tasks about load balancing to improve algorithm
performance. Compared to other DRL methods, extensive simulation results show that
UNREAL-CP performs better up to 28.6% in terms of reducing delay and deployment
cost with high training efficiency and responding speed.

Keywords: Container placement, deep reinforcement learning, auxiliary learning.

1 Introduction
Container has become a popular operating system (OS) level technology for providing
cloud computing services, due to high-performance, scalability, lightweight resource
allocation and good isolation. Unlike virtual machines (VMs), containers do not require
the entire OS resources. They are able to share the same OS kernel with each other to
reduce the provisioning cost and improve resource utilization efficiency. The application
development platform like Docker allows containers deployed on the top of any

1 Beijing University of Posts and Telecommunications, Beijing, 100876, China.
2 China Electronics Standardization Institute, Beijing, China.
3 Communication Operation Center, State Grid Henan Electric Power Company Information & Telecommunication
Company, Zhengzhou, China.

4 Institute of Technology Carlow, Carlow, Ireland.
* Corresponding Author: Chao Jia. Email: jiachao@cesi.cn.
Received: 21 January 2020; Accepted: 02 April 2020.

mailto:jiachao@cesi.cn

1658 CMC, vol.64, no.3, pp.1657-1671, 2020

infrastructure [Hussein, Mousa and Alqarni (2019)]. Therefore, more and more modern
service providers tend to deploy services in the form of containers.
Generally, cloud users require several containers to create a container cluster (CC) to
deploy a service chain [Zhou, Li and Wu (2019)]. Container placement (CP) problem is
critical because it has a significant impact on QoS and network performance. In this
paper, we aim to obtain a placement scheme for containers on servers to improve end to
end delay while minimizing the deployment cost, which is an NP-hard combinational
optimization problem. Moreover, CCs with different resource requirement arrive
randomly, making dynamic network state hard to be captured with a mathematical model.
Facing the above challenges, deep reinforcement learning (DRL)-based algorithm is
proved to have great advantages in solving such problems. It does not rely on accurate
and solvable mathematical model and able to learn from the experiences generated by
interacting with the environment. And after learning, it can directly derive the CC
placement strategy with greatest long-term reward based on the current network state.
In this paper, we propose a DRL-based algorithm to solve the CP problem. First, we
introduce the Markov decision process (MDP) model to capture network dynamics.
Secondly, to deal with the high-dimensional state and solution space, we chose the actor-
critic method because it has great advantages in solving dynamic and continuous control
problems [Xu, Tang, Meng et al. (2018); Mnih, Badia, Mirza et al. (2016)]. However, we
find that direct application of the state-of-art actor-critic method, asynchronous advantage
actor-critic (A3C) does not work well for our CP problem. Finally, we consider the
impact of resource utilization balancing on network performance. Load balancing
prevents any server from overloading and improves service availability. Meanwhile, it
also guarantees acceptable server resource utilization, which makes the servers keep fast
response time. Therefore, we design two auxiliary tasks related to resource utilization
balancing to speed up the training process and improve the performance of A3C. This
improvement that using auxiliary tasks to accelerate convergence is called unsupervised
reinforcement and auxiliary learning (UNREAL) [Jaderberg, Mnih, Czarnecki et al.
(2016)]. The main contributions of this paper are as follows:
• We study the CP problem for reducing the end to end delay and service deployment

cost and establish an optimization model for it.
• We introduce DRL based solution to CP problem, in order to adapt network changes.

And we show that direct application of A3C does not work well for CP problem.
• We present an improved A3C algorithm called UNREAL-CP to achieve optimal

placement scheme of containers with low delay and deployment cost.
The rest of this paper is organized as follows. Existing studies are reviewed in Section 2.
The system model and CP problem definition are presented in Section 3. The UNREAL-
CP algorithm is introduced in Section 4. Section 5 shows the evaluation results and
Section 6 concludes the paper.

2 Related work
Service deployment algorithms often focus on minimizing the total hosting cost (such as
resource requirements, power consumption, etc.) while trying to maximize total revenue

A DRL-Based Container Placement Scheme with Auxiliary Tasks 1659

(such as throughput, network utility, etc.). One related problem is the VNF placement
problem. Song et al. [Song, Zhang, Yu et al. (2017)] consider the tradeoff between
computing resource cost and communication resource cost. In Gu et al. [Gu, Chen, Jin et
al. (2018)], the VNF placement problem is formulated into a mixed-integer linear
programming problem and solved by relaxation-based algorithm to deal with the
computational complexity. Cloud container cluster provisioning belongs to the category
of virtual network embedding. Zhou et al. [Zhou, Li and Wu (2019)] design an online
method to address the optimal placement of containers with maximal value of all served
clusters. Lv et al. [Lv, Zhang, Li et al. (2019)] study the container allocation problem in
real industrial environment while considering the balance between communication cost
and resource utilization in large-scale data centers, and propose two algorithms to solve
the container placement problem and container reassignment problem respectively.
Zhang et al. [Zhang, Chen, Dong et al. (2019)] propose an improved genetic algorithm to
search a placement scheme with optimal energy consumption. These existing works
mainly use mathematical methods such as integer linear programming (ILP) and integer
nonlinear programming (INLP) model to abstract the problem, and provide mathematical
method like primal-dual algorithm or heuristic algorithm [Zhou, Li and Wu (2019); Piet,
Bart and Pieter (2018); Quang, Singh, Bradai et al. (2018)] to solve it.
However, these existing approaches can only work under the assumption that arriving
services are predictable or known a priori. Due to the randomness arrival of service
requests, network state and network flow are time-varying. The deployment methods
mentioned below have limitations to adapt to these network changes. DRL-based
algorithm has great advantages in solving such problems because it interacts with the
environment and learns from experience [Huang, Yuan, Qiao et al. (2018); Li (2017);
Wei, Wang, Guo et al. (2019)]. In Zhao et al. [Zhao, Liang, Niyato et al. (2018)], double
deep Q-learning (DDQN) approach is introduced to obtain optimal resource allocation in
heterogeneous networks. However, DDQN only works for the problem with a low-
dimensional discrete action space. Xu et al. [Xu, Tang, Meng et al. (2018)] propose to
leverage deep deterministic policy gradient for model-free control in network, but find
that direct application of DRL-based solution does not lead to satisfying performance.
Therefore, an effective DRL-based method is needed to capture network dynamics and
deal with high-dimensional action space.

3 Problem definition
3.1 Network model
The cloud network is modeled as an undirected graph { , }G Z E= . Z denotes the set of
servers where computing resources are hosted. There are multiple types of resources, like
CPU, Memory, RAM and disk. Let R denote the set of resource types. For each server
z Z∈ , let zrC denote the capacity of resource r R∈ . Let E be the set of links, and
(,)i je z z E∈ denote the link that connects servers iz and jz , with bandwidth resource
(,)i jB z z .

1660 CMC, vol.64, no.3, pp.1657-1671, 2020

3.2 Service model
Considering a set of discrete time slots {0,1,2,..., ,..., 1}t T − , the arriving service set is H ,
and service h H∈ arrives at time st , requiring a CC. Let hV be the set of containers in
service h ’s CC. A container hv V∈ needs h

vrx units of resource r . Upon each service
arriving, the service provider determines whether to accept it and the placement scheme
of service h ’s CC. {0,1}hα ∈ indicates whether service h is accepted (1hα =) or not
(0hα =). We define the placement decision variables {0,1}, ,h

vz hv V z Zβ ∈ ∀ ∈ ∀ ∈ , where
1h

vzβ = if container v is placed on server z and 0 otherwise. If all the containers of a
service are successfully deployed, the service request is satisfied. Fig. 1 shows a
placement scheme for the CC of service 1. Let (,)h

i jy v v denote the bandwidth
requirement for packet transmission from iv to jv in service h ’s CC.

Figure 1: An example of container placement

3.3 Objective
3.3.1 Average delay
If h is accepted, the processing rate at v is h

vµ , thence the average packet processing time
at v in h ’s CC is 1/h h

v vp µ= . We have the total processing delay of h as:

h

h
h v

v V
p p

∈

= ∑ . (1)

The average transmission time the packets experience from iv to jv is (,)h
i jl v v . Let ()Z v

denote the server where container v is placed. If iv and jv are hosted on the same server
(() ()i jZ v Z v=), the transmission process is negligible, i.e., (,) 0h

i jl v v = . Therefore, the
total transmission delay of h is:

, ,
(,)

i j h i j

h
h i j

v v V v v
l l v v

∈ ≠

= ∑ . (2)

A DRL-Based Container Placement Scheme with Auxiliary Tasks 1661

In conclusion, the average packet delay of accepted service h is h h hd p l= + .

If h is rejected, the delay of h can be defined as its maximum tolerable delay h told d= .

3.3.2 Resource cost
For container v in h , each unit of resource r it uses requires the cost of h

vrf . Similarly,
cost per unit bandwidth is (,)h

i jf v v . Therefore, the total cost of satisfied service h is:

, , , ,
(,) (,)

i j
i j h

h h h h h h h
h vr vr vz i j i j v z v z

v V r R z Z v v V z Z
f f x f v v y v vβ β β

∈ ∈ ∈ ∈ ∈

= +∑ ∑ . (3)

Notations are summarized in Tab. 1.
Table 1: Summary of notations

Z set of servers
R set of computational resource types
E set of links

zrC capacity of resource r at server z
(,)i jB z z bandwidth of link between servers iz and jz

H set of services
hV set of containers in service h ’s CC
h
vrx units of resource r that v in service s ’s CC needs

(,)h
i jy v v bandwidth requirement from iv to jv

hα 1hα = if service h is accepted, and 0 otherwise
h
vzβ 1h

vzβ = if container v is placed on server z and 0 otherwise
h
vµ the processing rate at v

(,)h
i jl v v average transmission time packets experience from iv to jv

hd total delay of service h

()Z v the server where container v is placed
h

vrf cost per unit of resource r

(,)h
i jf v v cost per unit of bandwidth

3.3.3 Optimization problem
Based on the above definitions, our objective is to minimize the total cost of all deployed
CCs and the total delay. We transfer the multiple objectives into a single scalar and
define the objective to be minimized as a weighted sum of cost and delay:
min[]f h d h

h H h H
f dω ω

∈ ∈

+∑ ∑ . (4)

Subject to:

1662 CMC, vol.64, no.3, pp.1657-1671, 2020

1, ,h
vz

z Z
h H v Vβ

∈

≤ ∀ ∈ ∀ ∈∑ , (4a)

, ,h
i vz

z Z
h H v Vα β

∈

= ∀ ∈ ∀ ∈∑ , (4b)

, ,
s

h h
vr vz zr

h H v V
x C r R z Zβ

∈ ∈

≤ ∀ ∈ ∀ ∈∑∑ , (4c)

() ()
,

(,) ((), ()), ((), ())
i i j j

i j s

h h h
i j v z v v z v i j i j

h H v v V
y v v B z v z v e z v z v Eβ β

∈ ∈

≤ ∀ ∈∑ ∑ . (4d)

Constraint (4a) guarantees that a container can be deployed in at most one server.
Constraint (4b) indicates that only when all the containers of a service’s CC are
successfully deployed, the service request is satisfied. Constraints (4c) and (4d) ensure
that each CC’s resource occupation cannot exceed network resources.

4 Algorithm description
4.1 A3C algorithm
In a standard DRL setup, there is an agent interacting with environment. And the optimal
problem is modeled as a Markov process (MDP) which is typically expressed as
{ , , , }s a r p , where s is state space, a is action space, r is instantaneous reward, and p is
state transition probability. At each epoch i , agent observes the state is , executes the
action ia and get the next state 1is + and instantaneous reward ir . Using ir , the agent
updates an n-step return which is defined as the discounted sum of rewards:

:
1

n
k

i i n i k
k

G rγ+ +
=

= ∑ , (5)

where [0,1]γ ∈ is a discount factor. This process continues until agent reaches a terminal
state and restarts after it. The agent’s objective is to find a mapping from state to action,

which is called policy ()sπ , to maximize the expected return :
0

k
i i k

k
G rγ

∞

∞ +
=

= ∑ .

The action-value function :(,) [| , ,]i i iQ s a E G s s a aπ π∞= = = is the expected return
following action a from state s . In the seminal work, value-based model-free
reinforcement learning methods (like Q-learning) approximate the action-value function
using (, ;)Q s a θ with parameters θ . The parameters θ are learned by minimizing a mean-
squared error, for example optimizing a loss function in n-step Q-learning:

2
: ' 1[(max (', ';) (, ;))]n

Q i i n a iL E G Q s a Q s aγ θ θ+ −= + − , (6)

where 's is the next state after s .
Compared to value-based methods, policy gradient methods parameterize the policy as

(| ;)a sπ θ , update parameters θ and adjust the policy to maximize the expected reward by
performing gradient ascent on :[]iE G ∞ .

However, value-based DRL methods can only work for problems with a low-dimensional
action space, since it needs to find the action that maximizes the action-value function,
which requires an iteration process to solve a non-linear programming problem at every

A DRL-Based Container Placement Scheme with Auxiliary Tasks 1663

epoch. Policy-based methods can handle a large action space, but can only update
parameters after each episode is completed, resulting in a very slow learning speed.
Since the total number of CC placement decision is | | | || | hH VZ × , our optimization problem is
difficult to be solved by value or policy-only methods. So, we consider tackling it by an actor-
critic approach, asynchronous advantage actor-critic algorithm, which uses a parameterized
actor network to generate actions, so it can handle high dimension action space; at the same
time, critic’s value function estimation supports actor to update the gradient.
The parameterized actor function is implemented by CNN and expressed as (|)is ππ θ . To
measure the quality of the existing policy ()isπ , value function () :() []i s iV s E Gπ ∞= is
defined to indicate the expected discounted return for following policy π from current
state is . In actor-critic method, value function is estimated by parameterized critic:

(|)V
iV s θ . The parameters of the actor and critic are learned by iteratively minimizing a

sequence of loss functions, where actor’s and critic’s loss functions respectively defined
as:

[log (|)((|))]V
actor i i iL E s G V sππ θ θ= − , (7)

2[((|))]V
critic i iL E G V s θ= − . (8)

To make the process of propagating rewards to relevant state much more efficient, iG is

updated toward the n-step return which defined as
1

0
(|)

n
k n V

i k i n
k

r V sγ γ θ
−

+ +
=

+∑ . This results in

a single reward r directly affecting the values of n preceding states.
In conclusion, the loss function of A3C is defined as

3 [((|))]A C actor critic iL L L E H s πβ π θ= + − , (9)

where H is the entropy and hyperparameter β controls the strength of the entropy
regularization term, which is used to prevent policy convergence too early.
To eliminate the correlation between samples, A3C algorithm relies on asynchronous
actor-learners and accumulated updates for improving training stability. Compared with
previous solutions that use experience replay to reduce time correlation, the asynchronous
RL Framework saves storage space. Besides stabilizing learning, we obtain a reduction in
training time, which is roughly linear in the number of parallel actor-learners.
In order to utilize the A3C algorithm, we model our placement problem as an MDP and
design the state space, action space and reward function. The design of state, action and
reward is important to the success of DRL methods. A valuable design should capture
network states and key compositions CC placement without useless information.
State space: The sate consists of two components: network resource status and service
requests. { , }net sers s s= , where { , (,) | , , , }net zr i j i js C B z z z z z Z r R= ∈ ∈ and

{ , (,) | , , , , }h h
ser vr i j i j hs x y v v v v v V h H r R= ∈ ∈ ∈ .

1664 CMC, vol.64, no.3, pp.1657-1671, 2020

Action space: The action is defined as a placement scheme for all services’ CC, i.e., the
solution to the optimization problem. The action vector { , }h

h vza α β= , where
, , ,hv V h H z Z∈ ∈ ∈ .

Reward function: When agent performs the action according to the current state and
accomplish CC placement, it will get instant reward. For the goal of DRL is to maximize
cumulative reward, we use the difference between the objective function at current state
and that of next state: () (' ')f h d h f h d h

h H h H h H h H
r f d f dω ω ω ω

∈ ∈ ∈ ∈

= + − +∑ ∑ ∑ ∑ .

Although A3C algorithm performs well in many tasks as a state-of-art DRL method, our
experimental results show that applying A3C directly to CC placement does not bring
satisfactory performance. Its convergence speed is intolerable when the solution space is
large. According to the analysis, we speculate that it is due to the following reasons:
• In the general A3C training process, the agent only considers maximizing cumulative

reward to achieve the best policy, and doesn’t clearly know how to explore.
• Although A3C uses an asynchronous method to reduce the correlation between

samples, it cancels the replay buffer, which can increase the efficiency and stability
of learning.

In response to such problems, we propose an improved A3C algorithm for CC placement
problem.

4.2 UNREAL-CP
In the general RL training process, the agent only considers maximizing cumulative
reward to achieve the best policy, a simple random noise based exploration method does
not work well for our CP problem. But the environment may also contain other available
training information. Firstly, to address the problem of low exploration efficiency, we
introduce the idea of auxiliary learning to guide the exploration direction of the agent in
the base task. The agent is trained to maximize the reward of multiple tasks that face the
same goal. This method does not require additional supervision and is an unsupervised
learning method, called unsupervised reinforcement and auxiliary learning (UNREAL).
In addition to auxiliary tasks, we also use the replay buffer to improve the accuracy of
value function and the efficiency of auxiliary tasks
Given a set of auxiliary control tasks C , we define an auxiliary control task c C∈ by
reward function ()cr , with the agent’s policy ()cπ for it. The overall objective is to

maximize total performance across all tasks:
() ()arg max { | } { | }c c

c
c C

E G E G
θ

π λ π
∈

+ ∑ . Where

() ()

0

c i c
i

i
G rγ

∞

=

= ∑ is the discount return of auxiliary task c , and θ is the Common parameter

of ()cπ and π . By sharing parameters, the agent improves the performance of the policy
π by optimizing the performance on the auxiliary task. For the auxiliary task c , we
sample minibatch of transitions from replay buffer and use the Q-learning to optimize the
action-value function (,) [| ,]i i iQ s a E G s s a a= = = . For each control task c , we optimize
an n-step Q-learning loss:

A DRL-Based Container Placement Scheme with Auxiliary Tasks 1665

1
() () () () 2

' 1
0

[(max (', ',) (, ,))]
n

c k c n c c
Q i k a i i

k
L E r Q s a Q s aγ γ θ θ

−

+ −
=

= + −∑ . (10)

In our problem, the balance of server resource utilization has a great impact on network
performance. First of all, load balancing can prevent any one server from being
overloaded or crashed, thereby increasing service availability. Second, when resource
utilization is high, servers usually generate exponential response time. Load balancing
ensures servers’ acceptable resource utilization, resulting in a shorter response time.
Third, under a balanced workload, no server becomes a bottleneck, which improves the
overall network throughput.
Based on the significance of load balancing to network performance, we design the
following auxiliary tasks:

4.2.1 Resource utilization control
If the resource utilization in one server is significantly higher than that in others, then it
will become a bottleneck in the service and seriously reduce the overall network
performance. So, we want the variance of resource utilization for all servers to be as
small as possible.
The variance of resource utilization for type- r resource of all servers is given by

2()
| |

zr r

z Z

U U
Z∈

−∑ , (11)

where zrU is the utilization of r on server z and given by

, h

h h
vr vz

h H v V
zr

zr

x
U

C

β
∈ ∈=
∑

, (12)

rU is r ’s mean utilization of all servers and | |Z is the number of servers. The total
resource utilization variance is the sum of that for all resource types, which is expressed as:

2()
()

| |
zr r

r R z Z

U UVar U
Z∈ ∈

−
= ∑∑ . (13)

The objective of this auxiliary task is to minimize the total variance of total resource
utilization (i.e., min ()Var U), so we refer to it as resource utilization control. The reward
function of this task is defined as

() () '()RUCr Var U Var U= − , (14)
where '()Var U is the total utilization variance of next state.

4.2.2 Available resource balance control
The amount of different types of available resources in each server also needs to be
balanced. If there are no RAM resources available, the remaining CPU resources in the
server are useless for coming service requests. For two kinds of resources ir and jr , let

1666 CMC, vol.64, no.3, pp.1657-1671, 2020

(,)i jr rδ denote the expected ratio between ir and jr . The available resource balance
index for resources ir and jr is defined as:

max{0, (,)}
i jzr zr i j

z Z
A A r rδ

∈

− ×∑ , (15)

where
, h

h h
zr zr vr vz

h H v V
A C x β

∈ ∈

= − ∑ is the available resource r on server z . This index can

reflect whether different resources are used according to the expected ratio. The total
available resource balance index is the sum of the index of all possible pairs of different
resources:

, ,
() max{0, (,)}

i j
i j i j

zr zr i j
r r R r r z Z

Bal A A A r rδ
∀ ∈ ≠ ∈

= − ×∑ ∑ . (16)

Finally, the reward function of available resource balance control task is defined as:
() () '()RBCr Bal A Bal A= − , (17)

where '()Bal A is the total available resource balance index of next state.
Based on the above definitions, the UNREAL algorithm for CC placement problem aims
to maximize total performance across all these auxiliary tasks, and optimize a single
combined loss function with respect to the joint parameters θ . The loss function
combines the A3C loss 3A CL together with auxiliary resource utilization control loss RUCL
and available resource balance control loss RBCL :

3UNREAL A C RUC RUC RBC RBCL L L Lλ λ= + + . (18)

In summary, Our UNREAL-CP algorithm is expressed as algorithm 1:
Algorithm.1 UNREAL-CP
Input: set of servers Z , set of services H

Output: CC placement scheme hα , h
vzβ

Initialize: zrC , (,)i jB z z and other parameters

repeat
for each actor-critic thread:

Reset gradients: 0d πθ ← , 0Vdθ ←

Synchronize thread-specific parameters 'π πθ θ= and 'V Vθ θ=

startt t=

Get state ts

repeat

Get ta according to policy (|)ts ππ θ

Execute action ta , receive reward tr , ()c
tr and new state 1ts +

Store transition ()
1{ , , (,), }c

t t t t ts a r r s + to replay buffer

1t t← +

A DRL-Based Container Placement Scheme with Auxiliary Tasks 1667

until terminal ts or maxstartt t t− ==

'

0, for terminal
(|), for non-terminal

t
V

t t

s
G

V s sθ

=

for { 1,..., }starti t t∈ − do

iG r Gγ← +

Accumulate gradients w. r. t. 'πθ and 'Vθ

end for
Perform asynchronous update of πθ using d πθ and of Vθ using Vdθ

end for
for auxiliary Q-learning thread:

Reset gradients: 0cdθ ←

Synchronize thread-specific parameters 'c Vθ θ=

Sample minibatch of transitions ()
1{ , , (,), }c

i i i i is a r r s + from replay buffer

()
'

0, for terminal
max (, ;), for non-terminal

ic
c

i i i

s
G

Q s a sθ

=

1
() () ()

0

n
c k c n c

i k
k

G r Gγ γ
−

+
=

← +∑

Perform update of Vθ using
() ' 2

'

((, ;))c c
V i i

c

G Q s a
d

θ
θ

θ
∂ −

←
∂

end for
1T T← +

until maxT T>

5 Performance evaluation
In order to evaluate the performance of the proposed algorithm, we used the python
language to perform experiments on a regular desktop with an Intel Core 2.6 Ghz CPU with
8 GB memory. The CNN network in the architecture is implemented by TensorFlow.
In the experiment, the default number of servers is 10. The types of resource include
CPU, Memory, SSD, network I/O and so on. The amount of each kind of resource on
each node is between 50 and 100, and the link bandwidth between all nodes is 100-300.
We assume that each CC contains 1-10 containers and each container consumes three
types of resources. The resource consumption is set according to the task’s demand in the
real-world trace. The traffic volume between containers is set in the range of [5,15].
We compare our algorithm with original A3C and auxiliary learning algorithms that only
include resource utilization control (RUC) or resource balance control (RBC), and for fair
comparison, all settings (such as state, action, reward, and CNN parameters) are consistent.

1668 CMC, vol.64, no.3, pp.1657-1671, 2020

End-to-end average packet delay, total deployment cost and the weighted sum of the
delay and cost are set as indicators to measure the performance of each algorithm under
different amounts of containers. In addition, we compare the performance of A3C and
UNREAL-CP in terms of learning efficiency and cumulative reward.
From Fig. 2, we can see that compared to the other three algorithms, UNREAL-CP
reduces deployment cost significantly. For example, when each CC contains 5 containers,
UNREAL-CP reduces the deployment cost by 28.1%, 39.2% and 51.6% respectively
compared to A3C with RUC, RBC and original A3C.

Figure 2: Total deployment cost under different algorithms

Fig. 3 shows the average end-to-end delay under different number of containers. We can
see that when the number of containers is small, the delays under the placement strategies
obtained by the four algorithms are similar. However, the gap between different
algorithms becomes larger when the number of containers increases. This is because the
UNREAL-CP algorithm considers the resource balance. When the number of containers
in service increases, some overloaded servers will become the bottleneck of the network,
affecting the traffic transmission, while balancing network load can effectively avoid
such problems.

A DRL-Based Container Placement Scheme with Auxiliary Tasks 1669

Figure 3: Average delay under different algorithms

Because UNREAL-CP performs better in reducing placement costs and average latency,
it finally achieves an average reduction about the sum of cost and delay by 11.9%, 19.1%
and 28.6% respectively, which is shown in Fig. 4.

Figure 4: Weighted sum of cost and delay under different algorithms

From Fig. 5, we can observe that UNREAL-CP has better convergence performance.
UNREAL-CP reaches a better placement solution with higher reward within 60 episodes,
while A3C uses more time and only obtains a local optimal solution. It means that the
auxiliary tasks we designed significantly improves the learning efficiency of the agent in
container placement problem.

1670 CMC, vol.64, no.3, pp.1657-1671, 2020

(a) Loss function (b)Reward

Figure 5: Learning performance of two DRL algorithms

6 Conclusion
In this paper, we present UNREAL-CP, a DRL approach for placing container clusters in
cloud, taking deployment cost and average E2E delay into consideration. A3C algorithm
architecture is used because it makes decisions under the guidance of both actor and
critic’s DNNs, and has great advantages in solving dynamic and continuous control
problems. Since network load balancing has a significant impact on reducing network
latency, we propose two auxiliary tasks, resource utilization control and available
resource balance control to improve the convergence performance of A3C. The results of
extensive experiments show that the proposed UNREAL-CP algorithm can effectively
reduce the deployment cost and E2E delay up to 28.6%. Compared with original A3C,
the convergence speed of our algorithm is also improved.

Acknowledgement: Many people have offered me valuable help in my thesis writing,
including my classmates, my friends and my parents. They provided me with valuable
guidance and suggestions in every stage of the writing of this paper. And their
encouragement has sustained me through depression and frustration.

Funding Statement: This work is supported by the National Natural Science
Foundation of China (61702048) and the Public Support Platform Construction of
Industrial Internet platform.

Conflicts of Interest: We have no conflicts of interest to report regarding the present study.

References
Gu, L.; Chen, X.; Jin, H.; Lu, F. (2018): VNF deployment and flow scheduling in geo-
distributed data centers. IEEE International Conference on Communications, pp. 1-6.
Huang, X.; Yuan, T.; Qiao, G.; Ren, Y. (2018): Deep reinforcement learning for
multimedia traffic control in software defined networking. IEEE Network, vol. 32, no. 6,
pp. 35-41.

A DRL-Based Container Placement Scheme with Auxiliary Tasks 1671

Hussein, M. K.; Mousa, M. H.; Alqarni, M. A. A. (2019): Placement architecture for a
container as a service (CaaS) in a cloud environment. Journal of Cloud Computing, vol.
8, no. 1, pp.7.
Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.; Leibo, J. Z. et al. (2016):
Reinforcement learning with unsupervised auxiliary tasks. arXiv:1611.05397.
Li, Y. X. (2017): Deep reinforcement learning: an overview. Xiv:1701.07274.
Lv, L.; Zhang, Y. C.; Li, Y. S.; Xu, K.; Wang, D. et al. (2019): Communication-aware
container placement and reassignment in large-scale internet data centers. IEEE Journal
on Selected Areas in Communications, vol. 37, no. 3, pp. 540-555.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T. P. et al. (2016):
Asynchronous methods for deep reinforcement learning. arXiv:1602.01783v2.
Piet, S.; Bart, D.; Pieter, S. (2018): Docker layer placement for on-demand provisioning
of services on edge clouds. IEEE Transactions on Network and Service Management,
vol. 15, no. 3, pp. 1161-1174.
Quang, P. T. A.; Singh, K. D.; Bradai, A.; Benslimane, A. (2018): QAAV: quality of
service-aware adaptive allocation of virtual network functions in wireless network. IEEE
International Conference on Communications, pp. 1-6.
Song, X.; Zhang, X.; Yu, S.; Jiao, S.; Xu, Z. (2017): Resource-efficient virtual network
function placement in operator networks. IEEE Global Communications Conference, pp. 1-7.
Wei, Y. F.; Wang, Z. Y.; Guo, D.; Yu, F. (2019): Deep Q-learning based computation
offloading strategy for mobile edge computing, Computers, Materials & Continua, vol.
59, no. 1, pp. 89-104.
Xu, Z. Y.; Tang, J.; Meng, J. S.; Zhang, W. Y.; Wang, Y. Z. et al. (2018): Experience-
driven networking: a deep reinforcement learning based approach. IEEE INFOCOM-
IEEE Conference on Computer Communications, pp. 1871-1879.
Zhang, R.; Chen, Y.; Dong, B.; Tian F.; Zheng, Q. (2019): A genetic algorithm-based
energy-efficient container placement strategy in CaaS. IEEE Access, vol. 7, pp. 121360-
121373.
Zhao, N.; Liang, Y.; Niyato, D.; Pei, Y.; Jiang, Y. (2018): Deep reinforcement learning
for user association and resource allocation in heterogeneous networks. IEEE Global
Communications Conference, pp. 1-6.
Zhou, R.; Li, Z.; Wu, C. (2019): An efficient online placement scheme for cloud
container clusters. IEEE Journal on Selected Areas in Communications, vol. 37, no. 5,
pp. 1046-1058.

	A DRL-Based Container Placement Scheme with Auxiliary Tasks
	Ningcheng Yuan0F , Chao Jia2, *, Jizhao Lu3, Shaoyong Guo1, Wencui Li3,
	Xuesong Qiu1 and Lei Shi4

	1 Introduction
	2 Related work
	3 Problem definition
	3.1 Network model
	3.2 Service model
	3.3 Objective
	3.3.1 Average delay
	3.3.2 Resource cost
	3.3.3 Optimization problem

	4 Algorithm description
	4.1 A3C algorithm
	4.2 UNREAL-CP
	4.2.1 Resource utilization control
	4.2.2 Available resource balance control

	5 Performance evaluation
	6 Conclusion
	Funding Statement: This work is supported by the National Natural Science Foundation of China (61702048) and the Public Support Platform Construction of Industrial Internet platform.
	References

