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Abstract: Establishing entanglement is an essential task of quantum communication 
technology. Beyond entanglement, quantum discord, as a measure of quantum 
correlation, is a necessary prerequisite to the success of entanglement distribution. To 
realize efficient quantum communication based on quantum discord, in this paper, we 
consider the practical advantages of continuous variables and propose a feasible 
continuous-variable quantum network coding scheme based on quantum discord. By 
means of entanglement distribution by separable states, it can achieve quantum 
entanglement distribution from sources to targets in a butterfly network. Compared with 
the representative discrete-variable quantum network coding schemes, the proposed 
continuous-variable quantum network coding scheme has a higher probability of 
entanglement distribution and defends against eavesdropping and forgery attacks. 
Particularly, the deduced relationship indicates that the increase in entanglement is less 
than or equal to quantum discord. 
 
Keywords: Continuous variable, quantum network coding, quantum discord, 
entanglement distribution, Gaussian cloning. 

1 Introduction 
The main idea of network coding [Ahlswede, Cai, Li et al. (2000)] is to improve the 
network throughput by encoding the information of intermediate network nodes. By 
referring to network coding, quantum network coding (QNC) can improve network 
throughput and save network bandwidth, which has triggered the community’s interest in 
the design of QNC. In 2006, Hayashi et al. [Hayashi, Iwama, Nishimura et al. (2007)] 
proposed the concept of QNC and the protocol for crossing two qubits over the butterfly 
network. The first QNC protocol XQQ (crossing two qubits) shows that QNC is possible 
in the butterfly network. In order to solve the problem that the fidelity of XQQ protocol is 
less than 1, Hayashi applied quantum teleportation to quantum network coding in 2007, 
and proposed a quantum network coding scheme based on the prior entangled state  
between two sending parties [Hayashi (2007)]. With the help of prior entanglement, new 
breakthroughs in QNC has been achieved [Wang, Luo, Xu et al. (2018); Nguyen, Babar, 
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Alanis et al. (2017); Li, Gao, Qin et al. (2018)]. To make long-distance quantum 
communication more efficient, Satoh et al. [Satoh, Le Gall and Imai (2012)] designed a 
QNC scheme for quantum repeaters in which adjacent nodes initially share one Einstein-
Podolsky-Rosen (EPR) pair. The information carrier of all the above schemes is discrete 
variable, hence they are called discrete-variable quantum network coding (DVQNC) 
scheme. However, it is difficult for these schemes to prepare and detect single photons 
for encoding discrete information. For feasible applications in quantum communication, 
both theoretical and experimental investigations are increasingly concerned with 
continuous variables. In 2017, Shang et al. [Shang, Li and Liu (2017)] proposed two 
continuous-variable quantum network coding (CVQNC) schemes. The first scheme 
transmits two coherent states over butterfly network utilizing ADD/SUB operators and 
Gaussian cloning, and the fidelity of the first scheme is 1/2. The second scheme is based 
on continuous-variable quantum teleportation and transmit two coherent states faultlessly. 
In 2019, the CVQNC scheme against pollution attack [Shang, Li, Chen et al. (2019)] and 
quantum homomorphic signature scheme [Shang, Pei, Chen et al. (2019)] were proposed. 
From the perspective of transmitting classical information, these CVQNC schemes have 
better network throughput than the DVQNC schemes. 
Entanglement is the underpinning of many fundamental quantum tasks and is regarded as a 
key resource in quantum information. In 2003, Cubitt et al. [Cubitt, Verstraete, Dür et al. 
(2003)] proposed a protocol called entanglement distribution by separable states (EDSS) 
protocol. It can be used to construct entanglement between two distant particles by sending 
a third particle which is not entangled with the two distant particles. In 2008, Mišta et al. 
[Mišta and Korolkova (2008)] found that the distribution of entangled states in Gaussian 
states is possible by using linear optics elements and a certain three-mode fully separable 
mixed Gaussian state which are available in experiments. Similarly, two modes of the state 
are entangled by mixing on two beam splitters in sequence, while the third particle is 
separable at all stages of the protocol. Then they proposed a simpler and more efficient 
protocol which results in continuous-variable entanglement distribution [Mišta and 
Korolkova (2009)]. Furthermore, it was shown that the amount of quantum discord between 
the distant particles and the carrier bounds the entanglement gain [Chuan, Maillard, Modi et 
al. (2012)]. In fact, discord results from the loss of information caused by quantum 
measurements, Ollivier et al. [Ollivier and Zurek (2001)] introduced it to quantify quantum 
correlation. We traced back the early roots of discord to the EPR-Bohr argument on 
completeness of quantum mechanics [Einstein, Podolsky and Rosen (1935); Wiseman 
(2013)], to Everett’s thesis on universal wave function and relative-state formulation of 
quantum mechanics [DeWitt and Graham (2015)], to Lindblad’s investigations of entropy 
and quantum measurements [Lindblad (1973)], etc. In the last decade, various aspects of 
discord was widely studied, such as calculation, operational meaning, ramifications, and 
applications. So it is worth devoting the study of entanglement from the perspective of 
quantum discord for efficient quantum communication. 
In this paper, we design a CVQNC scheme based on quantum discord under the butterfly 
network. The scheme implements quantum entanglement distribution with less 
entanglement resources, because the continuous-variable EDSS (CV-EDSS) protocol 
provides new ideas of constructing entanglement via intermediate nodes in the butterfly 
network. The ADD operator and the SUB operator are applied to encode operation and 
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decode operation, while Gaussian cloning is used to simulate the copy operation of QNC. 
Also, considering practical advantage, we utilize continuous variables for QNC to increase 
the success probability of transmitting the ancillary mode to the corresponding target. 
The main contributions of our work are: 
(1) A CVQNC scheme based on quantum discord is proposed. The basic operation of 
ADD/SUB operators and Gaussian cloning are provided. Based on the butterfly network, 
two separable auxiliary modes are transmitted between source nodes and target nodes, 
achieving continuous-variable entanglement distribution. As a result, the fidelity of the 
link for transmitting the ancillary modes from sources to targets is 2/1 . Each target node 
receives N2log4  bits of classical information via one network transmission. Also, our 
scheme can defend against eavesdropping and forgery attacks. 
(2) Theoretical results based on quantum discord are deduced. The relationship between 
entanglement distribution and quantum discord is quantified and the theorem that the 
entanglement gain between source nodes and target nodes is less than or equal to 
quantum discord is deduced. 
This paper is organized as follows. In Section 2, we introduce related works, including 
continuous-variable EDSS, ADD/SUB operators and Gaussian cloning. Section 3 gives a 
CVQNC scheme based on quantum discord. Section 4 focuses on the scheme analysis in 
term of performance and security. Section 5 is our conclusion. 

2 Related works 
2.1 Continuous-variable entanglement distribution by separable states (CV-EDSS) 
By sending a separable ancillary mode c from Alice to Bob, the CV-EDSS protocol 
[Mišta Jr. and Korolkova (2009)] aims to entangle mode a at Alice with separable mode 
b at Bob (see Fig. 1). 
Step 1. Alice prepares the mode a and the mode c in a pure single-mode squeezed state 
with covariance matrix (CM) aγ  and cγ . Bob prepares the mode b  in the vacuum state. 
The CMs are 
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where the squeezing parameter is 0≥t , I is a two-dimensional identity matrix. Then 
according to the Gaussian distribution with correlation matrix )(xQ , Alice and Bob 
respectively displace their own modes by random correlated displacements 
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where zσ  denotes the z  Pauli matrix and 0≥x . As a result, a three-mode fully separable 
Gaussian state with a CM Eq. 3 will be prepared. 
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Qcba +⊕⊕= γγγγ1                                                                                                        (3) 

 

 
Figure 1: This is the process of continuous variables entanglement distribution by 
separable Gaussian states. Empty ellipses represent that modes a  and c  which are in the 
momentum and position-squeezed vacuum states, and empty circle represents that mode 
b  is in a vacuum state 
Step 2. The modes a and c are superimposed on a balanced beam splitter acBS  described 
by the matrix 
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Thus the CM turns to 
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where xtm += )2cosh( , xtn −= )2sinh( . The state is separable with respect to 

acb − splitting and for 
2

12 −
≥

tex , also with respect to abc − splitting. 

Step 3. The mode c is mixed with mode b on a balanced beam splitter bcBS described by 
the matrix 
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Then the CM turns to 
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We denote the reduced state of the mode a  and the mode b is the matrix )(
,3

bT
abγ  and the 

CM ab,3γ  is in the block form 







=

BC
CA

Tab,3γ , where A, B and C are 22×  submatrices. 

By computing the lower symplectic eigenvalue υ  of the matrix )(
,3

bT
abγ , we conclude that 

the mode a and the mode b was finally entangled by the interference on the beam splitter 
bcBS . The eigenvalue is 

2
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By calculating the logarithmic negativity given by the formula υ2log-=ΝE , we can also 

quantify the amount of distributed entanglement. For 0>t  and 
2

)1( 2 −
=

tex , we get 

1<υ , therefore the modes a  and b  are entangled for an arbitrarily small nonzero 
squeezing parameter. 
In this protocol, two modes of the state are entangled by mixing them sequentially with 
the third separable mode on two beam splitters. Beyond point-to-point communication, it 
can help construct the entanglement between sources and targets via intermediate nodes, 
especially in a butterfly network. By encoding the quantum states, the information of the 
third mode in EDSS will be hidden and guarantee that the modes a  and b  will be 
entangled ultimately between sources and targets. 

2.2 ADD/SUB operators 
After mixing two single-mode states 111 ipx +=α  and 222 ipx +=α  on a 50:50 
beam splitter, the position and momentum operators will be 

2/)(',2/)(' 211211 pppxxx −=−=                                                                             (11)   

2/)(',2/)(' 212212 pppxxx +=+= .                                                                          (12)                                          
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Thus, we can obtain the add state of the two single-mode states by amplifying )','( 22 px . 
Similarly, we can obtain the subtract state by amplifying )','( 11 px .We give a diagram of 
ADD/SUB operators (see Fig. 2). The 50:50  beam splitter BS  mixes the input states. 
One of the beams of BS is selected as the input of the noiseless linear amplifier (NLA). 
After the amplification process with a factor 2=g , we get the desired state 

21 ααα +=+  or 21- -ααα = .  

 
Figure 2: Diagram of ADD/SUB operators 

Hence the ADD operator and the SUB operator are defined [Shang, Li and Liu (2017)] as 
follows:  

)()(),( 212121 ppixxADD +++=αα                                                                        (13) 

)()(),( 212121 ppixxSUB −+−=αα                                                                         (14) 

We apply the ADD operator and the SUB operator to encode and decode coherent states 
(see Fig. 3).   

 
Figure 3: Encode and decode coherent states by applying the ADD operator and SUB 
operator 

At the source node, we obtain the encoded state 
)()(),( 212121 ppixxADDe +++== ααα                                                             (15) 

by applying the ADD operator to two coherent states 111 ipx +=α and 

222 ipx +=α . 

At the target node, we obtain the decoded state  

1112 ),( αααα =+== ipxSUB ed                                                                         (16) 

by applying the SUB operator to eα , 2α . 

So the state 1α  or 2α which is input to the ADD operator can be decoded by the SUB 
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operator. 

2.3 Gaussian cloning (GC) 
Cloning is an important step in the implementation of QNC. For discrete variables, 
quantum cloning techniques can be classified into two types. Definitive cloning performs 
unitary transformations during the entire cloning process. Probabilistic cloning performs 
unitary transformation and quantum measurement during cloning. Quantum no-cloning 
theorem governs both types of quantum cloning. 
Duan et al. [Duan and Guo (1998a, 1998b)] proposed the probabilistic cloning technique 
which introduces quantum measurements to accurately clone a set of linearly independent 
quantum states with a certain probability. For continuous variables, approximate cloning 
schemes are used to simulate the copying operation. Cerf et al. [Cerf, Ipe and Rottenberg 
(2000)] proposed that the set of input states to be copied was restricted to Gaussian states 
and derived the optimal cloning fidelity. Here, we introduce a Gaussian cloning machine 
for continuous variables.  
Gaussian cloning machine can be used to simulate the copying operation for coherent 
states. 0α denotes the input coherent state and the output of the Gaussian cloning 
machine is 

∫ ++= ααααααρ 00
2 )(ˆ Gd                                                                                      (17) 

where the displacement error ipx +=α  consists of the position error x  and the phase 
error p . x  and p  obey the bivariate Gaussian distribution with zero mean and a 
variance of 4/1 , i.e.,  

)](2exp[2),( 22 pxpxP +−=
π

.                                                                                        (18) 

So the distribution function of  

)2exp(2)( 2α
π

α −=G .                                                                                                    (19) 

The fidelity of the Gaussian cloning machine is calculated as follows: 

3
22ˆ

232
00 === ∫ − αα

π
αρα edf                                                                                  (20) 

In summary, the set of input states to be copied is restricted to Gaussian states and the 
optimal cloning fidelity is 3/2 . So Gaussian cloning can be an effective operation used 
to simulate the copy operation of QNC. 

3 CVQNC scheme based on quantum discord 
The CV-EDSS protocol constructs entanglement between two distant locations. Gaussian 
cloning clones quantum states with a certain probability. These two basic operations 
provide basic conditions to design a CVQNC scheme. Fig. 4 shows the setting of the 
proposed CVQNC scheme. 
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Our CVQNC scheme is described as follows: 
Step 1. (Preparation) The modes 111 ,, cba are prepared at the nodes 11,ts . The modes 

222 ,, cba  are prepared at the nodes 22 ,ts . Here 2211 ,,, caca are pure single-mode 
squeezed states and 21,bb  are the vacuum state.  The CMs are 
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Then Alice and Bob displace locally their modes by random correlated displacements 
distributed according to the Gaussian distribution with correlation matrix 
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As a result, they prepare by LOCC a three-mode fully separable Gaussian state with CM 
as follows: 

.2,1,1 =+⊕⊕= jQ jcba jjjj
γγγγ                                                                                   (23) 

 
Figure 4: New CVQNC scheme 

Step 2. At the node 1s , the modes 1a  and 1c  mix on a balanced beam splitter 
11caBS . At 

the node 2s , the modes 2a  and 2c  mix on a balanced beam splitter 
22caBS . Then we 

obtain two three-mode systems. The corresponding CMs are 
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where xtm += )2cosh( , xtn −= )2sinh( , and the beam splitter is described by the matrix 
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Step 3. 21, ss  send 21,cc  to the node 0s , respectively. 

Step 4. (Encoding at node 0t ) The new mode 3c  is introduced at 0s . By applying the 
ADD operator to 21,cc , we obtain the encoded state ),( 213 ccADDc = . 

Step 5. 0s  sends 1c  to 2t  via 1s  and 0s  sends 2c  to 1t  via 1s . 3c  is sent to the node 0t . 

Step 6. At the node 0t , the Gaussian cloning of 3c gives 3231,cc . And 3231,cc  are sent to 
the node 21,tt , respectively. 

Step 7. (Decoding at node 21,tt ) At the node 1t , we obtain the decoded state 

1231 ),( cccSUB =  by applying the SUB operator to 231,cc . Similarly, at the node 2t , we 
obtain the decoded state 2132 ),( cccSUB =  by applying the SUB operator to 132 ,cc . 

Step 8. At the node 1t , the mode 1c  which from Step 7 mixes the mode 1b  on another 
balanced beam splitter 

11cbBS . At the node 2t , the mode 2c  which from Step 7 mixes the 
mode 2b  on balanced beam splitter 

22cbBS . The balanced beam splitter 
jjcbBS is 

described by the matrix 
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Then the CMs turn to 
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where xtm += )2cosh( and xtn += )2sinh( . We compute the lower symplectic 
Eigenvalue υ  of the matrix )(

,3
bT
abγ  corresponding to the reduced state of the modes a  and 

b  to get the conclusion that mode a and mode b are finally entangled by the interference 
on the beam splitter 

jjcbBS . 
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4 Scheme analysis 
4.1 Performance analysis 
In this section, we will provide performance analysis of our CVQNC scheme from the 
perspectives of fidelity and network throughput. 

4.1.1 Fidelity 
We consider the fidelity of the link 11 ts →  for transmitting the mode 1c  and the link 

22 ts → for transmitting the mode 2c . 

Theorem 1: With ideal ADD/SUB operators, the fidelity of the link ii ts →  for 
transmitting the mode ic is 2/1  (i=1,2). 
Proof: If the ADD/SUB operators are ideal, the relationship between the variances of the 
inputs 21 , αα and the output ±α is 

2
2

1
22

2
2

1
22 , pppxxx ∆=∆=∆∆=∆=∆ ±±                                                                         (28) 

which indicates that this operation will not amplify quantum fluctuation. By applying the 
ideal ADD operation to 21,cc at the node 0s , we obtain the quantum state 

qccqccqqGdc ++++= ∫ 2121
2

3 )( ,                                                                         (29) 

where the displacement error q obeys a Gaussian distribution of  

)2exp(2)( 2qqG −==
π

.                                                                                                   (30) 

After the GC operation at the node 0t , the replicas of 3c are 

rqccrqccqqGdrrG ++++++= ∫∫ 2121
22

3231 )()(d}c,{c ,                                    (31) 

where r follows Gaussian distribution 

)2exp(2)( 2rrG −==
π

.                                                                                                   (32) 

After applying the ideal SUB operator to 132 ,cc  at node 1t , the output is 

rqcrqcqqGdrrGdout ++++= ∫∫ 11
221 )()(ρ                                                            (33) 

By using )'exp(' 22
cccc −−=

 
which is the property of coherent states, we calculate 

the fidelity of the link 11 ts →  as follows: 

2
14' )22(22

2
1

1

222

=== ∫ +++− rqrq
out qerddccF

π
ρ                                                         (34) 

For the reason of symmetry [Shang, Li and Liu (2017)], the fidelity of the link 22 ts →  
for transmitting the mode 2c is also 2/1 . 
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4.1.2 Network throughput 
Network throughput is one of criteria for evaluating the performance of network coding 
schemes. The extension from discrete variables to continuous variables means to vary 
from finite to infinite spaces. After one network transmission, the target node 1t  receives 

312 ,cc  and the target node 2t  receives 321,cc . 

Theorem 2: Each target node receives N2log4 bits of classical information via one 
network transmission. 
Proof: Suppose that a coherent state ipx +  is modulated with classical characters, each 
classical character x or p has N elements which are 1,,1,0 −N . The amount of 
information is 

N
xp

xpxI
i

ii 222 log
)(

1log)(log)( ==−= ,                                                                    (35) 

where 1,,1,0 −∈ Nxi  . That is, the amount of information of a coherent state is 
N2log2 . So each target node receives N2log4  bits via one network transmission. 

Similarly, we suppose qubits 0 and 1 are used to carry classical bits 0 and 1. In this 
case, the information of one qubit is the same as that of one bit. Also, the network 
throughput of DVQNC schemes can be measured in terms of classical bits. In XQQ, each 
target node receives 2 bits of classical information. In the QNC scheme with prior 
entanglement between senders [Hayashi (2007)], each target node receives one bit of 
classical information. 
Compared with the DVQNC schemes, the CVQNC schemes contain more information. As 
a result, our CVQNC scheme has a larger network throughput than the DVQNC schemes. 

4.1.3 Network throughput 
Quantum discord is in a primitive place than entanglement, so we can give insight into 
the role of discord in entanglement distribution. We calculate the relative entropy of 
entanglement [Piani, Gharibian, Adesso et al. (2011)] and the relative entropy of discord 
[Nielsen and Chuang (2007)] to search for a relationship between the increase in 
entanglement and quantum discord. 
The von Neumann entropy of quantum state ρ is 

)log()( ρρρ trS −= .                                                                                                       (36) 

The quantum relative entropy between two states ρ andσ is defined as  

)log()()||( σρρσρ trSS −−= .                                                                                      (37) 

The relative entropy of entanglement in the bipartition x -versus- y is defined as 

)||(min)( :: : yxyx S
yx

ρρρε ρ=                                                                                            (38) 

which is the minimum relative entropy between the joint state ρ  of x  and y , where  
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i
yi

i
xiyx p ρρρ ∑ ⊗=: .                                                                                                       (39) 

The relative entropy of discord is defined as 
)||(min)( || | yxyx SD

yx
χρρ χ=                                                                                           (40) 

which is the minimum relative entropy between ρ  and the set of quantum-classical states 

∑ ⊗=
j y

j
xjyx jjp χχ | ,                                                                                             (41) 

where j  is an orthonormal basis for y  [Abeyesinghe, Devetak, Hayden et al. (2009)]. 

The key step in our scheme is the transmission of ancillary modes ic  from source nodes 

is  to target nodes it . The bipartitions bac : and cba : corresponds to the situations before 
and after the transmission of the ancillary modes. The difference between the relative 
entropy of entanglement in the bipartition bac : and the relative entropy of entanglement 
in the bipartition cba :  can be limited [Madhok and Datta (2013)]. 
Lemma 1: For any tripartite state abcρ , the difference of entanglement is bounded by the 
relative entropy of discord, i.e.,  

)()()( |:: ρρερε cabbacbca D≤− .                                                                                        (42) 

Reference [Bennett and Shor (1998)] indicates that under any completely positive trace-
preserving map M the relative entropy is monotonic, i.e.,  

))(||)(()||( σρσρ MMSS ≥ .                                                                                          (43) 

By combining it with lemma 1, we can obtain the following theorem. 
Theorem 3: Assuming the initial state of ba, and c is u , and by means of a local 
encoding operation acM , the state will be )(uMg ac= . We have 

)()()( |:: gDug cabbacbca +≤ εε                                                                                            (44) 

Proof: A local operation on ac  cannot increase entanglement in the bac : , i.e.,  
)()( :: ug bacbac εε ≤ .                                                                                                            (45) 

It can be deduced that  
)()()()()( |:|:: gDugDgg cabbaccabbacbca +≤+≤ εεε .                                                           (46) 

The local encoding operation acM  in our scheme corresponds to the mixing operation of 
modes ia  and ic  on a balanced beam splitter 

iicaBS . 

This theorem indicates that the increase in entanglement is less than or equal to quantum 
discord measured in the communication system. So quantum discord is a necessary 
prerequisite to the entanglement distribution. 

4.2 Security analysis 
The purpose of our CVQNC scheme based on quantum discord is to entangle two modes 
existing in source node and target node, respectively. In the process of entanglement 
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distribution, the quantum channels are tentatively used. After the evolution of the system, 
channels are unnecessary, so attackers cannot eavesdrop the links to obtain information. 
We analyze whether the ancillary mode ic can be calculated and forged by eavesdropping 
the modes transmitted in quantum channels. For the reason of symmetry, we analyze the 
link 11 ts → merely. In Step 2, the nodes 1s  entangles mode 1a  with the pair of modes 

)( 11cb by mixing modes 1a  and 1c , while mode 1c  is separable from subsystem 11ba . In 
Step 8, the nodes 1t  mixes modes 1b  and 1c  on a balanced beam splitter, while the mode 

1c still remains separable from subsystem 11ba . 

Theorem 4: The mode ic  remains separable from subsystem iiba  at all times during the 
scheme. 
Proof: The positive partial transpose (PPT) criterion declares that a three-mode Gaussian 
state with CM γ  is separable with respect to bipartition )(yzx − (where zyx ,,  is an even 
permutation of CBA ,, ) if and only if the matrix )( xTγ  satisfies the uncertainty relation 
[Giedke, Kraus, Lewenstein et al. (2001)], i.e., 

0)( ≥Ω− ixTγ                                                                 (47)                                                             
For any matrix )( xTγ , there is a symplectic matrix S satisfying the condition Ω=Ω TSS , 
such that  

),,,,,( 332211
)( ssssssdiagSS TTx =γ .                                                                            (48) 

The matrix )( xTγ  possesses three invariants denoted by )det(,, )(
321

xTIII γ=  that can be 
calculated easily as coefficients of the characteristic polynomial of the matrix )( xTγΩ , i.e., 

32
2

4
1

6)( )det( IuIuIuIxT +++=− µγ .                                                                           (49) 

The criterion declare that for CM γ  the mode x  is separable from the modes )(yz  if and 
only if Eq. (50) holds [Serafini (2007)]. 

01)1( 123

3

1

2 ≥−+−=−=∏∑
=

IIIs
j

j                                                                             (50) 

In Step 2, by choosing proper parameters rd , and x , the mode 1c  can be separable from 
the subsystem 11ba . The CM 2γ  turns to  

cc
Tc ΛΛ= 2)(

2 γγ                                                                                                                 (51) 

after partial transposition, where )1,1,1,1,1,1( −=Λ diagc . The matrix )(
2

cTγ  possesses three 
invariants denoted 1I , 2I , )det( 2

3 γ=I which satisfy  

3
2

2
4

1
6)(

2 )det( IuIuIuIcT +++=− µγ .                                                                            (52) 

The condition 01123 ≥−+−=∑ III has a simple expression )( vwxx +=∑ , where 
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w and v are functions of d and r . Taking 
2
3)(2 =−rde

 
and 2)(2 =+rde , we get 0>w  and 

0<v . On this condition, the threshold value 04.1≈−=
w
vxth

 
and hence for thxx > , 

0>∑ is valid. In consequence, the mode 1c is separable from subsystem 11ba  in Step. 2. 

In Step 8, for CM 3γ , supposing 
2
3)(2 =−rde , 2)(2 =+rde  and 041.1=x , we obtain 

03957.0 >≈∑ . Thus the mode 1c  remains separable from subsystem 11ba . 

By using the separability criterion, we can get the conclusion that the mode ic  remains 
separable from iiba  at all times in our scheme. 

Though the ancillary mode ic  can be eavesdropped in quantum channels, attackers or 
dishonest intermediate nodes cannot obtain any information about states ii ba ,  because the 
ancillary mode ic  is separable at all times. Attackers or dishonest intermediate nodes may 
forge the ancillary mode ic , so the scheme will fail to construct entanglement. However, 
due to quantum uncertainty principle, it is rather complicated to forge the ancillary modes 
precisely. Once the entanglement construction fails, the scheme can restart from Step 1 and 
check if there exists an attacker or intermediate nodes are dishonest. 
Theorem 5: If the modes 21,cc are successfully transmitted, the modes ja and jb will be 
entangled for an arbitrarily small nonzero squeezing. 

Proof: We denote the CM 
jjba,3γ  in the block form 








=

BC
CA

Tba jj,3γ , where A, B and C 

are 22×  submatrices. The eigenvalue reads as  

2

)det(4 ,3
2

jjba
v

γκκ −−
= ,                                                                                        (53) 

where 
2

2
,3 )

2
1(

2
)2cosh(1)det( 



 ++
+

= − xet t
abγ ,                                                            (54) 

4
)1()2()det(2)det()det(

2
22 +
+++=−+=

mxnmCBAκ                                             (55) 

For 0>t and 
2

)1( 2 −
=

tex , we obtain 1<υ  [Mišta Jr. and Korolkova (2009)], therefore 

the modes a and b are entangled for an arbitrarily small nonzero squeezing. 

5 Conclusion 
In this paper, from the perspective of quantum discord, we proposed a feasible CVQNC 
scheme in which a tripartite state is established between sources nodes and target nodes. 
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By virtue of the CV-EDSS protocol, the scheme achieves quantum entanglement 
distribution from sources to targets on a butterfly network. The fidelity of the link for 
transmitting the ancillary modes from sources to targets is 2/1 . Our CVQNC scheme has 
a larger network throughput than the DVQNC schemes. Security analysis proves that our 
scheme defends against eavesdropping and forgery which means it can be applied to the 
case of high security. The proposed CVQNC scheme provides a model for constructing 
entanglement in quantum network and a guidance for future work. 
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