

Computers, Materials & Continua CMC, vol.64, no.3, pp.1555-1577, 2020

CMC. doi:10.32604/cmc.2020.010885 www.techscience.com/journal/cmc

Benchmarking Approach to Compare Web Applications Static
Analysis Tools Detecting OWASP Top Ten Security Vulnerabilities

Juan R. Bermejo Higuera1, *, Javier Bermejo Higuera1, Juan A. Sicilia Montalvo1,

Javier Cubo Villalba1 and Juan José Nombela Pérez1

Abstract: To detect security vulnerabilities in a web application, the security analyst
must choose the best performance Security Analysis Static Tool (SAST) in terms of
discovering the greatest number of security vulnerabilities as possible. To compare static
analysis tools for web applications, an adapted benchmark to the vulnerability categories
included in the known standard Open Web Application Security Project (OWASP) Top
Ten project is required. The information of the security effectiveness of a commercial
static analysis tool is not usually a publicly accessible research and the state of the art on
static security tool analyzers shows that the different design and implementation of those
tools has different effectiveness rates in terms of security performance. Given the
significant cost of commercial tools, this paper studies the performance of seven static
tools using a new methodology proposal and a new benchmark designed for vulnerability
categories included in the known standard OWASP Top Ten project. Thus, the
practitioners will have more precise information to select the best tool using a benchmark
adapted to the last versions of OWASP Top Ten project. The results of this work have
been obtaining using widely acceptable metrics to classify them according to three
different degree of web application criticality.

Keywords: Web application, benchmark, security vulnerability, Security Analysis Static
Tools, assessment methodology, false positive, false negative, precision, f-measure.

1 Introduction
Today companies and organizations use web applications to manage their data from any
place, Intranets, Internet, etc. It can be assured that web applications have the gift of
ubiquity, which implies at the same time they are more “attackable” and have to be
security hardened.
The results of several studies [Homaei and Shahriari (2017); Barabanov, Markov and Tsirlov
(2018); Sołtysik-Piorunkiewicz and Krysiak (2020)] confirm that the web applications
analyzed did not pass the OWASP Top Ten project [OWASP Foundation (2017)]. The
security vulnerabilities, that web applications have in their code should force organizations to
make a security analysis using the best SAST tools. SQL injection (SQLI) and Cross Site

1 Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, La Rioja, 26006, Spain.
* Corresponding Author: Juan R. Bermejo Higuera. Email: juanramon.bermejo@unir.net.
Received: 03 April 2020; Accepted: 28 April 2020.

1556 CMC, vol.64, no.3, pp.1555-1577, 2020

Scripting (XSS) vulnerabilities continue to be the most frequent vulnerabilities.
The task of manually scanning a web application with a high number of lines of code for
security vulnerabilities can become an arduous and time-consuming task. It is necessary
to study the state of art in automatic techniques such as source and binary code SAST
tools. Some works confirm that one of the great advantages of this type of tool, as
opposed to the purely manual analysis, is that they analyze all the code and the
configurations of a web application achieving rates higher than 70% of security
vulnerabilities [Díaz and Bermejo (2013); Antunes and Vieira (2015); Shrestha (2013);
Nunes, Medeiros, Fonseca et al. (2018)]. However, the work of Nguyen et al. [Nguyen,
Maleehuan, Aoki et al. (2019)] demonstrates that static tools have false positives
(vulnerabilities detected that really does not exist) and false negatives (real vulnerabilities
not found). Therefore, a final audit of a SAST tool report is required to confirm each
security vulnerability. Other works have investigated another method that combine static
and dynamic working together to take advantage of possible synergies to eliminate false
positive and detect more true positives [Monga, Paleari and Passerini (2009); Nunes,
Medeiros, Fonseca et al. (2019); Bermejo, Abad, Bermejo et al. (2020)]. However, a false
negative is harder to find if the tool has not previously detected it causing a real danger.
False positives are not really a danger and they could be fixed by the security analyst.
There are some questions to investigate:
• How is the SAST tools detection ratio with OWASP Top Ten security
vulnerabilities using the approach benchmarking?
• How is the SAST tools false alarm ratio with OWASP Top Ten security
vulnerabilities using the approach benchmarking?
• How is true positives/false positives balance of tools against different critical
degree of the web applications?
• How is the best tool for analyzing the security of web applications with different
levels of criticality?
• Is the OWASP Top Ten Benchmark adequate to comparing SAST tools?
• How are the results of this SAST tools comparative using OWASP Top Ten
Benchmark compared with the results of comparatives using other benchmarks?
It is necessary to fix all security vulnerabilities discovered in the source code. The security
points addressed in the work of Homaei et al. [Homaei and Shahriari (2017)] are related to
the study of the most frequent and dangerous vulnerabilities that exist in the code. SAST
tools need to be integrated into the Software Development Life Cycle (SSDLC) as the
model described in the work of Vicente et al. [Vicente, Bermejo, Bermejo et al. (2019)] to
detect security vulnerabilities early. Therefore, we consider that users and professionals of
web applications should know which commercial and open source SAST tools have better
effectiveness in terms of real detection rates (true positives), unreal detections (false
positives) and vulnerabilities not found (false negatives).
Next, it is described the main contributions of our work. The first goal of this study is to
design a benchmarking approach that includes a specifics test bank with test cases for
OWASP Top Ten security vulnerabilities [Bermejo (2020)].

Benchmarking Approach to Compare Web Applications Static 1557

The second main goal of this study is to compare the effectiveness of seven SAST tools
selected for J2EE specification commercial and open source projects (Spotbugs,
FindSecurityBugs, Klocwork-insight, Fortify SCA, Checkmarx, Coverity and Xanitizer).
The tools are executed against the new benchmark adapted to OWASP Top Ten project
to obtain the results of tools effectiveness. We apply well-known metrics to the execution
results to obtain a strict rank of tools. Finally, the paper gives some practical
recommendations on how to improve their effectiveness using the tools.
Therefore, the contributions of this paper can be summarized as follows:
• A general approach to design a benchmark for the evaluation of SAST capable of
detecting software vulnerabilities, considering the OWASP Top Ten project vulnerability
categories.
• A concrete instantiation of the OWASP Top Ten Benchmark approach to demonstrate
its feasibility, evaluating seven SAST tools by the detection of web vulnerabilities using
appropriate criteria for benchmark instantiation.
• An analysis of the results obtained by SAST tools using a defined comparative method to
classify them according to different degree levels of web applications importance.
• An analysis of results of leading commercial SAST allows the practitioners to choose
the most appropriate tool to perform a security analysis.
The outline of this paper is as follows: Section 2 reviews background in web technologies
security focusing in vulnerabilities, SAST tools, security benchmarks and related work. In
Section 3 the OWASP Top Ten benchmarking approach to evaluate SAST tools is
presented. Section 4 describes the steps of the comparative methodology proposal designed
by enumerating the steps followed to rank the SAST tools using the benchmark approach.
Finally, Section 5 collects the conclusions and Section 6 sketches the future work.

2 Background and related work
This section presents the background on web technologies security, benchmarking initiatives,
SAST, as well as a review and analysis of SAST results in previous comparatives.

2.1 Web technologies security
The growing development of web applications in the environment of organizations and
companies connected through the Internet means that they have become a precious target of
attack by those who wish to make a profit exploiting the vulnerabilities that these
applications may have. Organizations, to this constant threat, must be aware that investment
in web application security must be planned from the beginning, generally referred to start
in the initial stages of application development.
The most used languages today are some of the .NET technology such as C # or Visual
Basic, there is also an increase in the popularity of Android and iOS, PHP and C/C ++. Java
is still the most used language, as is also confirmed by different studies [Nanz and Furia
(2015); Arouba and Fernández-Villaverde (2015)]. In other publications the vulnerabilities
of the new generation of Web applications are discussed: Web 2.0 focusing on the types of
attacks on applications that use Asynchronous Javascript and Xml (AJAX), HTML5 or

1558 CMC, vol.64, no.3, pp.1555-1577, 2020

flash technologies [Cannings, Dwivedi and Lackey (2008); Scambray, Liu and Sima
(2010); Sema (2012); Moeller (2016)].
We use the term “secure” to refer to languages automatically perform runtime checks to
prevent the programs violate the limits of the allocated memory. The work by Long et al.
[Long, Mohindra, Seacord et al. (2014)] confirm that Java is essentially a secure language.
In order to build adequate benchmarks to test and select the best performance SAST tools,
we need to investigate which security vulnerabilities are more frequent and dangerous in
the web applications. Some studies confirm that the vulnerabilities more frequent and
dangerous are the included in OWASP Top Ten project and that the web applications
analyzed did not pass the OWASP Top Ten project [Homaei and Shahriari (2017);
Barabanov, Markov and Tsirlov (2018); Sołtysik-Piorunkiewicz and Krysiak (2020)].

2.2 Benchmarks
There have been some attempts for benchmarking static analysis tools for web
applications:
• Wavsep project is designed for a reduced set of vulnerabilities as XSS, Path Traversal,
Remote File Inclusion (RFI), Open Redirect and SQLI, though with a lot of test cases for
the vulnerabilities that it covers. It is included in the dynamic security tools’ comparisons
[Alavi, Bessler and Massoth (2018); Idrissi, Berbiche and Sbihi (2017)].
• Securebench Micro project focuses in Java vulnerabilities not for J2EE. Diverse
comparisons can be found using Securebench Micro [Livshits and Lam (2005); Martin,
Livshits and Lam (2005)].
• Software Assurance Metrics and Tool Evaluation (SAMATE) project of National
Institute of Standards and Technology (NIST) includes the test suite Juliet composed of
13782 test cases that covers widely vulnerabilities. This benchmark has been used in
several works [Krishnan, Nadworny and Bharill (2008); Cifuentes and Scholz (2012);
Shrestha (2009); Díaz and Bermejo (2013); Goseva-Popstojanova and Perhinschi (2015);
Nunes, Medeiros, Fonseca et al. (2018)].
• OWASP benchmark project [OWASP Foundation (2020)]. The Benchmark is used in
several works [Burato, Ferrara and Spoto (2017), Deshlahre and Tiwari (2020)]. It
contains a set of test cases are fully runnable and exploitable. It includes test cases for
XSS, SQLI, Xml Path Injection (XPATHI), command injection, path traversal and other
sensitive data exposure vulnerabilities included in OWASP Top Ten 2013.
• Delta-bench by Pashchenko et al. [Pashchenko, Dashevskyi and Massacci (2017)] is a
benchmarking approach based in 108 security vulnerabilities as SQLI, XSS, LFI, Session
fixation, Exec code or Information disclosure of Apache Tomcat. It was evaluated using
six open source SAST tools and Fortify SCA commercial tool.

2.3 SAST tools
The study of Huth et al. [Huth and Nielson (2019)] confirms that the most desirable to
avoid vulnerabilities in a web application code is prevention. Developers should have
received training in web security programming to avoid making “mistakes” related to

Benchmarking Approach to Compare Web Applications Static 1559

programming vulnerabilities. Despite the very good training of security programmers,
there will always be vulnerabilities in the code and, once the first version of the
application or parts of it have been developed, it will be much more complicated to
review the source code or perform a dynamic security analysis. Manual static analysis
requires highly specialized staff and time. The work of Sttutard et al. [Stuttard and Pinto
(2008)] concludes that the manual dynamic analysis in an attempt to perform an “ethical
hacking” of the implemented application requires highly specialized personnel, it is very
difficult to cover the entire attack surface of the application takes a long time to complete.
To carry out an analysis of web application security, made by any method, you must
cover the entire surface of attack covering all parts and application layers and using tools
to automate security analysis as much as possible, combining various types of tools and
achieve the better results [Felderer, Büchler, Johns et al. (2016)].
One type of security analysis is white box analysis performed by SAST tools, which
analyzes both source code and executable, as appropriate. SAST tools start with a
problem because the act of determining if a program reaches its final state, or not. For
further reading on the computational theory is recommended Sipser’s “Introduction to the
Theory of Computation”, second Edition [Sipser (2005)]. Despite this problem, security
code analysis using these tools are considered the most important security activity within
a SSDLC [Vicente, Bermejo, Bermejo et al. (2019); Duclervil and Liou (2019)].
A final audit of a SAST tool report is required to eliminate the false positives and find the
false negatives (much more complicated). Security analysts need to adequate the training
to reconnaissance the security vulnerabilities in the code for a particular programming
language [Yang, Tan, Peyton et al. (2019)]. SAST tools interfaces can be more or less
“friendly” in terms of the error trace facilities to audit a security vulnerability. In the
study of Díaz et al. [Díaz and Bermejo (2013)] tools such as Fortify SCA, Coverity,
Checkmarx or Klocwork are good examples of tools that provide a very good information
for eliminating false positives.
One of the most important advantages of SAST tools is that they analyze the entire
application covering all source inputs. The studies of Antunes et al. [Antunes and Vieira
(2010, 2015)], compare SAST tools vs DAST tools against web services benchmarks and
the SAST tools generally obtain better true positive ratios and worse false positive ratios.
This gives an idea of the importance of static analysis including a manual audit of the
results. However, the works of Antunes et al. [Antunes and Vieira (2010, 2015)] confirm
that SAST and DAST can find distinct types of vulnerabilities and consequently is a good
idea using the two types of analysis correlating their results improving true and false
positive ratios. Other works combine SAST tools with IAST tools to runtime monitor
attacks with the information of static analysis [Mongiovi, Giannone, Fornaia et al. (2015);
Loch, Johns, Hecker et al. (2020)]. The work of Pistoia et al. [Pistoia, Tripp and Lubensky
(2018)] combines static analysis with machine learning techniques for automatic detection
of vulnerabilities in mobile applications. Another distinct approximation is the design and
implement of a Multidimensional and Hierarchical Web Anomaly Detection System [Guan,
Li and Jiang (2019)].

1560 CMC, vol.64, no.3, pp.1555-1577, 2020

2.4 Related work
The comparison of Ware et al. [Ware and Fox (2008)] concludes that, of the total of nine
involved tools, only two are valid for J2EE web applications: Spotbugs and Fortify SCA.
The master thesis of Shrestha [Shrestha (2013)] studies the state of art of open source
static analysis tools. This study is focused on the research of C/C++ and Java based static
analyzers, which are open source tools. In particular, Shrestha work studies Spotbugs,
analyzes the results and compares it with Parasoft Jtest commercial tool. Spotbugs detects
a 20% of vulnerabilities and Jtest detects only a 0.05% of vulnerabilities in SAMATE
Juliet test suites. Spotbugs has a high number of false positives. One conclusion was that
commercial SAST tools should be having into account.
A study of three open source tools is accomplished also with SAMATE Java and C/C++
test cases [Goseva-Popstojanova and Perhinschi (2015)]. It concluded that three tools
missed 11% of Java vulnerabilities. Only one detected some vulnerabilities or combination
of two tools; 41% of C/C++ and 21% of Java vulnerabilities were detected by three tools.
The study is considered unrepresentative because it only computes three open source tools
and more open source and commercial tools need to be included in the study to make it
more representative. Besides, the study is performed against web vulnerability categories
without having into account OWASP Top Ten vulnerability categories.
NIST Static Analysis Tool Exposition’s (SATE). From 2008, there have been six SATE
different projects with diverse objectives. SATE V project proposes a methodology to
assess tool effectiveness. Others can use this methodology to determine which tools fit
their requirements [NIST (2018)].
With respect to benchmarking approaches, the work of Antunes et al. [Antunes and Vieira
(2015)] is a benchmarking approach to analyze the effectiveness of security analyzers tools
in Web services environments. This approach defined two concrete benchmarks for SQL
Injection vulnerability detection tools. The two benchmarks are used to evaluate and
compare several widely used tools, four penetration testers, three SAST tools, and one
anomaly detector. However, it could improve their representative with respect to security
vulnerabilities coverage for other security vulnerabilities besides SQLI.
Of particular interest is another work of Nunes et al. [Nunes, Medeiros, Fonseca et al.
(2018)] that addressed the problem of choosing adequate SAST tools for vulnerability
detection in web applications. They proposed an approach to design benchmarks for
evaluating such SATS tools considering different levels of criticality. Each scenario uses
different metrics to rank the tools. To evaluate the approach, they created a benchmark
for WordPress plugins and tested it with five free SASTs searching for XSS and SQLI
vulnerabilities in 134 WordPress plugins with real vulnerabilities, developed in PHP. The
experimental results showed that the best tool changes from one scenario to another and
depends on the class of vulnerabilities being detected. The results show that the metrics
could be improved to balance the weight of the true positives (TP) and false positives (FP)
in the computation of the metrics. However, it could improve their representative with
respect to security vulnerabilities coverage for others besides SQLI and XSS.
Some studies about how SAST tools combining is very interesting [Algaith, Nunes,
Fonseca et al. (2018); Nunes, Medeiros, Fonseca et al. (2019)]. These work combines

Benchmarking Approach to Compare Web Applications Static 1561

diverse SAST tools to improve the performance detection of security vulnerabilities in web
applications, having into account four development scenarios with different criticality
levels and constraints obtaining precise combining results of the tools according the
proposed metrics. As previously analyzed studies, it could be improved designing the used
benchmark with additional security vulnerabilities than SQLI and XSS.
The main conclusions of the related work examined are that the existing comparatives do
not include an adequate number of leading commercial tools and the benchmarks used
are not complete and representatives with respect to OWASP Top Ten project.

3 Benchmarking approach
An adequate test bench must comply with the properties and the considerations made in
the work [Antunes and Vieira (2015)]. Another premise is that the tools execution must
be under the same conditions. The new benchmark approach meets these properties, it is
credible, portable, representative, require minimum changes and easy to implement and
run [Bermejo (2020)].
The benchmark will be used to compare and rank seven SAST tools with minimum
changes in their configurations, five SAST commercial tools and two open source tools.
In a first phase true positive and false positive metrics will be obtained and in a second
phase other metrics will be calculated with the objective of rank the tools having into
account the different levels of criticality that the web applications can have.
According to Martin et al. [Martin and Barnum (2008)]: “a benchmark could also
motivate its use as a referential standard by community players such as OWASP, the
SANS (SysAdmin, Audit, Networking, and Securityand many others.”
The OWASP Top Ten benchmarking approach [Bermejo (2020)] covers the most
dangerous security vulnerabilities of web applications according to OWASP Top Ten
2013 and OWASP Top Ten 2017 projects and having into account statistics of security
vulnerabilities reported by several studies [Barabanov, Markov and Tsirlov (2018);
Sołtysik-Piorunkiewicz and Krysiak (2020)]. Tab. 1 shows the security vulnerabilities
included in the benchmarking approach selecting the more adequate test cases for the
main vulnerability categories of OWASP Top Ten 2013 and 2017 projects from
SAMATE Juliet benchmark. The result is a set of vulnerability categories (for example
injection) each one with a set of vulnerability types (for example SQL injection, LDAP
injection, etc.) with a number of test cases to test SAST tools behavior and performance.
Each test case is designed with a concrete vulnerability included in OWASP Top Ten
2013 and 2017 projects. The benchmark is easily portable as a java project. Also, it does
not require changes with any tool and finally the benchmark is representative according
to OWASP Top Ten 2013 and 2017 projects.

Table 1: Benchmarking approach for OWASP Top Ten [Bermejo 2020]
CWE Vulnerability categories and types by category TP test cases FP test cases
INJECTION
89 SQL_Injection 19 58
90 LDAP_Injection 11 17
566 Access_Through_SQL Primary 10 30

1562 CMC, vol.64, no.3, pp.1555-1577, 2020

78 Command_Injection 10 16
113 HTTP_Response_Splitting 32 88
643 Unsafe_Treatment_XPath Input 2 4
BROKEN AUTENTICATION AND SESSIONS
256 Plaintext_Storage_of Password 2 4
257 Storing_Password Rec._Format 2 4
259 Hard_Coded_Password 2 3
293 Using_Referer_Field_for Auth. 2 4
315 Plaintext_Storage_in_a Cookie 2 8
321 Hard_Coded_Cryptographic Key 2 4
523 Unprotected_Cred_Transport 2 4
547 Hardcoded_Security Constants 2 4
549 Missing_Password_Masking 2 3
603 Client_Side_Authentication 2 4
613 Insufficient_Session Exp. 2 2
614 Sensitive Cookie Without Secure 2 4
SENSITIVE DATA EXPOSURE
209 Information_Leak_Error 2 5
319 Plaintext_Tx_Sensitive_Info 2 8
489 Leftover_Debug_Code 2 4
497 Information_Leak_SystemData 2 2
598 Information_Leak QueryString 2 4
615 Info_Leak_By_Comment 2 4
BROKEN ACCESS CONTROL
23 Relative_Path_Traversal 11 18
36 Absolute_Path_Traversal 9 14
378 Creation_of_File_with Insec_Per 2 4
367 TOC_TOU 2 2
567 Unsynchronized_Shared_Data 1 1
SECURITY MISCONFIGURATION
328 Reversible_One_Way_Hash 2 4
330 Insufficiently_Random Values 2 2
336 Same_Seed_in_PRNG 2 3
759 Unsalted_One_Way_Hash 2 3
CROSS SITE SCRIPTING
80 XSS 11 15
81 XSS_Error_Message 13 23
83 XSS_Attribute 8 13
USING COMPONENTS WITH KNOWN VULNERABILITIES
327 Use_Broken_Crypto 2 4
338 Weak_PRNG 2 4
760 Predictable_Salt_One_Way Hash 2 4
CSRF
352 Cross_Site_Request_Forgery 7 20
OPEN REDIRECT
601 Open_Redirect_Servlet 11 17

Benchmarking Approach to Compare Web Applications Static 1563

Nº TEST
CASES 209 439

For each test case we have selected variants in flow complexity and input source to the
application. Each test case has a function called bad() (see Fig. 1) which has an input
source that is not validated (badsource) and a line in the code also not validated where the
vulnerability materializes (badsink). It also indicates the variation of code complexity,
flow variant and distinct ways of source inputs. Examples of inputs to the application are
console_readline, environment, fromDB, fromFile, GetCookieServlet,
GetParameterServlet, GetQueryStringServlet, connect_tcp, etc. The final composition of
OWASP Top Ten Benchmark comprises 209 bad functions in test cases for calculating
the true positive rate and 439 good functions test cases for calculating false positive rate.
The different number of bad and good functions is due to a test case that has one bad
function, but it can have several versions of good functions (from 1-4 depending of each
test case) with good source input, (goodsource), or good sink (goodsink).

Figure 1: XSS test case example with bad() function [Bermejo (2020)]

4 Methodology proposal to compare SAST tools
In this section we present a new methodology repeatable to compare and rank the SAST
tools.
• Select the OWASP Top Ten Benchmark designed.
• Select the SAST tools. In this concrete instantiation of the methodology we choice
seven commercial and open source SAST tools according to the analysis of the related

/* CWE: 80 Cross Site Scripting (XSS) * BadSource: getCookiesServlet Read data from the first cookie *
GoodSource: A hardcoded string * BadSink: Servlet querystring parameter not sanitized * Flow Variant: 01 Baseline
*/
package testcases CWE80_XSS;
import testcasesupport.*;
import javax.servlet.http.*;
import javax.servlet.http.*;
import java.util.logging.Logger;
public class CWE80_XSS__Servlet_getCookiesServlet_01 extends AbstractTestCaseServlet
{ public void bad(HttpServletRequest request, HttpServletResponse response) throws Throwable // uses badsource
and badsink
 { String data;
 Logger log_bad = Logger.getLogger("local-logger");
 Cookie cookieSources[] = request.getCookies(); // Source read parameter from cookie
 if (cookieSources != null) {
 data = cookieSources[0].getValue();
 } else { data = null;}
 if (data != null){ /* POTENTIAL FLAW: data not validated */
 response.getWriter().println("
bad() - Parameter name has value " + data);} //Sink
 }

1564 CMC, vol.64, no.3, pp.1555-1577, 2020

works in Section 2.4 and official lists of SAST tools.
• Run the selected SAST tools against the OWASP Top Ten Benchmark designed with
the default configuration for each tool.
• Select appropriate metrics to analyze results.
• Rank the SAST tools according the result metrics.
• Analysis, discussion and ranking of the results.

4.1 SAST selection
The next step is the selection of seven (7) commercial and open source static analysis
tools for source or executable code that can detect vulnerabilities in web applications
developed using the J2EE specification. SAST tools are selected according with J2EE,
the most used technology in web developing, the programming language used by J2EE,
Java, is one of the labeled as more secure [Long, Mohindra, Seacord et al. (2014)].
With the premises of the above comparatives and analyzing the availability of
commercial and open source tools are selected seven (7) meaning tools.
Selected tools:
• Fortify SCA. It supports 18 distinct languages, the most known OS platforms and
offers SaaS (Software as a service) and it detects more than 479 vulnerabilities.
• Checkmarx CxSAST. It supports Java, JSP, C#, and ASP, VB.NET, VB6, C++, PHP,
APEX, Javascript and VBscript languages.
• Klocwork Insight. It supports Java-J2EE, C#, C/C++ languages and Windows, UNIX,
Mac, Android platforms and eclipse plugin. Also, it detects a wide set of vulnerabilities.
• Xanitizer. It supports only Java language, but it gives the possibility to the developers
of sanitizing the inputs variables in the code.
• Coverity supports a great quantity of languages, as C/C++, Java, C#, Javascript,
HTML5, Typescript and others.
• FindSecurityBugs. (Open source). Plugins are available for SonarQube, Eclipse,
IntelliJ, Android Studio and NetBeans. Command line integration is available with Ant
and Maven.
• SoptBugs 2.0. (Open source). It supports only J2EE language and it can integrate in
Eclipse. It supports a reduced set of vulnerabilities.

4.2 Metrics to analyze the results
A selection of adequate metrics must be applied to the results of the performed test to
better understand the obtained measurements. The used metrics are widely accepted in
others works [Heckman and Williams (2011); Antunes and Vieira (2010, 2015); Díaz and
Bermejo (2013); Goseva-Popstojanova and Perhinschi (2015); Nunes, Medeiros, Fonseca
et al. (2018)].
The summary of metrics used is:
• %TP, number and percentage of true positives TP (correct detections).
• %FP, number and percentage of false positives FP (detecting no error).

Benchmarking Approach to Compare Web Applications Static 1565

• Number of vulnerability categories for which the tool is designed.
• Precision (1). Proportion of the total TP detections:
𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇) (1)
where TP (true positives) is the number of true vulnerabilities detected in the code and FP
(false positives) is the number of vulnerabilities detected that, really, do not exist.
• Recall (2). Ratio of detected vulnerabilities to the number that really exists in the code.
Recall is also referred to as the True Positive Rate:
𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (2)
where TP (true positives) is the number of true vulnerabilities detected in the code and FN
(false negatives) is the total number of existing vulnerabilities not detected in the code.
• Harmonic mean (3):

𝑛𝑛
� 1
𝑋𝑋1
+ 1
𝑋𝑋2

…+ 1
𝑋𝑋𝑛𝑛
�
 (3)

where n: number of variables and xn: value of variable n.
• F-measure (4) is harmonic mean of precision and recall:
(2 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
 (4)

• Fβ-Score (5) is a particular F-measure metric for giving more weight to recall or
precision. For example, a value for β of 0,5 gives more importance to precision metric,
however a value or 1,5 gives more relevance to recall precision:

(1 + 𝛽𝛽2) 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
((𝛽𝛽2 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛)+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)

 (5)

4.3 Ranking of SAST tools
In this section, the selected tools run against the OWASP Top Ten Benchmark approach
test cases. In each test execution, we obtain the true positive and false positive results for
each type of vulnerability. Next, the metrics selected in Section 4.2 are applied to obtain
the most appropriate measures to promote good interpretation of the results and to draw
the best conclusions.
In Tab. 2 the number of detected vulnerabilities (true positives) is accounted. The total of
analyzed test cases was 209.
The number of test cases in each type of vulnerability is variable inside a vulnerability
category. To normalize the result of detections in each vulnerability category (p.e.
injection) we calculate the percentage of detections for each type of vulnerability (SQLI,
XPATHI) included in a concrete category. Following the arithmetic mean of all types of
vulnerability, the detection percentage is calculated for each vulnerability category.
Finally, last file of Tab. 3 shows also the arithmetic mean of detection percentage for all
categories of vulnerabilities for each tool.

1566 CMC, vol.64, no.3, pp.1555-1577, 2020

Table 2: Vulnerabilities detection. True positive ratio

 Xanitizer Coverity Checkmarx Klocwork Fortify SpotBugs FsecBugs

Injection 66% 40,41% 76,6% 35% 83,3% 5,4% 63,5%
Broken auth 25% 0% 8,3% 8,3% 25% 0% 20,8%

Sensitive data 0% 0% 8,3% 16,6% 50% 0% 0%
Broken A.C 16,14% 49,72% 60% 71,9% 40% 3,6% 57,7%
Broken conf 75% 50% 25% 25% 50% 0% 50%

XSS 90,9% 51,5% 29,5% 61,5% 47,6% 3% 5,5%
Comp. Vuln. 66,3% 33,3% 33,3% 33,3% 66,6% 0% 66,6%

CSRF 0% 0% 100% 71,4% 100% 0% 14,2%
Open redirect 81,8% 81,8% 63,6% 81,8% 54,5% 27,2% 100%
TP percent 47% 34% 44,9% 45% 57,4% 4,3% 42%

Tab. 3 shows a summary of results in the total of 439 false positive test cases. There are
more test cases than in Tab. 2 because the bad function of each test case has several good
functions versions for each bad function.
With the purpose of normalizing the result of false positives results in each vulnerability
category (for example injection) we calculate the percentage of false positive alarms for each
type of vulnerability (SQLI, XPATHI, etc.) included in a concrete category. Following the
arithmetic mean of all types of vulnerability false positive percentage is calculated for each
vulnerability category. Finally, last file of Tab. 3 shows also the arithmetic mean of false
positive percentage for all categories of vulnerabilities for each tool.

Table 3: Vulnerabilities detection. False positive ratio
 Xanitizer Coverity Checkmarx Klocwork Fortify SpotBugs FsecBugs

Injection 56,9% 34,43% 58,7% 30% 75,7% 4,15% 40%

Broken Auth 33,3% 16,6% 8,3% 4,2% 20,8% 0% 8,3%

Sensitive data 16,6% 8,3% 8,3% 16,6% 33,3% 0% 0%

Broken A. C. 7,66% 29% 47% 65,8% 32,5% 1% 42,8%

Broken conf 25% 12,5% 25% 25% 50% 0% 25%

XSS 57,2% 30,7% 26,1% 44,7% 32,2% 0% 4,4%

Comp. Vuln. 16,6% 25% 33,3% 33,3% 50% 0% 16,6%

CSRF 0% 0% 85% 55% 90% 0% 0%

Open redirect 47,3% 21% 52,9% 70,5% 41,1% 0% 29,4%

FP percent 28,4% 19,7% 38,2% 38% 47,2% 0,6% 19%

Benchmarking Approach to Compare Web Applications Static 1567

4.4 OWASP Top Ten Benchmark results analysis
This section aims to obtain a classification of the tools according to the metrics applied to
the results obtained from the execution of the tools against OWASP Top Ten Benchmark.
Subsequently we have calculated the selected metrics: precision, recall, false positives
and F-measure. Recall metric is adequate for high critical applications where the
objective is to discover the highest number of vulnerabilities. Precision metric penalizes
true positive ratio having into account the false positive score. Usually a tool has a direct
proportionality between its true and false positives results. A good tool should break this
direct proportionality. F-measure is the best metric for selecting the tool that detects a
high number of vulnerabilities while reporting a low number of false positives for a best
effort (heightened-critical applications). The work of Antunes and Vieira [Antunes and
Vieira (2015b)] analyzes distinct metrics for different level of the importance of web
applications. The maximum score in all metrics is (1). Also, we calculate other two
derived metrics from F-measure, F1,5-Score and F0,5-Score metrics. F1.5 Score metric
normalize precision and recall metrics giving more weight to recall metric. This metric is
the most adequate metric for critical applications as it allows to reward the tools with
better recall. This makes tools with high recall to obtain much better results. F0,5 Score
metric favors precision and is adequate metric for non-critical applications where the time
of development can be quicker as it allows to reward the tools with better precision. This
makes tools with high precision to obtain much better results.
The results assessment of the execution of tools against the benchmark is accomplished
applying the following metrics of Section 4.2, false positive ratio (percent), Recall, Precision
and three ranking classifications: F-measure (best effort), F1,5-score and F0,5-score.
Metrics calculation:
• TP mean a vulnerability category is calculated obtaining the percent of TP for each
vulnerability type included in each vulnerability category and finally is calculated the
mean for each vulnerability category.
• Recall is a TP mean/100.
• FP mean a vulnerability category is calculated obtaining the percent of FP for each
vulnerability type included in each vulnerability category and finally is calculated the
mean for each vulnerability category.
F-measure, F1.5 Score and F0.5 Score are calculated according to their equations described
in the Section 4.2, Eqs. (4) and (5) respectively.
The classification order according to the F-measure score are showed in Tab. 4.

1568 CMC, vol.64, no.3, pp.1555-1577, 2020

Table 4: Assessment results computing and ranking the selected metrics by F-measure

Metric
Tool

TP
Mean

FP
Mean

Precision Recall F0.5
Score

F1.5
Score F-measure

Fortify 57,4 47,2 0,548 0,574 0,553 0,566 0,561

Xanitizer 47 28,4 0,623 0,470 0,584 0,508 0,535

Findsecbugs 42 19 0,689 0,420 0,610 0,477 0,521

Klocwork 45 38 0,542 0,450 0,520 0,474 0,491

Checkmarx 44,9 38,2 0,540 0,449 0,518 0,473 0,490

Coverity 34 19,7 0,633 0,340 0,539 0,396 0,446

Spotbugs 4,3 0,6 0,877 0,043 0,178 0,058 0,081

4.5 Analysis and discussion
In this section, we analyze and discuss about the research questions formulated in Section
1 replying them according to the method proposed with the corresponding process,
presenting the results.

• How is the SAST tools detection ratio with OWASP Top Ten security
vulnerabilities using the benchmarking approach?

Figure 2: True and false positive percentajes obatined by the SAST tools
According to the Tabs. 3 and 4. (see Section 4.3), the results of the tools are different in
terms of true and false positives detecting vulnerabilities suggest that using more than
one SAST tool in combination can improving the TP ratio.
Types of vulnerabilities included in injection category are detected by FindSecurityBugs
with a 63,5%, Xanitizer with a 66%, Checkmarx with a 76.6%, Fortify is the best tool
with 83,3%. Klocwork obtains a 35%. Spotbugs with a 5,4% obtains the worst result.

47
57.4

42 44.9 45
34

4.3

28.4

47.2

19

38.2 38

19.7

0.6
0

20

40

60

80

100

Xanitizer Fortify Findsecbugs Checkmarx Klocwork Coverity Spotbugs

SAST %TP - %FP in OWASP Top Ten Benchmark

%TP %FP

Benchmarking Approach to Compare Web Applications Static 1569

Analyzing the results, Sensitive Data Revealed and Broken Authentication and Sessions
are the vulnerability categories with worse TP ratio, lesser than 12%. Open Redirect is
the vulnerability category with the best TP ratio (70%).
All tools obtain different results for the same vulnerability categories in many cases and
six of the tools have similar TP ratio, between 34% and 58%, except for Spotbugs with a
4,3%. Fortify has the best TP ratio with 57,4% of detections, see Fig. 2.
• How is the SAST tools false alarms ratio with OWASP Top Ten security
vulnerabilities using the approach benchmarking?
Analyzing the results, all tools obtain different results for the same vulnerability
categories in many cases. Xanitizer, Klocwork, Checkmarx and Fortify obtain higher FP
ratio from 28% to 47,2%. Coverity and FindSecurityBugs obtain a more moderate FP
ratio (19%) and Spotbugs obtains a 0, 57% but it has a TP ratio of 4,3% of detections.
• How is the balance of true and false positives of the SAST tools?
According to Fig. 2, if it is considered the biggest difference between TP and FP ratios,
FindSecurityBugs, Xanitizer and Coverity obtain the best balance between True and
False positives, but it is necessary to analyze the precision metric that is calculated with
TP and FP metrics.

Figure 3: Metrics obtained by the SAST tools comparison

Fig. 3 shows a comparative graphic of the metrics results of all tools included in this
analysis. Normally the TP ratio has a direct proportionality relationship with FP ratio.
The best balance for this relationship in a concrete tool is having the higher TP ratio with
a lesser ratio of FP ratio breaking the direct proportionality relationship. Precision metric
normalizes TP and FP metrics penalizing the ratio of TP with the ratio of FP. The average
ratio of precision for all analyzed tools is 0.636 what it suggests that the used SAST tools
have a wide margin of improving. Spotbugs and FindSecurityBugs (open source tools)
have the best results for precision metric (0,877 and 0,689).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fortify Xanitizer Findsecbugs Klocwork Checkmarx Coverity Spotbugs

Tools metrics comparison

Recall Precision F-measure F-1,5 score F-0,5 score

1570 CMC, vol.64, no.3, pp.1555-1577, 2020

In the case of Soptbugs it has few false positives but also it obtains very few true
positives what it suggests that other metrics must have into account for characterize the
Spotbugs performance. The rest of the tools obtains a precision value that goes from
0.548 to 0,689. Xanitizer, Coverity and FindSecurityBugs have similar precision value
(0,623, 0,633 and 0,689).
The obtained values suggest that all examined tools, except for Spotbugs, must improve
having a smaller number of false positives and a better precision.
• How is the balance of true and false positives by vulnerability category?
Fig. 4 shows SAST average of TP and FP ratios by vulnerability category. The
vulnerability category with the best balance between TP and FP ratios are Open Redirect
(TP percent=70,1%, FP percent=37,46%). Using Components with Known
Vulnerabilities, XSS, and Broken Configurations have a balance between 23% of FP ratio
and 43% TP ratio. However, CSRF, Injection and especially Sensitive Data Revealed and
Broken Configuration have a worse result with respect to the balance between TP and FP
ratios, in the case of Sensitive Data Revealed the FP ratio is higher than TP ratio.

Figure 4: TP- FP average percent of SAST tools by vulnerability category

The TP and FP average ratios of all vulnerability categories obtained by all tools are 39%
and 27% respectively indicating that in general their balance between TP an FP ratios is
an important objective to improve by all tools in all vulnerability categories.
• How is the best tool for analyzing the security of web applications with different
levels of criticality?

Benchmarking Approach to Compare Web Applications Static 1571

We have built three classifications of the performance of the tools attending to F-measure,
F0,5-score and Recall metrics. Tab. 5 shows the ranking of SAST tools by F-measure,
Recall and F0,5-score metrics.
Recall metric must be having into account for those web applications classified as
business-critical, because it indicates the capacity of a SAST tool to discover the higher
number of vulnerabilities. This metric is the most adequate metric for critical applications
as it allows to find select tools with the best TP ratio. Fortify, Xanitizer and Klocwork are
the best tools ranked for critical applications. As alternative to recall, it can be used F1,5-
score metric as it allows to reward the tools with better recall than precision metric.

Table 5: Ranking the tools by F-Measure, F0,5-Score and Recall metrics

Tool F-measure Tool F0.5
Score Tool Recall

Fortify 0,561 Findsecbugs 0,610 Fortify 0,574

Xanitizer 0,535 Xanitizer 0,584 Xanitizer 0,470

Findsecbugs 0,521 Fortify 0,553 Klocwork 0,450

Klocwork 0,491 Coverity 0,539 Checkmarx 0,449

Checkmarx 0,490 Klocwork 0,520 Findsecbugs 0,420

Coverity 0,446 Checkmarx 0,518 Coverity 0,340

Spotbugs 0,081 Spotbugs 0,178 Spotbugs 0,043

However, we have selected F-measure metric (Tab. 5) for web applications considered
heightened-critical. This scenario represents the development and assessment of not
critical application or less important, which might have hard time to market constraints or
be on a tight budget. F-measure represents the best effort and it means that the objective
for less critical web applications is to discover a greater number of true positives having
the smallest number of false positives. Fortify, Xanitizer and FindSecurityBugs are
ranked as the best tools for heightened-critical applications.
For non-critical applications, this scenario represents the development and assessment of
applications that do not have criticality concerns and are not very exposed to attacks. F0,5-

score metric favors precision and is adequate metric for non-critical applications where
the time of development can be quicker as it allows to reward the tools with better
precision. This makes tools with high precision to obtain much better results. Tab. 5
indicates that FindSecurityBugs, Xanitizer and Fortify have the best score.
Having into account the three classifications together, the best tool is Fortify because it
appears in first position in two classifications and it appears in third position F0,5-score
classification. Xanitizer can be considered the second-best tool. It is classified in second
position in the three classifications. FindSecurityBugs appears in first position in F0,5-

score classification and it appears in third position F-measure classification, it is the third
best tool. Klocwork, Checkmarx and Coverity are in a second group of tools by this order
of performance.

1572 CMC, vol.64, no.3, pp.1555-1577, 2020

• Is the OWASP Top Ten Benchmark adequate to comparing SAST tools?
Evaluating commercial SAST tools for Web Applications is necessary. According to
benchmark properties (Section 3), the cost of the benchmark implementation is justified
with the results obtained with execution of the Web application SAST tools to be
compared and ranked using a new repeatable methodology. The benchmark reports
similar results when run more than once over the same tool and is easily portable to any
operative system with 4 Gigabytes of RAM memory.
This benchmark represents the state of the art of security vulnerabilities for web
applications based on the OWASP Top Ten project and is based on realistic code that
includes different source entries and code complexity. In addition, it allows you to
increase the number of categories and types of vulnerabilities to make them scalable.
Finally, the benchmark is easy to implement even using default tool settings obtaining
short run times with the SAST tools.

• How are the results of this SAST tools comparative using OWASP Top Ten
Benchmark compared with the results of comparatives using other benchmarks?
The results and analysis of this work can be compared with other assessments included in
related work. For example, one of them that it is based on OWAS Top Ten project.
OWASP Benchmark project that has built its own benchmark for OWASP Top Ten
vulnerability categories [OWASP Foundation (2020)]. It includes test cases written in
Java for some types of security vulnerabilities included in OWASP Top Ten, but we
think that it must be more representative including more types of vulnerabilities in each
category. It uses the metric SCORE=(TP-FP) to classify the tools executed against the
benchmark. It includes results for static and dynamic analysis tools. These results are
showed for open source tools, for example, the TP results for FindSecurityBugs is 96,8%
and the result in our comparative is 42% due to the inclusion of more type de
vulnerabilities in our benchmark that FindSecurityBugs not detect well as types included
in Sensitive data (0%), XSS (5%) and CSRF (14,2%). However, it can detect well all
vulnerabilities included in OWASP Benchmark project.
For Spotbugs the results are similar, 5,12% in Benchmark project and 4,3% in our
benchmark.
The names for commercial static tools are anonymous but their TP results are showed:
SAST-01=32%, SAST-02=56.1%, SAST-03=46,3%, SAST-04=61,45, SAST-05=47,7%
and SAST-06=85,02% and in our benchmark with commercial SAST tools that can be
different goes from 34% to 57%. For commercial tools the results the TP results are
similar except for SAST-06.

5 Conclusions
In this work an OWASP Top Ten vulnerabilities benchmarking approach is built for the
assessment of the security performance of SAST tools including a complete of different
vulnerability types of test cases in each vulnerability OWASP Top Ten category. The
assessment uses a new and repeatable methodology for comparing and ranking the
SAST tools.

Benchmarking Approach to Compare Web Applications Static 1573

The vulnerability detection percentages achieved by the analyzed tools indicate that the
tools have a wide margin of improving. The tools obtain a recall value between 0,34 and
0,57 except for Spotbugs that obtain a worse result. The number of false positives, high in
general must be reduced in a subsequent audit of the results. A comprehensive audit
process of the vulnerability results accomplished by an experienced user or team, with
security skills in the language used in the target code and specific security vulnerabilities
for each language, is always necessary.
The TP and FP average ratios of all vulnerability categories obtained by all tools are 39%
and 27% respectively, indicating that in general their balance between TP and FP ratios is
an important objective to improve by all tools in all vulnerability categories. When any of
the compared tools do not detect a real security vulnerability in a test case, they do not
give false positive warnings in the corrected version of the test case.
The assessment obtains a strict ranking of seven SAST tools according to adequate and
wide accepted metrics applied to the results of tools execution against benchmarking
approach. In addition, it ranks the tools having into account three distinct metrics for
different degrees of importance for web applications. Five leaders commercial SAST
tools have been included in the assessment and ranked showing their results executed
against the new benchmarking approach.
In general, the vulnerability detections in the categories of vulnerabilities related to
disclosure of information in the code and broken authentication and sessions are a point
of improving for all tools. The changing nature and evolution of web application
technologies implies also changes in the vulnerability categories over time. It requires a
future study to adapt the tools to discover the most frequent and important vulnerability
categories periodically. Therefore, OWASP Top Ten must be modified frequently.
The analysis confirms that the results of the tools are different in terms of true and false
positives detecting vulnerabilities. It suggests that using more than one SAST tool in
combination can improving the TP and FP ratios.
It is also important to consider the possibility of using a SAST for binary code very useful
for the cases that a company has not availability of web applications source code. Using of
these types of tools will permit to analyze third party software. Also, is essential to develop
new benchmarks for all categories of vulnerabilities and for mores languages to accomplish
new comparisons that aid companies and developers choose the best SAST tool.

6. Future work
We are currently working on studying how SAST tools and other types of tools such as
DAST, IAST, Real Analysis Self Protection (RASP) and HYBRID tools can be
integrated and combined into the different SSDLC phases of web applications, according
to their characteristics to complement between them and correlate their reports and get an
optimized whole result. We have the main objective of designing a methodology for
security analysis in the SSDLC of web applications as a function of the types of tools that
might be available to accomplish a new web application secure development.

Acknowledgement: The authors extend their appreciation to the Software Engineering

1574 CMC, vol.64, no.3, pp.1555-1577, 2020

and Security research group (SES) of Universidad Internacional de La Rioja.

Funding Statement: This work was supported in part by the Software Engineering and
Security research group (SES) of Universidad Internacional de La Rioja.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Alavi, S.; Bessler, N.; Massoth, M. (2018): A comparative evaluation of automated
vulnerability scans versus manual penetration tests on false-negative errors. Third
International Conference on Cyber-Technologies and Cyber-Systems. Iaria, Athens, Greece.
Algaith, A.; Nunes, P.; Fonseca, J.; Gashi, I.; Viera, M. (2018): Finding SQL injection
and cross site scripting vulnerabilities with diverse static analysis tools. 14th European
Dependable Computing Conference, IEEE Computer Society, Iasi, Romania.
Antunes, N.; Vieira, M. (2010): Benchmarking vulnerability detection tools for web services.
Proceeding of the IEEE International Conference on Web Service, Miami, Florida.
Antunes, N.; Vieira, M. (2015): Assessing and comparing vulnerability detection tools
for web services: benchmarking approach and examples. IEEE Transactions on Services
Computing, vol. 8, no. 2, pp. 269-283.
Antunes, N.; Vieira, M. (2015b): On the metrics for benchmarking vulnerability
detection tools. 45th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, Rio de Janeiro, Brazil.
Arouba, S. B.; Fernández-Villaverde, J. (2015): A comparison of programming languages
in macroeconomics. Journal of Economic Dynamics and Control, vol. 58, no. C, pp. 265-273.
Barabanov, A.; Markov, A.; Tsirlov, V. (2018): Statistics of software vulnerability
detection in certification testing. International Conference Information Technologies in
Business and Industry, IOP Publishing, Tomsk, Russia.
Bermejo, J. R. (2020): OWASP Top Ten-benchmark.
Bermejo, J.; Abad, C.; Bermejo, J. R.; Sicilia, M. A.; Sicilia, J. A. (2020): Systematic
approach to malware analysis. Applied Sciences, vol. 10, no. 4, pp. 1360.
Burato, E.; Ferrara, P.; Spoto, F. (2017). Security analysis of the OWASP benchmark
with Julia. Proceedings of the 1st Italian Conference on Security. DBLP Computer
Science Bibliography, Venice, Italy.
Cannings, R.; Dwivedi, H.; Lackey, Z. (2008): Hacking Exposed Web Applications:
Web 2.0 Security Secrets and Solutions. McGraw Hill, USA.
Cifuentes, C.; Scholz, B. (2008): Parfait-designing a scalable bug checker. SAW ’08:
Proceedings of the Workshop on Static Analysis. ACM, New York, USA.
Deshlahre, R., Tiwari, N. (2020): A review on benchmarking: comparing the static
analysis tools (SAST) in web security. Social Networking and Computational
Intelligence. Lecture Notes in Networks and Systems. Springer, Singapore.

Benchmarking Approach to Compare Web Applications Static 1575

Díaz, G.; Bermejo, J. R. (2013): Static analysis of source code security: assessment of
tools against SAMATE tests. Information and Software Technology, vol. 55, no. 8, pp.
1462-1476.
Duclervil, S. R.; Liou, J. C. (2019): The study of the effectiveness of the secure
software development life-cycle models in IT project management. 16th International
Conference on Information Technology-New Generations. Advances in Intelligent
Systems and Computing. Springer, Las Vegas, USA.
Felderer, M.; Büchler, M.; Johns, M.; Brucker, A. D.; Breu, R. et al. (2016): Security
testing: a survey. Advances in Computers. Elsevier, Cambridge, USA.
Goseva-Popstojanova, K.; Perhinschi, A. (2015): On the capability of static code
analysis to detect security vulnerabilities. Information and Software Technology, vol. 68,
no. 1, pp. 18-33.
Guan, J.; Li, J.; Jiang, Z. (2019): The design and implementation of a multidimensional
and hierarchical web anomaly detection system. Intelligent Automation and Soft
Computing, vol. 25, no. 1, pp. 131-141.
Heckman, S.; Williams, L. (2011): A systematic literature review of actionable alert
identification techniques for automated static code analysis. Information and Software
Technology, vol. 53, no. 4, pp. 363-387.
Homaei, H.; Shahriari, H. R. (2017): Seven years of software vulnerabilities: the ebb
and flow. IEEE Security & Privacy, vol. 15, no. 1, pp. 58-65.
http://suif.stanford.edu/~livshits/securibench/.
https://github.com/jrbermh/OWASP-Top-Ten-Benchmark.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-326.pdf.
https://www.owasp.org/index.php/Benchmark.
https://www.owasp.org/index.php/Top_10_2017-Top_10.
Huth, M.; Nielsen, F. (2019): Static analysis for proactive security. Computing and
Software Science. Lecture Notes in Computer Science. Springer, Cham, Switzerland.
Idrissi, S. E.; Berbiche, N.; Sbihi, M. (2017): Performance evaluation of web application
security scanners for prevention and protection against vulnerabilities. International
Journal of Applied Engineering Research, vol. 12, no. 21, pp. 11068-11076.
Krishnan, M.; Nadworny, N.; Bharill, N. (2008): Static analysis tools for security
checking in code at motorola. ACM SIGAda Ada Letters, vol. 28, no. 1, pp. 76-82.
Livshits, B. V.; Lam, M. S. (2005): Finding security vulnerabilities in java applications
with static analysis. Proceedings of the 14th Conference on USENIX Security Symposium.
USENIX Association, Berkeley, USA.
Loch, F. D.; Johns, M.; Hecker, M.; Mohr, M.; Snelting, G. (2020): Hybrid taint
analysis for java EE. Proceedings of the 35th Annual ACM Symposium on Applied
Computing. ACM, New York, USA.
Long, F.; Mohindra, D.; Seacord, R. C.; Sutherland, D. F.; Svoboda, D. (2014):
Java™ Coding Guidelines: 75 Recommendations for Reliable and Secure Programs.
Pearson Education, Boston, USA.
Martin, B.; Livshits, B.; Lam, M. S. (2005): Finding application errors and security

1576 CMC, vol.64, no.3, pp.1555-1577, 2020

flaws using PQL: a program query language. 20th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM, San Diego,
California, USA.
Martin, R. A.; Barnum, S. (2008): Creating the secure software testing target list.
Proceedings of the 4th Annual Workshop on Cyber Security and Information Intelligence
Research: Developing Strategies to Meet the Cyber Security and Information Intelligence
Challenges Ahead. ACM, New York, USA.
Moeller, J. P. (2016): Security for Web Developers: Using Javascript, HTML and CSS.
O’Reilly Media, Sebastopol, Russia.
Monga, M.; Paleari, R.; Passerini, E. (2009): A hybrid analysis framework for
detecting web application vulnerabilities. Proceedings of the 5th International Workshop
on Software Engineering for Secure Systems. IEEE Computer Society, Washington, USA.
Mongiovi, M.; Giannone, G.; Fornaia, A.; Pappalardo, G.; Tramontana, E. (2015):
Combining static and dynamic data flow analysis: a hybrid approach for detecting data
leaks in Java applications. Proceedings of the 30th Annual ACM Symposium on Applied
Computing. ACM, New York, USA.
Nanz, S.; Furia, C. A. (2015): A comparative study of programming languages in rosetta
code. Proceedings of the 37th International Conference on Software Engineering, vol. 1,
pp. 778-778.
Nguyen, T. T.; Maleehuan, P.; Aoki, T; Tomita, T.; Yamada, I. (2019): Reducing
false positives of static analysis for sei cert c coding standard. Proceedings of the Joint
7th International Workshop on Conducting Empirical Studies in Industry and 6th
International Workshop on Software Engineering Research and Industrial Practice.
IEEE Computer Society, Montreal, Canada.
NIST. (2018): NIST Special publication 500-326, SATE V report: ten years of static
analysis tool expositions.
Nunes, P.; Medeiros, I.; Fonseca, J. C.; Neves, N.; Correia, M. et al. (2018):
Benchmarking static analysis tools for web security. IEEE Transactions on Reliability,
vol. 67, no. 3, pp. 1159-1175.
Nunes, P.; Medeiros, I.; Fonseca, J. C.; Neves, N.; Correia, M. et al. (2019): An
empirical study on combining diverse static analysis tools for web security vulnerabilities
based on development scenarios. Computing, vol. 101, no. 2, pp. 161-185.
OWASP Foundation. (2017): OWASP top ten 2017.
OWASP Foundation. (2020): OWASP benchmark project.
Pashchenko, I.; Dashevskyi, S.; Massacci, F. (2017): Delta-bench: differential benchmark
for static analysis security testing tools. Proceedings of the 11th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. IEEE Computer Society,
Toronto, Canada.
Pistoia, M.; Tripp, O.; Lubensky, D. (2018): Combining static code analysis and
machine learning for automatic detection of security vulnerabilities in mobile apps.
Application Development and Design: Concepts, Methodologies, Tools, and Applications.
IGI Global, USA.

Benchmarking Approach to Compare Web Applications Static 1577

Scambray, J.; Liu, V.; Sima, C. (2010): Hacking Exposed Web Applications 3.
McGraw-Hill, USA.
Securebench Micro Project. (2009): Introduction to Stanford SecuriBench.
Sema, M. (2012): Hacking Web Apps Detecting and Preventing Web Application
Security Problems. Elsevier, Netherlands.
Shrestha, J. (2013): Static Program Analysis (Ph. D. Thesis). Uppsala University, Sweden.
Sipser, M. (2005): Introduction to the Theory of Computation. Second Edition. Thomson
Course Technology, Boston, USA.
Sołtysik-Piorunkiewicz, A.; Krysiak, M. (2020): The cyber threats analysis for web
applications security in industry 4.0. Towards Industry 4.0-Current Challenges in
Information Systems. Studies in Computational Intelligence. Springer, Cham, Switzerland.
Stuttard, D.; Pinto, M. (2008): The web application hacker’s handbook: finding and
exploiting security flaws. John Wiley & Sons, Indianapolis, USA.
Vicente, J.; Bermejo, J.; Bermejo, J. R.; Sicilia, J. A. (2019): The application of a new
secure software development life cycle (S-SDLC) with agile methodologies.
Electronics, vol. 8, no. 11, pp. 1218.
Ware, M.; Fox, C. (2008): Securing java code: heuristics and an evaluation of static
analysis tools. Proceedings of the workshop on Static analysis. ACM, New York, USA.
Yang, J.; Tan, L.; Peyton, J.; Duer, K. A. (2019): Towards better utilizing static
application security testing. Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice. IEEE Computer Society,
Montreal, Canada.

	Benchmarking Approach to Compare Web Applications Static Analysis Tools Detecting OWASP Top Ten Security Vulnerabilities
	Juan R. Bermejo Higuera0F , *, Javier Bermejo Higuera1, Juan A. Sicilia Montalvo1, Javier Cubo Villalba1 and Juan José Nombela Pérez1

	5 Conclusions
	Funding Statement: This work was supported in part by the Software Engineering and Security research group (SES) of Universidad Internacional de La Rioja.
	References

