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Abstract: To detect security vulnerabilities in a web application, the security analyst 
must choose the best performance Security Analysis Static Tool (SAST) in terms of 
discovering the greatest number of security vulnerabilities as possible. To compare static 
analysis tools for web applications, an adapted benchmark to the vulnerability categories 
included in the known standard Open Web Application Security Project (OWASP) Top 
Ten project is required. The information of the security effectiveness of a commercial 
static analysis tool is not usually a publicly accessible research and the state of the art on 
static security tool analyzers shows that the different design and implementation of those 
tools has different effectiveness rates in terms of security performance. Given the 
significant cost of commercial tools, this paper studies the performance of seven static 
tools using a new methodology proposal and a new benchmark designed for vulnerability 
categories included in the known standard OWASP Top Ten project. Thus, the 
practitioners will have more precise information to select the best tool using a benchmark 
adapted to the last versions of OWASP Top Ten project. The results of this work have 
been obtaining using widely acceptable metrics to classify them according to three 
different degree of web application criticality. 
 
Keywords: Web application, benchmark, security vulnerability, Security Analysis Static 
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1 Introduction 
Today companies and organizations use web applications to manage their data from any 
place, Intranets, Internet, etc. It can be assured that web applications have the gift of 
ubiquity, which implies at the same time they are more “attackable” and have to be 
security hardened. 
The results of several studies [Homaei and Shahriari (2017); Barabanov, Markov and Tsirlov 
(2018); Sołtysik-Piorunkiewicz and Krysiak (2020)] confirm that the web applications 
analyzed did not pass the OWASP Top Ten project [OWASP Foundation (2017)]. The 
security vulnerabilities, that web applications have in their code should force organizations to 
make a security analysis using the best SAST tools. SQL injection (SQLI) and Cross Site 
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Scripting (XSS) vulnerabilities continue to be the most frequent vulnerabilities. 
The task of manually scanning a web application with a high number of lines of code for 
security vulnerabilities can become an arduous and time-consuming task. It is necessary 
to study the state of art in automatic techniques such as source and binary code SAST 
tools. Some works confirm that one of the great advantages of this type of tool, as 
opposed to the purely manual analysis, is that they analyze all the code and the 
configurations of a web application achieving rates higher than 70% of security 
vulnerabilities [Díaz and Bermejo (2013); Antunes and Vieira (2015); Shrestha (2013); 
Nunes, Medeiros, Fonseca et al. (2018)]. However, the work of Nguyen et al. [Nguyen, 
Maleehuan, Aoki et al. (2019)] demonstrates that static tools have false positives 
(vulnerabilities detected that really does not exist) and false negatives (real vulnerabilities 
not found). Therefore, a final audit of a SAST tool report is required to confirm each 
security vulnerability. Other works have investigated another method that combine static 
and dynamic working together to take advantage of possible synergies to eliminate false 
positive and detect more true positives [Monga, Paleari and Passerini (2009); Nunes, 
Medeiros, Fonseca et al. (2019); Bermejo, Abad, Bermejo et al. (2020)]. However, a false 
negative is harder to find if the tool has not previously detected it causing a real danger. 
False positives are not really a danger and they could be fixed by the security analyst. 
There are some questions to investigate: 
• How is the SAST tools detection ratio with OWASP Top Ten security 
vulnerabilities using the approach benchmarking?  
• How is the SAST tools false alarm ratio with OWASP Top Ten security 
vulnerabilities using the approach benchmarking?  
• How is true positives/false positives balance of tools against different critical 
degree of the web applications? 
• How is the best tool for analyzing the security of web applications with different 
levels of criticality? 
• Is the OWASP Top Ten Benchmark adequate to comparing SAST tools? 
• How are the results of this SAST tools comparative using OWASP Top Ten 
Benchmark compared with the results of comparatives using other benchmarks? 
It is necessary to fix all security vulnerabilities discovered in the source code. The security 
points addressed in the work of Homaei et al. [Homaei and Shahriari (2017)] are related to 
the study of the most frequent and dangerous vulnerabilities that exist in the code. SAST 
tools need to be integrated into the Software Development Life Cycle (SSDLC) as the 
model described in the work of Vicente et al. [Vicente, Bermejo, Bermejo et al. (2019)] to 
detect security vulnerabilities early. Therefore, we consider that users and professionals of 
web applications should know which commercial and open source SAST tools have better 
effectiveness in terms of real detection rates (true positives), unreal detections (false 
positives) and vulnerabilities not found (false negatives).  
Next, it is described the main contributions of our work. The first goal of this study is to 
design a benchmarking approach that includes a specifics test bank with test cases for 
OWASP Top Ten security vulnerabilities [Bermejo (2020)].  
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The second main goal of this study is to compare the effectiveness of seven SAST tools 
selected for J2EE specification commercial and open source projects (Spotbugs, 
FindSecurityBugs, Klocwork-insight, Fortify SCA, Checkmarx, Coverity and Xanitizer). 
The tools are executed against the new benchmark adapted to OWASP Top Ten project 
to obtain the results of tools effectiveness. We apply well-known metrics to the execution 
results to obtain a strict rank of tools. Finally, the paper gives some practical 
recommendations on how to improve their effectiveness using the tools.  
Therefore, the contributions of this paper can be summarized as follows: 
• A general approach to design a benchmark for the evaluation of SAST capable of 
detecting software vulnerabilities, considering the OWASP Top Ten project vulnerability 
categories. 
• A concrete instantiation of the OWASP Top Ten Benchmark approach to demonstrate 
its feasibility, evaluating seven SAST tools by the detection of web vulnerabilities using 
appropriate criteria for benchmark instantiation.  
• An analysis of the results obtained by SAST tools using a defined comparative method to 
classify them according to different degree levels of web applications importance. 
• An analysis of results of leading commercial SAST allows the practitioners to choose 
the most appropriate tool to perform a security analysis. 
The outline of this paper is as follows: Section 2 reviews background in web technologies 
security focusing in vulnerabilities, SAST tools, security benchmarks and related work. In 
Section 3 the OWASP Top Ten benchmarking approach to evaluate SAST tools is 
presented. Section 4 describes the steps of the comparative methodology proposal designed 
by enumerating the steps followed to rank the SAST tools using the benchmark approach. 
Finally, Section 5 collects the conclusions and Section 6 sketches the future work. 

2 Background and related work 
This section presents the background on web technologies security, benchmarking initiatives, 
SAST, as well as a review and analysis of SAST results in previous comparatives.  

2.1 Web technologies security 
The growing development of web applications in the environment of organizations and 
companies connected through the Internet means that they have become a precious target of 
attack by those who wish to make a profit exploiting the vulnerabilities that these 
applications may have. Organizations, to this constant threat, must be aware that investment 
in web application security must be planned from the beginning, generally referred to start 
in the initial stages of application development. 
The most used languages today are some of the .NET technology such as C # or Visual 
Basic, there is also an increase in the popularity of Android and iOS, PHP and C/C ++. Java 
is still the most used language, as is also confirmed by different studies [Nanz and Furia 
(2015); Arouba and Fernández-Villaverde (2015)]. In other publications the vulnerabilities 
of the new generation of Web applications are discussed: Web 2.0 focusing on the types of 
attacks on applications that use Asynchronous Javascript and Xml (AJAX), HTML5 or 
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flash technologies [Cannings, Dwivedi and Lackey (2008); Scambray, Liu and Sima 
(2010); Sema (2012); Moeller (2016)]. 
We use the term “secure” to refer to languages automatically perform runtime checks to 
prevent the programs violate the limits of the allocated memory. The work by Long et al. 
[Long, Mohindra, Seacord et al. (2014)] confirm that Java is essentially a secure language.  
In order to build adequate benchmarks to test and select the best performance SAST tools, 
we need to investigate which security vulnerabilities are more frequent and dangerous in 
the web applications. Some studies confirm that the vulnerabilities more frequent and 
dangerous are the included in OWASP Top Ten project and that the web applications 
analyzed did not pass the OWASP Top Ten project [Homaei and Shahriari (2017); 
Barabanov, Markov and Tsirlov (2018); Sołtysik-Piorunkiewicz and Krysiak (2020)]. 

2.2 Benchmarks 
There have been some attempts for benchmarking static analysis tools for web 
applications: 
• Wavsep project is designed for a reduced set of vulnerabilities as XSS, Path Traversal, 
Remote File Inclusion (RFI), Open Redirect and SQLI, though with a lot of test cases for 
the vulnerabilities that it covers. It is included in the dynamic security tools’ comparisons 
[Alavi, Bessler and Massoth (2018); Idrissi, Berbiche and Sbihi (2017)]. 
• Securebench Micro project focuses in Java vulnerabilities not for J2EE. Diverse 
comparisons can be found using Securebench Micro [Livshits and Lam (2005); Martin, 
Livshits and Lam (2005)]. 
• Software Assurance Metrics and Tool Evaluation (SAMATE) project of National 
Institute of Standards and Technology (NIST) includes the test suite Juliet composed of 
13782 test cases that covers widely vulnerabilities. This benchmark has been used in 
several works [Krishnan, Nadworny and Bharill (2008); Cifuentes and Scholz (2012); 
Shrestha (2009); Díaz and Bermejo (2013); Goseva-Popstojanova and Perhinschi (2015); 
Nunes, Medeiros, Fonseca et al. (2018)].  
• OWASP benchmark project [OWASP Foundation (2020)]. The Benchmark is used in 
several works [Burato, Ferrara and Spoto (2017), Deshlahre and Tiwari (2020)]. It 
contains a set of test cases are fully runnable and exploitable. It includes test cases for 
XSS, SQLI, Xml Path Injection (XPATHI), command injection, path traversal and other 
sensitive data exposure vulnerabilities included in OWASP Top Ten 2013.  
• Delta-bench by Pashchenko et al. [Pashchenko, Dashevskyi and Massacci (2017)] is a 
benchmarking approach based in 108 security vulnerabilities as SQLI, XSS, LFI, Session 
fixation, Exec code or Information disclosure of Apache Tomcat. It was evaluated using 
six open source SAST tools and Fortify SCA commercial tool. 

2.3 SAST tools 
The study of Huth et al. [Huth and Nielson (2019)] confirms that the most desirable to 
avoid vulnerabilities in a web application code is prevention. Developers should have 
received training in web security programming to avoid making “mistakes” related to 
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programming vulnerabilities. Despite the very good training of security programmers, 
there will always be vulnerabilities in the code and, once the first version of the 
application or parts of it have been developed, it will be much more complicated to 
review the source code or perform a dynamic security analysis. Manual static analysis 
requires highly specialized staff and time. The work of Sttutard et al. [Stuttard and Pinto 
(2008)] concludes that the manual dynamic analysis in an attempt to perform an “ethical 
hacking” of the implemented application requires highly specialized personnel, it is very 
difficult to cover the entire attack surface of the application takes a long time to complete. 
To carry out an analysis of web application security, made by any method, you must 
cover the entire surface of attack covering all parts and application layers and using tools 
to automate security analysis as much as possible, combining various types of tools and 
achieve the better results [Felderer, Büchler, Johns et al. (2016)].  
One type of security analysis is white box analysis performed by SAST tools, which 
analyzes both source code and executable, as appropriate. SAST tools start with a 
problem because the act of determining if a program reaches its final state, or not. For 
further reading on the computational theory is recommended Sipser’s “Introduction to the 
Theory of Computation”, second Edition [Sipser (2005)]. Despite this problem, security 
code analysis using these tools are considered the most important security activity within 
a SSDLC [Vicente, Bermejo, Bermejo et al. (2019); Duclervil and Liou (2019)]. 
A final audit of a SAST tool report is required to eliminate the false positives and find the 
false negatives (much more complicated). Security analysts need to adequate the training 
to reconnaissance the security vulnerabilities in the code for a particular programming 
language [Yang, Tan, Peyton et al. (2019)]. SAST tools interfaces can be more or less 
“friendly” in terms of the error trace facilities to audit a security vulnerability. In the 
study of Díaz et al. [Díaz and Bermejo (2013)] tools such as Fortify SCA, Coverity, 
Checkmarx or Klocwork are good examples of tools that provide a very good information 
for eliminating false positives. 
One of the most important advantages of SAST tools is that they analyze the entire 
application covering all source inputs. The studies of Antunes et al. [Antunes and Vieira 
(2010, 2015)], compare SAST tools vs DAST tools against web services benchmarks and 
the SAST tools generally obtain better true positive ratios and worse false positive ratios. 
This gives an idea of the importance of static analysis including a manual audit of the 
results. However, the works of Antunes et al. [Antunes and Vieira (2010, 2015)] confirm 
that SAST and DAST can find distinct types of vulnerabilities and consequently is a good 
idea using the two types of analysis correlating their results improving true and false 
positive ratios. Other works combine SAST tools with IAST tools to runtime monitor 
attacks with the information of static analysis [Mongiovi, Giannone, Fornaia et al. (2015); 
Loch, Johns, Hecker et al. (2020)]. The work of Pistoia et al. [Pistoia, Tripp and Lubensky 
(2018)] combines static analysis with machine learning techniques for automatic detection 
of vulnerabilities in mobile applications. Another distinct approximation is the design and 
implement of a Multidimensional and Hierarchical Web Anomaly Detection System [Guan, 
Li and Jiang (2019)]. 
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2.4 Related work 
The comparison of Ware et al. [Ware and Fox (2008)] concludes that, of the total of nine 
involved tools, only two are valid for J2EE web applications: Spotbugs and Fortify SCA.  
The master thesis of Shrestha [Shrestha (2013)] studies the state of art of open source 
static analysis tools. This study is focused on the research of C/C++ and Java based static 
analyzers, which are open source tools. In particular, Shrestha work studies Spotbugs, 
analyzes the results and compares it with Parasoft Jtest commercial tool. Spotbugs detects 
a 20% of vulnerabilities and Jtest detects only a 0.05% of vulnerabilities in SAMATE 
Juliet test suites. Spotbugs has a high number of false positives. One conclusion was that 
commercial SAST tools should be having into account. 
A study of three open source tools is accomplished also with SAMATE Java and C/C++ 
test cases [Goseva-Popstojanova and Perhinschi (2015)]. It concluded that three tools 
missed 11% of Java vulnerabilities. Only one detected some vulnerabilities or combination 
of two tools; 41% of C/C++ and 21% of Java vulnerabilities were detected by three tools. 
The study is considered unrepresentative because it only computes three open source tools 
and more open source and commercial tools need to be included in the study to make it 
more representative. Besides, the study is performed against web vulnerability categories 
without having into account OWASP Top Ten vulnerability categories.  
NIST Static Analysis Tool Exposition’s (SATE). From 2008, there have been six SATE 
different projects with diverse objectives. SATE V project proposes a methodology to 
assess tool effectiveness. Others can use this methodology to determine which tools fit 
their requirements [NIST (2018)]. 
With respect to benchmarking approaches, the work of Antunes et al. [Antunes and Vieira 
(2015)] is a benchmarking approach to analyze the effectiveness of security analyzers tools 
in Web services environments. This approach defined two concrete benchmarks for SQL 
Injection vulnerability detection tools. The two benchmarks are used to evaluate and 
compare several widely used tools, four penetration testers, three SAST tools, and one 
anomaly detector. However, it could improve their representative with respect to security 
vulnerabilities coverage for other security vulnerabilities besides SQLI.  
Of particular interest is another work of Nunes et al. [Nunes, Medeiros, Fonseca et al. 
(2018)] that addressed the problem of choosing adequate SAST tools for vulnerability 
detection in web applications. They proposed an approach to design benchmarks for 
evaluating such SATS tools considering different levels of criticality. Each scenario uses 
different metrics to rank the tools. To evaluate the approach, they created a benchmark 
for WordPress plugins and tested it with five free SASTs searching for XSS and SQLI 
vulnerabilities in 134 WordPress plugins with real vulnerabilities, developed in PHP. The 
experimental results showed that the best tool changes from one scenario to another and 
depends on the class of vulnerabilities being detected. The results show that the metrics 
could be improved to balance the weight of the true positives (TP) and false positives (FP) 
in the computation of the metrics. However, it could improve their representative with 
respect to security vulnerabilities coverage for others besides SQLI and XSS.  
Some studies about how SAST tools combining is very interesting [Algaith, Nunes, 
Fonseca et al. (2018); Nunes, Medeiros, Fonseca et al. (2019)]. These work combines 
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diverse SAST tools to improve the performance detection of security vulnerabilities in web 
applications, having into account four development scenarios with different criticality 
levels and constraints obtaining precise combining results of the tools according the 
proposed metrics. As previously analyzed studies, it could be improved designing the used 
benchmark with additional security vulnerabilities than SQLI and XSS.  
The main conclusions of the related work examined are that the existing comparatives do 
not include an adequate number of leading commercial tools and the benchmarks used 
are not complete and representatives with respect to OWASP Top Ten project. 

3 Benchmarking approach 
An adequate test bench must comply with the properties and the considerations made in 
the work [Antunes and Vieira (2015)]. Another premise is that the tools execution must 
be under the same conditions. The new benchmark approach meets these properties, it is 
credible, portable, representative, require minimum changes and easy to implement and 
run [Bermejo (2020)]. 
The benchmark will be used to compare and rank seven SAST tools with minimum 
changes in their configurations, five SAST commercial tools and two open source tools. 
In a first phase true positive and false positive metrics will be obtained and in a second 
phase other metrics will be calculated with the objective of rank the tools having into 
account the different levels of criticality that the web applications can have. 
According to Martin et al. [Martin and Barnum (2008)]: “a benchmark could also 
motivate its use as a referential standard by community players such as OWASP, the 
SANS (SysAdmin, Audit, Networking, and Securityand many others.” 
The OWASP Top Ten benchmarking approach [Bermejo (2020)] covers the most 
dangerous security vulnerabilities of web applications according to OWASP Top Ten 
2013 and OWASP Top Ten 2017 projects and having into account statistics of security 
vulnerabilities reported by several studies [Barabanov, Markov and Tsirlov (2018); 
Sołtysik-Piorunkiewicz and Krysiak (2020)]. Tab. 1 shows the security vulnerabilities 
included in the benchmarking approach selecting the more adequate test cases for the 
main vulnerability categories of OWASP Top Ten 2013 and 2017 projects from 
SAMATE Juliet benchmark. The result is a set of vulnerability categories (for example 
injection) each one with a set of vulnerability types (for example SQL injection, LDAP 
injection, etc.) with a number of test cases to test SAST tools behavior and performance. 
Each test case is designed with a concrete vulnerability included in OWASP Top Ten 
2013 and 2017 projects. The benchmark is easily portable as a java project. Also, it does 
not require changes with any tool and finally the benchmark is representative according 
to OWASP Top Ten 2013 and 2017 projects. 

Table 1: Benchmarking approach for OWASP Top Ten [Bermejo 2020] 
CWE Vulnerability categories and types by category TP test cases FP test cases 
INJECTION  
89 SQL_Injection 19 58 
90 LDAP_Injection 11 17 
566 Access_Through_SQL Primary 10 30 
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78 Command_Injection 10 16 
113 HTTP_Response_Splitting 32 88 
643 Unsafe_Treatment_XPath Input 2 4 
BROKEN AUTENTICATION AND SESSIONS  
256 Plaintext_Storage_of Password 2 4 
257 Storing_Password Rec._Format 2 4 
259 Hard_Coded_Password 2 3 
293 Using_Referer_Field_for Auth. 2 4 
315 Plaintext_Storage_in_a Cookie 2 8 
321 Hard_Coded_Cryptographic Key 2 4 
523 Unprotected_Cred_Transport 2 4 
547 Hardcoded_Security Constants 2 4 
549 Missing_Password_Masking 2 3 
603 Client_Side_Authentication 2 4 
613 Insufficient_Session Exp. 2 2 
614 Sensitive Cookie Without Secure 2 4 
SENSITIVE DATA EXPOSURE  
209 Information_Leak_Error 2 5 
319 Plaintext_Tx_Sensitive_Info 2 8 
489 Leftover_Debug_Code 2 4 
497 Information_Leak_SystemData 2 2 
598 Information_Leak QueryString 2 4 
615 Info_Leak_By_Comment 2 4 
BROKEN ACCESS CONTROL  
23 Relative_Path_Traversal 11 18 
36 Absolute_Path_Traversal 9 14 
378 Creation_of_File_with Insec_Per 2 4 
367 TOC_TOU 2 2 
567 Unsynchronized_Shared_Data 1 1 
SECURITY MISCONFIGURATION  
328 Reversible_One_Way_Hash 2 4 
330 Insufficiently_Random Values 2 2 
336 Same_Seed_in_PRNG 2 3 
759 Unsalted_One_Way_Hash 2 3 
CROSS SITE SCRIPTING  
80 XSS 11 15 
81 XSS_Error_Message 13 23 
83 XSS_Attribute 8 13 
USING COMPONENTS WITH KNOWN VULNERABILITIES  
327 Use_Broken_Crypto 2 4 
338 Weak_PRNG 2 4 
760 Predictable_Salt_One_Way Hash 2 4 
CSRF  
352 Cross_Site_Request_Forgery 7 20 
OPEN REDIRECT  
601 Open_Redirect_Servlet 11 17 
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Nº TEST 
CASES  209 439 

For each test case we have selected variants in flow complexity and input source to the 
application.  Each test case has a function called bad() (see Fig. 1) which has an input 
source that is not validated (badsource) and a line in the code also not validated where the 
vulnerability materializes (badsink). It also indicates the variation of code complexity, 
flow variant and distinct ways of source inputs. Examples of inputs to the application are 
console_readline, environment, fromDB, fromFile, GetCookieServlet, 
GetParameterServlet, GetQueryStringServlet, connect_tcp, etc. The final composition of 
OWASP Top Ten Benchmark comprises 209 bad functions in test cases for calculating 
the true positive rate and 439 good functions test cases for calculating false positive rate. 
The different number of bad and good functions is due to a test case that has one bad 
function, but it can have several versions of good functions (from 1-4 depending of each 
test case) with good source input, (goodsource), or good sink (goodsink). 

 

 

 

 

 

 

 

 

 

 

Figure 1: XSS test case example with bad() function [Bermejo (2020)] 

4 Methodology proposal to compare SAST tools 
In this section we present a new methodology repeatable to compare and rank the SAST 
tools.  
• Select the OWASP Top Ten Benchmark designed.  
• Select the SAST tools. In this concrete instantiation of the methodology we choice 
seven commercial and open source SAST tools according to the analysis of the related 

/* CWE: 80 Cross Site Scripting (XSS) * BadSource: getCookiesServlet Read data from the first cookie * 
GoodSource: A hardcoded string * BadSink: Servlet querystring parameter not sanitized * Flow Variant: 01 Baseline 
*/ 
package testcases CWE80_XSS; 
import testcasesupport.*; 
import javax.servlet.http.*; 
import javax.servlet.http.*; 
import java.util.logging.Logger; 
public class CWE80_XSS__Servlet_getCookiesServlet_01 extends AbstractTestCaseServlet 
{   public void bad(HttpServletRequest request, HttpServletResponse response) throws Throwable // uses badsource 
and badsink  
    { String data; 
        Logger log_bad = Logger.getLogger("local-logger"); 
        Cookie cookieSources[] = request.getCookies(); // Source  read parameter from cookie  
        if (cookieSources != null)  {  
           data = cookieSources[0].getValue(); 
        } else { data = null;} 
        if (data != null){  /* POTENTIAL FLAW: data not validated */ 
            response.getWriter().println("<br>bad() - Parameter name has value " + data);} //Sink 
  } 
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works in Section 2.4 and official lists of SAST tools. 
• Run the selected SAST tools against the OWASP Top Ten Benchmark designed with 
the default configuration for each tool. 
• Select appropriate metrics to analyze results. 
• Rank the SAST tools according the result metrics. 
• Analysis, discussion and ranking of the results. 

4.1 SAST selection 
The next step is the selection of seven (7) commercial and open source static analysis 
tools for source or executable code that can detect vulnerabilities in web applications 
developed using the J2EE specification. SAST tools are selected according with J2EE, 
the most used technology in web developing, the programming language used by J2EE, 
Java, is one of the labeled as more secure [Long, Mohindra, Seacord et al. (2014)].  
With the premises of the above comparatives and analyzing the availability of 
commercial and open source tools are selected seven (7) meaning tools.  
Selected tools:  
• Fortify SCA. It supports 18 distinct languages, the most known OS platforms and 
offers SaaS (Software as a service) and it detects more than 479 vulnerabilities. 
• Checkmarx CxSAST. It supports Java, JSP, C#, and ASP, VB.NET, VB6, C++, PHP, 
APEX, Javascript and VBscript languages.  
• Klocwork Insight. It supports Java-J2EE, C#, C/C++ languages and Windows, UNIX, 
Mac, Android platforms and eclipse plugin. Also, it detects a wide set of vulnerabilities.  
• Xanitizer. It supports only Java language, but it gives the possibility to the developers 
of sanitizing the inputs variables in the code.  
• Coverity supports a great quantity of languages, as C/C++, Java, C#, Javascript, 
HTML5, Typescript and others.  
• FindSecurityBugs. (Open source). Plugins are available for SonarQube, Eclipse, 
IntelliJ, Android Studio and NetBeans. Command line integration is available with Ant 
and Maven.  
• SoptBugs 2.0. (Open source). It supports only J2EE language and it can integrate in 
Eclipse. It supports a reduced set of vulnerabilities.  

4.2 Metrics to analyze the results 
A selection of adequate metrics must be applied to the results of the performed test to 
better understand the obtained measurements. The used metrics are widely accepted in 
others works [Heckman and Williams (2011); Antunes and Vieira (2010, 2015); Díaz and 
Bermejo (2013); Goseva-Popstojanova and Perhinschi (2015); Nunes, Medeiros, Fonseca 
et al. (2018)]. 
The summary of metrics used is: 
• %TP, number and percentage of true positives TP (correct detections). 
• %FP, number and percentage of false positives FP (detecting no error). 
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• Number of vulnerability categories for which the tool is designed. 
• Precision (1). Proportion of the total TP detections:     
𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)                                                                                                             (1)     
where TP (true positives) is the number of true vulnerabilities detected in the code and FP 
(false positives) is the number of vulnerabilities detected that, really, do not exist. 
• Recall (2). Ratio of detected vulnerabilities to the number that really exists in the code. 
Recall is also referred to as the True Positive Rate:   
𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)                                                                                                             (2) 
where TP (true positives) is the number of true vulnerabilities detected in the code and FN 
(false negatives) is the total number of existing vulnerabilities not detected in the code.  
• Harmonic mean (3):  

𝑛𝑛
� 1
𝑋𝑋1
+ 1
𝑋𝑋2

…+ 1
𝑋𝑋𝑛𝑛
�
                                                                                                               (3) 

where n: number of variables and xn:  value of variable n. 
• F-measure (4) is harmonic mean of precision and recall: 
(2 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)
                                                                                                         (4) 

• Fβ-Score (5) is a particular F-measure metric for giving more weight to recall or 
precision. For example, a value for β of 0,5 gives more importance to precision metric, 
however a value or 1,5 gives more relevance to recall precision:   

(1 +  𝛽𝛽2) 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
((𝛽𝛽2 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛)+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟)

                                                                                 (5) 

4.3 Ranking of SAST tools 
In this section, the selected tools run against the OWASP Top Ten Benchmark approach 
test cases. In each test execution, we obtain the true positive and false positive results for 
each type of vulnerability. Next, the metrics selected in Section 4.2 are applied to obtain 
the most appropriate measures to promote good interpretation of the results and to draw 
the best conclusions. 
In Tab. 2 the number of detected vulnerabilities (true positives) is accounted. The total of 
analyzed test cases was 209.  
The number of test cases in each type of vulnerability is variable inside a vulnerability 
category. To normalize the result of detections in each vulnerability category (p.e. 
injection) we calculate the percentage of detections for each type of vulnerability (SQLI, 
XPATHI) included in a concrete category. Following the arithmetic mean of all types of 
vulnerability, the detection percentage is calculated for each vulnerability category. 
Finally, last file of Tab. 3 shows also the arithmetic mean of detection percentage for all 
categories of vulnerabilities for each tool. 
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Table 2: Vulnerabilities detection. True positive ratio 

 Xanitizer Coverity Checkmarx Klocwork Fortify SpotBugs FsecBugs 

Injection 66% 40,41% 76,6% 35% 83,3% 5,4% 63,5% 
Broken auth 25% 0% 8,3% 8,3% 25% 0% 20,8% 

Sensitive data 0% 0% 8,3% 16,6% 50% 0% 0% 
Broken A.C 16,14% 49,72% 60% 71,9% 40% 3,6% 57,7% 
Broken conf 75% 50% 25% 25% 50% 0% 50% 

XSS 90,9% 51,5% 29,5% 61,5% 47,6% 3% 5,5% 
Comp. Vuln. 66,3% 33,3% 33,3% 33,3% 66,6% 0% 66,6% 

CSRF 0% 0% 100% 71,4% 100% 0% 14,2% 
Open redirect 81,8% 81,8% 63,6% 81,8% 54,5% 27,2% 100% 
TP percent 47% 34% 44,9% 45% 57,4% 4,3% 42% 

Tab. 3 shows a summary of results in the total of 439 false positive test cases. There are 
more test cases than in Tab. 2 because the bad function of each test case has several good 
functions versions for each bad function.  
With the purpose of normalizing the result of false positives results in each vulnerability 
category (for example injection) we calculate the percentage of false positive alarms for each 
type of vulnerability (SQLI, XPATHI, etc.) included in a concrete category. Following the 
arithmetic mean of all types of vulnerability false positive percentage is calculated for each 
vulnerability category. Finally, last file of Tab. 3 shows also the arithmetic mean of false 
positive percentage for all categories of vulnerabilities for each tool. 

Table 3: Vulnerabilities detection. False positive ratio 
 Xanitizer Coverity Checkmarx Klocwork Fortify SpotBugs FsecBugs 

Injection 56,9% 34,43% 58,7% 30% 75,7% 4,15% 40% 

Broken Auth 33,3% 16,6% 8,3% 4,2% 20,8% 0% 8,3% 

Sensitive data 16,6% 8,3% 8,3% 16,6% 33,3% 0% 0% 

Broken A. C. 7,66% 29% 47% 65,8% 32,5% 1% 42,8% 

Broken conf 25% 12,5% 25% 25% 50% 0% 25% 

XSS 57,2% 30,7% 26,1% 44,7% 32,2% 0% 4,4% 

Comp. Vuln. 16,6% 25% 33,3% 33,3% 50% 0% 16,6% 

CSRF 0% 0% 85% 55% 90% 0% 0% 

Open redirect 47,3% 21% 52,9% 70,5% 41,1% 0% 29,4% 

FP percent 28,4% 19,7% 38,2% 38% 47,2% 0,6% 19% 
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4.4 OWASP Top Ten Benchmark results analysis 
This section aims to obtain a classification of the tools according to the metrics applied to 
the results obtained from the execution of the tools against OWASP Top Ten Benchmark.  
Subsequently we have calculated the selected metrics: precision, recall, false positives 
and F-measure. Recall metric is adequate for high critical applications where the 
objective is to discover the highest number of vulnerabilities. Precision metric penalizes 
true positive ratio having into account the false positive score. Usually a tool has a direct 
proportionality between its true and false positives results.  A good tool should break this 
direct proportionality. F-measure is the best metric for selecting the tool that detects a 
high number of vulnerabilities while reporting a low number of false positives for a best 
effort (heightened-critical applications). The work of Antunes and Vieira [Antunes and 
Vieira (2015b)] analyzes distinct metrics for different level of the importance of web 
applications. The maximum score in all metrics is (1). Also, we calculate other two 
derived metrics from F-measure, F1,5-Score and F0,5-Score metrics. F1.5 Score metric 
normalize precision and recall metrics giving more weight to recall metric.  This metric is 
the most adequate metric for critical applications as it allows to reward the tools with 
better recall. This makes tools with high recall to obtain much better results. F0,5 Score 
metric favors precision and is adequate metric for non-critical applications where the time 
of development can be quicker as it allows to reward the tools with better precision. This 
makes tools with high precision to obtain much better results.  
The results assessment of the execution of tools against the benchmark is accomplished 
applying the following metrics of Section 4.2, false positive ratio (percent), Recall, Precision 
and three ranking classifications: F-measure (best effort), F1,5-score and F0,5-score. 
Metrics calculation:  
• TP mean a vulnerability category is calculated obtaining the percent of TP for each 
vulnerability type included in each vulnerability category and finally is calculated the 
mean for each vulnerability category.  
• Recall is a TP mean/100. 
• FP mean a vulnerability category is calculated obtaining the percent of FP for each 
vulnerability type included in each vulnerability category and finally is calculated the 
mean for each vulnerability category.  
F-measure, F1.5 Score and F0.5 Score are calculated according to their equations described 
in the Section 4.2, Eqs. (4) and (5) respectively. 
The classification order according to the F-measure score are showed in Tab. 4. 
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Table 4: Assessment results computing and ranking the selected metrics by F-measure 

Metric 
Tool 

TP 
Mean 

FP 
Mean 

Precision Recall F0.5 
Score 

F1.5 
Score F-measure 

Fortify 57,4 47,2 0,548 0,574 0,553 0,566 0,561 

Xanitizer 47 28,4 0,623 0,470 0,584 0,508 0,535 

Findsecbugs 42 19 0,689 0,420 0,610 0,477 0,521 

Klocwork 45 38 0,542 0,450 0,520 0,474 0,491 

Checkmarx 44,9 38,2 0,540 0,449 0,518 0,473 0,490 

Coverity 34 19,7 0,633 0,340 0,539 0,396 0,446 

Spotbugs 4,3 0,6 0,877 0,043 0,178 0,058 0,081 

4.5 Analysis and discussion 
In this section, we analyze and discuss about the research questions formulated in Section 
1 replying them according to the method proposed with the corresponding process, 
presenting the results.  

• How is the SAST tools detection ratio with OWASP Top Ten security 
vulnerabilities using the benchmarking approach?  

 

Figure 2: True and false positive percentajes obatined by the SAST tools 
According to the Tabs. 3 and 4. (see Section 4.3), the results of the tools are different in 
terms of true and false positives detecting vulnerabilities suggest that using more than 
one SAST tool in combination can improving the TP ratio. 
Types of vulnerabilities included in injection category are detected by FindSecurityBugs 
with a 63,5%, Xanitizer with a 66%, Checkmarx with a 76.6%, Fortify is the best tool 
with 83,3%. Klocwork obtains a 35%. Spotbugs with a 5,4% obtains the worst result.  
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Analyzing the results, Sensitive Data Revealed and Broken Authentication and Sessions 
are the vulnerability categories with worse TP ratio, lesser than 12%. Open Redirect is 
the vulnerability category with the best TP ratio (70%). 
All tools obtain different results for the same vulnerability categories in many cases and 
six of the tools have similar TP ratio, between 34% and 58%, except for Spotbugs with a 
4,3%. Fortify has the best TP ratio with 57,4% of detections, see Fig. 2.  
• How is the SAST tools false alarms ratio with OWASP Top Ten security 
vulnerabilities using the approach benchmarking?  
Analyzing the results, all tools obtain different results for the same vulnerability 
categories in many cases. Xanitizer, Klocwork, Checkmarx and Fortify obtain higher FP 
ratio from 28% to 47,2%. Coverity and FindSecurityBugs obtain a more moderate FP 
ratio (19%) and Spotbugs obtains a 0, 57% but it has a TP ratio of 4,3% of detections.  
• How is the balance of true and false positives of the SAST tools?  
According to Fig. 2, if it is considered the biggest difference between TP and FP ratios, 
FindSecurityBugs, Xanitizer and Coverity obtain the best balance between True and 
False positives, but it is necessary to analyze the precision metric that is calculated with 
TP and FP metrics. 

 
Figure 3: Metrics obtained by the SAST tools comparison 

Fig. 3 shows a comparative graphic of the metrics results of all tools included in this 
analysis. Normally the TP ratio has a direct proportionality relationship with FP ratio. 
The best balance for this relationship in a concrete tool is having the higher TP ratio with 
a lesser ratio of FP ratio breaking the direct proportionality relationship. Precision metric 
normalizes TP and FP metrics penalizing the ratio of TP with the ratio of FP. The average 
ratio of precision for all analyzed tools is 0.636 what it suggests that the used SAST tools 
have a wide margin of improving. Spotbugs and FindSecurityBugs (open source tools) 
have the best results for precision metric (0,877 and 0,689). 
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In the case of Soptbugs it has few false positives but also it obtains very few true 
positives what it suggests that other metrics must have into account for characterize the 
Spotbugs performance. The rest of the tools obtains a precision value that goes from 
0.548 to 0,689. Xanitizer, Coverity and FindSecurityBugs have similar precision value 
(0,623, 0,633 and 0,689). 
The obtained values suggest that all examined tools, except for Spotbugs, must improve 
having a smaller number of false positives and a better precision. 
• How is the balance of true and false positives by vulnerability category?  
Fig. 4 shows SAST average of TP and FP ratios by vulnerability category. The 
vulnerability category with the best balance between TP and FP ratios are Open Redirect 
(TP percent=70,1%, FP percent=37,46%). Using Components with Known 
Vulnerabilities, XSS, and Broken Configurations have a balance between 23% of FP ratio 
and 43% TP ratio. However, CSRF, Injection and especially Sensitive Data Revealed and 
Broken Configuration have a worse result with respect to the balance between TP and FP 
ratios, in the case of Sensitive Data Revealed the FP ratio is higher than TP ratio. 

 
Figure 4: TP- FP average percent of SAST tools by vulnerability category 

The TP and FP average ratios of all vulnerability categories obtained by all tools are 39% 
and 27% respectively indicating that in general their balance between TP an FP ratios is 
an important objective to improve by all tools in all vulnerability categories. 
• How is the best tool for analyzing the security of web applications with different 
levels of criticality?  
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We have built three classifications of the performance of the tools attending to F-measure, 
F0,5-score and Recall metrics. Tab. 5 shows the ranking of SAST tools by F-measure, 
Recall and F0,5-score metrics.  
Recall metric must be having into account for those web applications classified as 
business-critical, because it indicates the capacity of a SAST tool to discover the higher 
number of vulnerabilities. This metric is the most adequate metric for critical applications 
as it allows to find select tools with the best TP ratio. Fortify, Xanitizer and Klocwork are 
the best tools ranked for critical applications. As alternative to recall, it can be used F1,5-
score metric as it allows to reward the tools with better recall than precision metric. 

Table 5: Ranking the tools by F-Measure, F0,5-Score and Recall metrics 

Tool F-measure Tool F0.5 
Score Tool Recall 

Fortify 0,561 Findsecbugs 0,610 Fortify 0,574 

Xanitizer 0,535 Xanitizer 0,584 Xanitizer 0,470 

Findsecbugs 0,521 Fortify 0,553 Klocwork 0,450 

Klocwork 0,491 Coverity 0,539 Checkmarx 0,449 

Checkmarx 0,490 Klocwork 0,520 Findsecbugs 0,420 

Coverity 0,446 Checkmarx 0,518 Coverity 0,340 

Spotbugs 0,081 Spotbugs 0,178 Spotbugs 0,043 

 
However, we have selected F-measure metric (Tab. 5) for web applications considered 
heightened-critical. This scenario represents the development and assessment of not 
critical application or less important, which might have hard time to market constraints or 
be on a tight budget. F-measure represents the best effort and it means that the objective 
for less critical web applications is to discover a greater number of true positives having 
the smallest number of false positives. Fortify, Xanitizer and FindSecurityBugs are 
ranked as the best tools for heightened-critical applications. 
For non-critical applications, this scenario represents the development and assessment of 
applications that do not have criticality concerns and are not very exposed to attacks. F0,5-

score metric favors precision and is adequate metric for non-critical applications where 
the time of development can be quicker as it allows to reward the tools with better 
precision. This makes tools with high precision to obtain much better results. Tab. 5 
indicates that FindSecurityBugs, Xanitizer and Fortify have the best score.  
Having into account the three classifications together, the best tool is Fortify because it 
appears in first position in two classifications and it appears in third position F0,5-score 
classification. Xanitizer can be considered the second-best tool. It is classified in second 
position in the three classifications. FindSecurityBugs appears in first position in F0,5-

score classification and it appears in third position F-measure classification, it is the third 
best tool. Klocwork, Checkmarx and Coverity are in a second group of tools by this order 
of performance.  
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• Is the OWASP Top Ten Benchmark adequate to comparing SAST tools? 
Evaluating commercial SAST tools for Web Applications is necessary. According to 
benchmark properties (Section 3), the cost of the benchmark implementation is justified 
with the results obtained with execution of the Web application SAST tools to be 
compared and ranked using a new repeatable methodology. The benchmark reports 
similar results when run more than once over the same tool and is easily portable to any 
operative system with 4 Gigabytes of RAM memory. 
This benchmark represents the state of the art of security vulnerabilities for web 
applications based on the OWASP Top Ten project and is based on realistic code that 
includes different source entries and code complexity. In addition, it allows you to 
increase the number of categories and types of vulnerabilities to make them scalable. 
Finally, the benchmark is easy to implement even using default tool settings obtaining 
short run times with the SAST tools. 

• How are the results of this SAST tools comparative using OWASP Top Ten 
Benchmark compared with the results of comparatives using other benchmarks? 
The results and analysis of this work can be compared with other assessments included in 
related work. For example, one of them that it is based on OWAS Top Ten project. 
OWASP Benchmark project that has built its own benchmark for OWASP Top Ten 
vulnerability categories [OWASP Foundation (2020)]. It includes test cases written in 
Java for some types of security vulnerabilities included in OWASP Top Ten, but we 
think that it must be more representative including more types of vulnerabilities in each 
category. It uses the metric SCORE=(TP-FP) to classify the tools executed against the 
benchmark. It includes results for static and dynamic analysis tools. These results are 
showed for open source tools, for example, the TP results for FindSecurityBugs is 96,8% 
and the result in our comparative is 42% due to the inclusion of more type de 
vulnerabilities in our benchmark that FindSecurityBugs not detect well as types included 
in Sensitive data (0%), XSS (5%) and CSRF (14,2%). However, it can detect well all 
vulnerabilities included in OWASP Benchmark project.  
For Spotbugs the results are similar, 5,12% in Benchmark project and 4,3% in our 
benchmark.  
The names for commercial static tools are anonymous but their TP results are showed: 
SAST-01=32%, SAST-02=56.1%, SAST-03=46,3%, SAST-04=61,45, SAST-05=47,7% 
and SAST-06=85,02% and in our benchmark with commercial SAST tools that can be 
different goes from 34% to 57%. For commercial tools the results the TP results are 
similar except for SAST-06. 

5 Conclusions 
In this work an OWASP Top Ten vulnerabilities benchmarking approach is built for the 
assessment of the security performance of SAST tools including a complete of different 
vulnerability types of test cases in each vulnerability OWASP Top Ten category. The 
assessment uses a new and repeatable methodology for comparing and ranking the 
SAST tools. 



 
  
 
Benchmarking Approach to Compare Web Applications Static                                    1573 

The vulnerability detection percentages achieved by the analyzed tools indicate that the 
tools have a wide margin of improving. The tools obtain a recall value between 0,34 and 
0,57 except for Spotbugs that obtain a worse result. The number of false positives, high in 
general must be reduced in a subsequent audit of the results. A comprehensive audit 
process of the vulnerability results accomplished by an experienced user or team, with 
security skills in the language used in the target code and specific security vulnerabilities 
for each language, is always necessary. 
The TP and FP average ratios of all vulnerability categories obtained by all tools are 39% 
and 27% respectively, indicating that in general their balance between TP and FP ratios is 
an important objective to improve by all tools in all vulnerability categories. When any of 
the compared tools do not detect a real security vulnerability in a test case, they do not 
give false positive warnings in the corrected version of the test case. 
The assessment obtains a strict ranking of seven SAST tools according to adequate and 
wide accepted metrics applied to the results of tools execution against benchmarking 
approach. In addition, it ranks the tools having into account three distinct metrics for 
different degrees of importance for web applications. Five leaders commercial SAST 
tools have been included in the assessment and ranked showing their results executed 
against the new benchmarking approach.  
In general, the vulnerability detections in the categories of vulnerabilities related to 
disclosure of information in the code and broken authentication and sessions are a point 
of improving for all tools. The changing nature and evolution of web application 
technologies implies also changes in the vulnerability categories over time. It requires a 
future study to adapt the tools to discover the most frequent and important vulnerability 
categories periodically. Therefore, OWASP Top Ten must be modified frequently. 
The analysis confirms that the results of the tools are different in terms of true and false 
positives detecting vulnerabilities. It suggests that using more than one SAST tool in 
combination can improving the TP and FP ratios. 
It is also important to consider the possibility of using a SAST for binary code very useful 
for the cases that a company has not availability of web applications source code. Using of 
these types of tools will permit to analyze third party software. Also, is essential to develop 
new benchmarks for all categories of vulnerabilities and for mores languages to accomplish 
new comparisons that aid companies and developers choose the best SAST tool. 

6. Future work 
We are currently working on studying how SAST tools and other types of tools such as 
DAST, IAST, Real Analysis Self Protection (RASP) and HYBRID tools can be 
integrated and combined into the different SSDLC phases of web applications, according 
to their characteristics to complement between them and correlate their reports and get an 
optimized whole result. We have the main objective of designing a methodology for 
security analysis in the SSDLC of web applications as a function of the types of tools that 
might be available to accomplish a new web application secure development. 
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