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Abstract: In this article, a new generalization of the inverse Lindley distribution is 
introduced based on Marshall-Olkin family of distributions. We call the new distribution, 
the generalized Marshall-Olkin inverse Lindley distribution which offers more flexibility 
for modeling lifetime data. The new distribution includes the inverse Lindley and the 
Marshall-Olkin inverse Lindley as special distributions. Essential properties of the 
generalized Marshall-Olkin inverse Lindley distribution are discussed and investigated 
including, quantile function, ordinary moments, incomplete moments, moments of 
residual and stochastic ordering. Maximum likelihood method of estimation is considered 
under complete, Type-I censoring and Type-II censoring. Maximum likelihood estimators 
as well as approximate confidence intervals of the population parameters are discussed. 
A comprehensive simulation study is done to assess the performance of estimates based 
on their biases and mean square errors. The notability of the generalized Marshall-Olkin 
inverse Lindley model is clarified by means of two real data sets. The results showed the 
fact that the generalized Marshall-Olkin inverse Lindley model can produce better fits 
than power Lindley, extended Lindley, alpha power transmuted Lindley, alpha power 
extended exponential and Lindley distributions. 
 
Keywords: Generalized Marshal-Olkin family, inverse Lindley distribution, maximum 
likelihood estimation. 

1 Introduction 
In the last decade, the general method of adding a shape parameter to expand a family of 
distributions was introduced by Marshall et al. [Marshall and Olkin (1997)]. This family 
is called the Marshall-Olkin (MO)-G class. The cumulative distribution function (cdf) 
and the probability density function (pdf) of the MO-G class are defined as follows  

( ) ( )( ) 1 ( ) ,MOF x W x W xα= −                                                                                       (1) 

 
 

1 Deanship of Scientific Research, King AbdulAziz University, Jeddah, 21589, Saudi Arabia. 
2 Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo, 11865, Egypt. 
3 Deanship of Information Technology, King AbdulAziz University, Jeddah, 21589, Saudi Arabia. 
* Corresponding Author: Mahmoud Elsehetry. Email: ma_sehetry@hotmail.com. 
Received: 03 April 2020; Accepted: 30 April 2020. 

mailto:ma_sehetry@hotmail.com


 
 
 
1506                                                                       CMC, vol.64, no.3, pp.1505-1526, 2020 

and, 

( ) ( ) 2
( ) 1 ( ) ,MOf x w x W xα α = −                                                                                 (2) 

where, 0,α > 1 ,α α= −  ( ) 1 ( )W x W x= −  is the survival function and ( )W x  is the 
baseline distribution. The parameterα  is known as a tilt parameter and interpreted α  in 
terms of the behavior of the hazard rate function (hrf) of X. This ratio is increasing in X 
for 1α ≥  and decreasing in X for (0,1)α ∈  (see Nanda et al. [Nanda and Das (2012)]). 
The generalization of the MO-G family proposed by Jayakumar et al. [Jayakumar and 
Mathew (2008)] through Lehmann alternative 1 approach by exponentiating the MO 
survival function (sf) as 

( )( )
( )( )

( ) .
1

b

GMO

W x
F x

W x

α

α

 
 =
−  

                                                                                           (3) 

where 0,b >  is an additional shape parameter. When 1,b = ( ) ( ).GMO MOF x F x=  The pdf 
corresponding to Eq. (3) is given by 

( )
( )( )

1

1

( )
( ) .

1

bb
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b W x w x
f x

W x

α

α

−

+

  =
 − 

                                                                                    (4) 

For more information about Marshall-Olkin family see Barakat et al. [Barakat, Ghitany 
and AL-Hussaini (2009); Barreto-Souza, Lemonte and Cordeiro (2013); Cordeiro, 
Lemonte and Ortega (2014); Alizadeh, Tahir, Cordeiro et al. (2015); Handique, 
Chakraborty and Hamedani (2017)]. 
Recently, one parameter Lindley distribution has attracted the researchers for its use in 
modeling lifetime data. A mixture of exponentialtions ibudistr (2, )θ   ammagand  ( )θ   

with mixing proportion { }1
θ

θ+  in the context of Fiducial and Bayesian statistics. It has 

the following pdf and cdf 

( )
2

( ; ) 1 , , 0,
1

yw y y e yθθθ θ
θ

−= + >
+

                                                               (5) 

and, 

( ; ) 1 1 , , 0.
1

yW y y e yθθθ θ
θ

− = − + > 
+ 

                                                         (6) 

The Lindley distribution and its applications have been discussed by Ghitany et al. 
[Ghitany, Atieh and Nadadrajah (2008)] and showed that the Lindley distribution is a better 
fit than the exponential distribution based on the waiting time at the bank for service.  
Sharma et al. [Sharma, Singh, Singh et al. (2015)] proposed the inverse Lindley (IL) 
distribution by using the transformation 1 ,X Y=  where Y has the pdf in Eq. (5) and cdf 
in Eq. (6), with the following pdf 
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2

3

1( ; ) , , 0.
1

xxw x e x
x

θθθ θ
θ

−+ = > +  
                                                                  (7) 

The cdf related to Eq. (7) is as follows 

1( ; ) 1 , , 0.
1

xW x e x
x

θθθ θ
θ

− = + > + 
                                                                 (8) 

Sharma et al. [Sharma, Singh, Singh et al. (2015)] mentioned that the IL distribution has 
the upside-down bathtub-shaped hrf. They discussed the estimation of stress strength 
reliability using classical and Bayesian approaches. Sharma et al. [Sharma, Singh, Singh 
et al. (2016)], introduced another two-parameter IL distribution called the generalized IL 
distribution as a new statistical inverse model with upside-down bathtub survival data. 
The power IL distribution has been introduced by Barco et al. [Barco, Mazucheli and 
Janeiro (2017)]. An extension of the inverse power Lindley distribution using the MO-G 
family has been introduced and discussed by Hibatullah et al. [Hibatullah, Widyaningsih 
and Abdullah (2018)]. Exponentiated inverse power Lindley distribution has been 
proposed by Jan et al. [Jan, Jan and Ahmad (2018)].   
In this article, we provide a new three-parameter model as an interesting extension for the 
IL distribution. We are motivated to study the generalized Marshall-Olkin inverse 
Lindley (GMOIL) distribution because (i) it includes the Marshall-Olkin inverse Lindley 
(MOIL) and the IL as sub-models; (ii) it gives more flexibility to model various types of 
data (iii) it outperforms some lifetime distributions in regard to two real data examples. 
This paper can be sorted as follows. Section 2 gives the structure of the pdf, cdf and hrf 
of the GMOIL distribution. Main properties of the GMOIL model appear in Section 3. 
Estimation of the population parameters are derived in Section 4 based on complete, 
Types I and II censored sampling schemes. Simulation study is carried out to illustrate 
theoretical results in Section 5. Section 6 provides application to real data and the article 
ends with concluding remarks. 

2 Generalized marshel olkin inverse lindley distribution 
In this section, the GMOIL distribution with parameters α, b and θ are proposed based on 
pdf in Eq. (3). The GMOIL distribution is specified according to the following definition. 
Definition: Let X be a random variable having pdf in Eq. (7) and cdf in Eq. (8), then the 
random variable X is said to follow the GMOIL distribution with the following pdf and cdf 

112

3

1 1 1( ; ) 1 1 1 1 1 ,
1 1 1

bb
b x x xxf x b e e e

x x x

θ θ θθ θ θκ α α
θ θ θ

− −−− − −    +     = − + − − +         + + +          
(9) 

and, 

1 1( ; ) 1 1 1 1 1 1 ,
1 1

b b

x xF x e e
x x

θ θθ θκ α α
θ θ

−
− −          = − − + − − +        + +           

                 (10) 

where, ( , b, )κ α θ= is a set of parameters.  
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For 1b = , the GMOIL distribution reduces to MOIL distribution. 
For 1b α= = , the GMOIL distribution reduces to IL (see Ghitany et al. [Ghitany, Atieh 
and Nadadrajah (2008)]). 
The sf and hrf of the GMOIL distribution are respectively, given by 

1 1( ; ) 1 1 1 1 1 1 ,
1 1

b b

x xF x e e
x x

θ θθ θκ α α
θ θ

−
− −          = − − + − − +        + +           

          (11) 

and, 

[ [
112

3

1 1 1( ; ) 1 1 1 1 1 .
1 1 1

bb

x x xb xh x e e e
x x x

θ θ θαθ θ θκ α
θ θ θ

− −−− − −    +   = − + − − +       + + +           
 (12) 

Plots of the pdf and hrf of the GMOIL distribution are displayed in Fig. 1, for different 
values of parameters. As seen from Fig. 1, the shapes of the pdf take different forms. 
Also, it is clear that the shapes of the hrf are decreasing, increasing and up-side down 
shaped at some selected values of parameters.  

  

Figure 1: The pdf and hrf of the GMOIL model at selected values of parameters 

3 Main properties 
In this section, we obtain some important statistical properties of the GMOIL distribution 
such as quantile function, ordinary and incomplete moments, moment generating 
function, moments of the residual and reversed residual lives and stochastic ordering.  

3.1 Quantile function 
Quantiles are essential for estimation and simulation. The quantile function, say 

1( ) ( )Q u F u−= , where (0,1)u ∈ , is obtained by inverting Eq. (10) as follows 
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 (13)    

which yields;  
1

( )
1

1 (1 )1 .
1 ( ) (1 )

b
Q u

b

ue
Q u u

θθ α α
θ α α

−  − −
+ = +  + −



                                                                        

(14)    

Multiply both sides by (1 )(1 )e θθ − ++ , then we have the Lambert equation 

[ ( ){ }( 1 ) 1 1(1 )( )1 ( ( ))] (1 ) (1 ) (1 ) .Q u b bQ u e e u u
θ θ

θθ θ θ α α α α
− + +

− +− + + = − + − − + −
        (15) 

Hence, we have the negative Lambert W function of the real argument 

( ){ }1 1(1 )(1 ) (1 ) (1 ) ,b be u uθθ α α α α− +− + − − + −
                                                              (16) 

i.e., 

( ){ }
1

1 1(1 )
1

1 1( ) 1 (1 ) (1 ) (1 ) ,b bQ u W e u uθθ α α α α
θ θ

−
− +

−
  = − − − − + − − + −    

             (17) 

where (0,1)u ∈ , and 1(.)W −  is the negative Lambert W function. 

3.2 Moments and incomplete moments 
The ths  moment about zero for the GMOIL distribution is derived. To obtain the ths  
moment, firstly explicit expression for the pdf in Eq. (9) is obtained. Since, the binomial 
expansion, for real non-integer value of m, is given by 

0

( )(1 ) , 1, 0.
( ) !

j
m

j

m j yy y m
m j

∞
−

=

Γ +
− = < >

Γ∑                                                              (18) 

Then by employ Eq. (18) in Eq. (9), then 
12

3
0

( 1 ) 1 1( ; ) 1 1 .
1 ! ( 1) 1

b jb j
x x

j

b b j xf x e e
j b x x

θ θα θ α θκ
θ θ

+ −− −∞

=

 Γ + + +   = − +    + Γ + +    
∑                 (19) 

Apply the generalized binomial expansion, in Eq. (19) 

( )
( 1)2

3
, 0

1 ( 1 ) 1 1( ; ) 1 1 .
1 ! ( 1) 1

iib j
i x

i j

b j b b j xf x e
i j b x x

θα θ α θκ
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=

+ −  Γ + + +   = − +     + Γ + +    
∑   (20) 

Again, using the binomial expansion in Eq. (20) 
( 1)

, , 3
, 0 0

1( ; ) ,
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x

i j m m
i j m

xf x e
x

θ

κ
− +∞

+
= =

+ = Ε  
 

∑ ∑                                                                            (21) 

where, 
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2
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Hence, the ths moment of the GMOIL distribution is obtained as follows 
( 1) ( 1)

3 2
, ,

, 0 0 0 0

,
i ii

s m s mx x
s i j m

i j m
x e dx x e dx

θ θ
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− − − −

= =
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∑ ∑ ∫ ∫                                         (22) 

which leads to  

, , 2 1
, 0 0

( 2) ( 1) .
(( 1) ) (( 1) )

i

s i j m m s m s
i j m

m s m s
i i

µ
θ θ

∞

− + − +
= =

 Γ − + Γ − +′ = Ε + 
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∑ ∑                                                      (23) 

The ths central moment ( sµ ) of X is given by 

1 1
0

( ) ( 1) ( ) .
s

s i i
s s i

i

s
E X

i
µ µ µ µ −

=

 ′ ′ ′= − = −  
 

∑                                                                         (24) 

Recall the Taylor’s series expansion of the function ,txe  that is 
0

( ) ,
!

s
tx

s

txe
s

∞

=

=∑  so the 

moment generating function of the GMOIL distribution for |t|<1, is given by 

, , 2 1
, , 0 0

( 2) ( 1)( ) .
! (( 1) ) (( 1) )

si

x i j m m s m s
i j s m

t m s m sM t
s i iθ θ

∞

− + − +
= =

 Γ − + Γ − +
= Ε + 

+ + 
∑ ∑                                         (25) 

Numerical values of the first four-moments, variance ( 2σ ), skewness (SW) and kurtosis 
(KU) of the GMOIL distribution are displayed in Tab. 1. Some choice values of b and α  
are selected as follows (1) ( 1.5, 4bα = = ), (2) ( 1.5, 6bα = = ), (3) ( 2, 4bα = = ), (4) 
( 2, 6bα = = ), (5) ( 0.5, 4bα = = ), (6) ( 0.5, 6bα = = ) for 1.θ =    

Table 1: First four-moments, 2σ , SK and KU of X for some choices of parameters values 

sµ′  (1) (2) (3) (4) (5) (6) 

1µ′  0.546 0.423 0.644 0.488 0.327 0.273 

2µ′  0.462 0.235 0.688 0.327 0.134 0.086 

3µ′  0.787 0.18 1.609 0.319 0.079 0.032 

4µ′  74.781 0.211 234.259 0.506 0.985 0.015 
2σ  0.164 0.056 0.273 0.089 0.028 0.011 

SW 5.357 2.57 5.7 2.768 3.753 1.77 
KU 2740 20.223 3102 22.875 1233 11.313 

We conclude from Tab. 1 that the values of the 1µ′  and 2σ of the GMOIL distribution get 
larger as the values of α increase for fixed value of b. Also, the distribution can be right 
skewed and leptokurtic. 
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Moreover, the ths   incomplete moment, say ( )s tη  is defined by 

( ) ? ) .s
s

t

t x f x dxη
−∞

= ∫                                                                                                       (26) 

Hence, the ths  moment of the GMOIL distribution is derived by substituting Eq. (21) in Eq. 
(26) as follows 

( )
1 1

, , 2 1
, 0 0

( 2,( 1) ) ( 1,( 1) ) ,
(( 1) ) (( 1) )

i

i j m m s m s
i

s
j m

m s i t m s i tt
i i

θ θη
θ θ

− −∞

− + − +
= =

 Γ − + + Γ − + +
= Ε + 

+ + 
∑ ∑                (27)                                                                 

where 1( , ) k k

t

k t x e dx
∞

− −Γ = ∫ is the upper incomplete gamma function. Bonferroni and 

Lorenz curves measures of in-equality are widely used in various fields such as survival 
analysis, demography and insurance. These measures are the main applications of the first 
incomplete moment.  

3.3 Residual and reversed residual life functions  
Here, the thk moment of the residual lifetime (MRL) of a random variable X is defined as 
follows 

1( ) ( ) ( ) .
( )

k
k

t

t x t f x dx
F t

ϖ
∞

= −∫                                                                                   (28) 

Employing the binomial expansion and Eq. (21) in Eq. (28), then the thk  MRL of the 
GMOIL distribution is derived as follows 

( 1)

, , 3
0 , 0 0

1( ) ( 1) .
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1 ik i

k r k r r x
k i j m m

r i j m t

k xt t x e dx
rF t x
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ϖ
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− −
+

= = =

  + = Ε −    
  

∑ ∑ ∑ ∫                          (29)                                                                  

After simplification, the thk MRL of the GMOIL distribution is given by 

[ ]
( )

[ ]
( ), , 2 1

0 , 0 0

2,(( 1) )) 1,(( 1) ))
( ) .

( ) ( 1) ( 1)
1 k i

k i j m k m r m r
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m r i t m r i t
t
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γ θ γ θ
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 − + + − + +
 = Ε +
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∑ ∑ ∑ (30) 

where ( 1)k r k r
k

k
t

r
φ − − 

= −  
 

 and (., )tγ  is the lower incomplete gamma function. The 

mean residual life plays an important tool in different areas like; life insurance, industrial 
reliability, biomedical science, and demography. So, the mean residual life of the GMOIL 
distribution is obtained by substituting k=1 in Eq. (30). 
On the other hand, the thk  moment of reversed residual life (RRL) of a random variable X 
is defined as follows 

0

1( ) ( ) ( ) .
( )

t
k

k t x t f x dx
F t

υ = −∫                                                                                    (31) 



 
 
 
1512                                                                       CMC, vol.64, no.3, pp.1505-1526, 2020 

Again, we employ the binomial expansion and pdf in Eq. (21) in Eq. (31), then the 
thk moment of RRL of the GMOIL will be 

[ ]
( )

[ ]
( ), , 2 1

0 , 0 0

2,(( 1) )) 1,(( 1) ))
( ) .

( ) ( 1) ( 1)
1 k i

k i j m k m r m r
r i j m

m r i t m r i t
t

F t i i

θ θ
υ φ

θ θ

∞

− + − +
= = =

 Γ − + + Γ − + +
 = Ε +

+ +  
∑ ∑ ∑ (32) 

For k=1 in Eq. (32), we obtain the mean of RRL or the mean waiting time of the GMOIL 
distribution, which represents the waiting time elapsed since the failure of an item on 
condition that this failure had occurred. 

3.4 Stochastic ordering 
Let X and Y are independent random variables with cdfs FX and FY respectively, then 
according to Shaked et al. [Shaked and Shanthikumar (1994)], X is said to be less than Y if 
the following ordering holds; 
Stochastic order (X sr≤   Y) if FX (x).x) for all x( YF ≥    

Likelihood ratio order (X.xis decreasing in  ( ) ( )X Yf x f x Y) if lr≤    

Hazard rate order (X hr≤   Y) if hX (x).x) for all x( Yh ≥    

Mean residual life order (X.xfor all  )x( Ym ≥ )x( Xm) if Y mrl≤    
We have the following chain of implications among the various partial orderings 
mentioned above: 

lr hr mrl

sr

X Y X Y X Y

X Y

≤ ⇒ ≤ ⇒ ≤
⇓
≤

 

Theorem: Let X ~ 1 1 1GMOIL( , , )α β θ  Y ~ 2 2 2GMOIL( , , )α β θ  if 1 2 1 2,b bα α> > and 

1 2θ θ θ= = , then lrX Y≤ , hrX Y≤ , mrlX Y≤ , and srX Y≤ . 

Proof: It is sufficient to show ( ) ( )X Yf x f x  is a decreasing function of X; the likelihood 
ratio is  
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where, 11 1 .
1

xD e
x

θθ
θ
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 Therefore, 
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where, 
2

3

(1 ) .
(1 )

xdD x e
dx x

θθ
θ

− − +
=  + 

 Thus, ( ) ( )X Yf x f x  is decreasing in x and hence  

hrX Y≤ . Similarly, we can conclude for lrX Y≤ , mrlX Y≤   , and. srX Y≤    
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4 Parameter estimation 
In view of the cost and time constraints, censoring is used in the statistical analysis of 
reliability characteristics for a system or device even with a loss in efficiency. There are 
several types of censoring schemes which are employed in life-testing and reliability studies. 
Two types of censoring are generally recognized, Type-I censoring (TIC) and Type-II 
censoring (TIIC). In TIC scheme, the experiment continues until a pre-assigned time τ, and 
failures that occur after τ are not observed. In contrast, in TIIC scheme the experiment 
decides to terminate after a pre-assigned number of failures observed, say r, r≤n. 
In this section, the point and approximate confidence intervals (CIs) estimators of the 
GMOIL model parameters, under TIC and TIIC schemes, are obtained using maximum 
likelihood (ML) method. 

4.1 ML estimators based on TIC   
Let (1) (2) ( ), ,..., ,nX X X  be the observed TIC sample of size r whose life time’s has the 
GMOIL distribution with Eq. (9) are placed on a life test and the test is terminated at 
specified time τ before all n items have failed. The log-likelihood function, based on TIC, 
of vector of parameters κ  is given by:   
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also, for simplicity we 

write ix  instead of ( )ix . Hence the partial derivatives of the log-likelihood function with 
respect to ,b α and θ  components of the score vector 
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The ML estimators of the model parameters are determined by solving the Eqs. (36)-(38) 
after setting them with zeros. These equations cannot be solved analytically and statistical 
software can be used to solve them numerically via iterative technique. 

4.2 ML estimators based on TIIC   
Let (1) (2) ( ), ,..., ,nX X X be the observed TIIC sample of size r whose life time’s has the 
GMOIL distribution with Eq. (9) are placed on a life test and the test is terminated when 
the rth item fails for some fixed values of r. The log-likelihood function, based on TIIC, of 
vector of parameters κ  is given by:   
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where, 11 ,
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D e
x

θθ
θ

− 
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 also for simplicity we write ix  instead of ( )ix . Hence the 

partial derivatives of the log-likelihood function with respect to ,b α and θ  components of 
the score vector 2( ) lnU lκ κ= ∂ ∂ = (U (α)=0, U (b), U (θ))T can be obtained as follows 
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where, 
2

2 3

(1 ) (1 ) .
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rxr r r
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θ θ
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 The ML estimators of the model parameters are 

determined by solving Eqs. (40)-(42) after setting them with zeros. These equations cannot 
be solved analytically and statistical software can be used to solve them numerically via 
iterative technique. 
Note that, for r=n, we obtain the ML estimators of the model parameters in case of 
complete sample.  
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4.3 Approximate confidence intervals  
In this subsection, approximate CIs of the model parameters for the GMOIL distribution 
are obtained. 
The 3 3×  observed information matrix ( ) { }mnI Iκ =  for ( , ) ( , , ),m n bα θ=  are determined. 
The known asymptotic properties of the ML method, under the regularity conditions, 
guarantee that:  

1
3ˆ( ) (0, ( ))dn N Iκ κ κ−− → as n →∞  where d→  means the convergence in 

distribution, with mean 0 (0,0,0)T=  and 3 3×  variance-covariance matrix 1( )I κ−  then, the 
approximate 100(1-ν)% two-sided CIs  for ( , , )bα θ are respectively, given by: 

/2 /2 /2
ˆ ˆ ˆ ˆˆ ˆvar( ), var( ), var( ).v v vZ b Z b Zα α θ θ± ± ±                                                            (43) 

Here, 2Zν  is the upper 2ν th  percentile of the standard normal distribution and var (.)’s 

denote the diagonal elements of 1( )I κ− corresponding to the model parameters. 

5 Simulation study  
The behavior of the estimators is assessed for some selected parameter values through a 
simulation. Measures include mean square error (MSE), bias, lower bound (LB) of the 
CIs, upper bound (UB) of the CIs, and average length (AL) of 90% and 95% are 
calculated. The following algorithm is utilized, in case of complete, TIC, TIIC via 
Mathematica 9, as follows: 
• 1000 random samples of size n=100 and 200 are generated from the GMOIL 

distribution.  
• Selected sets of parameters (Ps) are considered as I=(α=2, b=0.5, θ=0.8), II=(α=2, 

b=0.5, θ=1.2),  III=(α=2, b=1.2, and θ=1.2), and IV= (α=2, b=1, θ=1). 
• The termination time is selected as τ=80 and 100 under TIC. Three levels of censoring 

are chosen as r=70%, 90% (TIIC) and 100% (complete sample).  
• The MSE, bias, LB, UB and AL for all selected sets of the parameters are calculated. 
• Numerical outcomes of the previous measures are listed in Tabs. 2 to 5 based on TIC, 

while Tabs. 6 to 9 contain the numerical results in case of complete and TIIC.   
From these tables we conclude the following 
• Bias, MSE and AL of all parameters decrease as the sample size increases.  
• As the value of τ increases, the bias, MSE and AL of all parameters decrease. 
• As the value of r increases, the bias, MSE and AL of all parameters decrease. 
• At α=2, θ=1.2 and as the value of b increases, the bias, MSE and AL of all parameters 

increase. 
• The AL of the CIs increases as the confidence levels increase from 90% to 95%. 
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Table 2: Estimate, Bias, MSE, LB, UB and AL of the GMOIL distribution for I=(α=2, 
b=0.5, θ=0.8) under TIC 

  Ps ML Bias MSE 90% 95% 

LB UB AL LB UB AL 

100 

80 

 2.5075 0.5075 3.1254 -1.126 6.1418 7.2686 -1.822 6.8377 8.6605 

 0.5483 0.0483 0.0080 0.3866 0.7099 0.3234 0.3556 0.7409 0.3853 

 0.8209 0.0209 0.0354 0.3957 1.2460 0.8503 0.3143 1.3274 1.0131 

100 

 2.2024 0.2024 1.7623 -0.613 5.0177 5.6307 -1.152 5.5568 6.7089 

 0.4928 -0.007 0.0045 0.3475 0.6380 0.2905 0.3197 0.6658 0.3461 

 0.9031 0.1031 0.0765 0.4760 1.3302 0.8542 0.3942 1.4120 1.0178 

200 

80 

 2.4661 0.4661 1.0949 0.2207 4.7116 4.4909 -0.209 5.1415 5.3508 

 0.5054 0.0054 0.0040 0.4002 0.6106 0.2104 0.3801 0.6307 0.2506 

 0.7682 -0.031 0.0248 0.4799 1.0565 0.5765 0.4247 1.1117 0.6869 

100 

 2.3687 0.3686 1.6390 0.1726 4.5647 4.3921 -0.247 4.9852 5.2332 

 0.5049 0.0049 0.0019 0.4021 0.6076 0.2055 0.3824 0.6273 0.2449 

 0.8241 0.0241 0.0493 0.5273 1.1210 0.5937 0.4704 1.1778 0.7074 
 

Table 3: Estimate, Bias, MSE, LB, UB and AL of the GMOIL distribution for II=(α=2, 
b=0.5, θ=1.2) under TIC 

  Ps ML Bias MSE 90% 95% 

LB UB AL LB UB AL 

100 

80 

 1.8740 -0.126 1.1472 -0.476 4.2248 4.7016 -0.927 4.6749 5.6019 

 0.4956 -0.004 0.0023 0.3411 0.6501 0.3090 0.3115 0.6797 0.3682 

 1.5250 0.3250 0.3248 0.8103 2.2397 1.4294 0.6734 2.3765 1.7031 

100 

 2.4938 0.4938 1.1442 -0.711 5.6989 6.4102 -1.325 6.3126 7.6377 

 0.5052 0.0052 0.0055 0.3492 0.6612 0.3121 0.3193 0.6911 0.3718 

 1.1915 -0.008 0.0969 0.5562 1.8268 1.2706 0.4345 1.9485 1.5140 

200 

80 

 1.7100 -0.290 0.2763 0.2362 3.1837 2.9475 -0.046 3.4659 3.5119 

 0.4925 -0.007 0.0019 0.3848 0.6002 0.2153 0.3642 0.6208 0.2566 

 1.3346 0.1346 0.0642 0.8723 1.7969 0.9246 0.7838 1.8855 1.1017 

100 

 1.6235 -0.376 0.7488 0.1997 3.0472 2.8475 -0.073 3.3199 3.3928 

 0.4712 -0.028 0.0036 0.3721 0.5704 0.1983 0.3531 0.5893 0.2362 

 1.3021 0.1021 0.0655 0.8586 1.7456 0.8870 0.7737 1.8306 1.0568 
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Table 4: Estimate, Bias, MSE, LB, UB and AL of the GMOIL distribution for III=(α=2, 
b=1.2, and θ=1.2) under TIC 

  Ps ML Bias MSE 
90% 95% 

LB UB AL LB UB AL 

100 

80 

 2.7279 0.7279 2.6718 -0.370 5.8262 6.1966 -0.963 6.4195 7.3832 

 1.4061 0.2061 0.1891 0.7753 2.0370 1.2618 0.6545 2.1578 1.5034 

 1.1740 -0.026 0.0600 0.7477 1.6002 0.8525 0.6661 1.6818 1.0157 

100 

 1.9758 -0.024 0.9445 -0.153 4.1048 4.2581 -0.561 4.5125 5.0735 

 1.1792 -0.020 0.0800 0.7059 1.6525 0.9466 0.6153 1.7431 1.1278 

 1.2663 0.0663 0.0723 0.8241 1.7084 0.8843 0.7394 1.7931 1.0537 

200 

80 

 2.0285 0.0285 0.3018 0.4837 3.5733 3.0896 0.1879 3.8691 3.6812 

 1.2333 0.0333 0.0295 0.8766 1.5899 0.7132 0.8084 1.6582 0.8498 

 1.2764 0.0764 0.0166 0.9526 1.6002 0.6476 0.8906 1.6623 0.7717 

100 

 1.7239 -0.276 0.2685 0.4151 3.0327 2.6177 0.1644 3.2834 3.1189 

 1.1288 -0.071 0.0255 0.8161 1.4415 0.6254 0.7562 1.5014 0.7451 

 1.2746 0.0746 0.0227 0.9557 1.5935 0.6378 0.8946 1.6546 0.7599 

Table 5: Estimate, Bias, MSE, LB, UB and AL of the GMOIL distribution for IV=(α=2, 
b=1, θ=1) under TIC 

  Ps ML Bias MSE 90% 95% 

LB UB AL LB UB AL 

100 

80 

 1.9697 -0.030 1.7754 -0.229 4.1691 4.3990 -0.651 4.5903 5.2413 

 1.0305 0.0305 0.0757 0.6319 1.4291 0.7972 0.5556 1.5054 0.9499 

 1.1395 0.1395 0.0878 0.7365 1.5426 0.8061 0.6593 1.6198 0.9605 

100 

 2.3510 0.3510 3.5458 -0.255 4.9575 5.2130 -0.754 5.4566 6.2112 

 1.0357 0.0357 0.0576 0.6521 1.4193 0.7672 0.5786 1.4927 0.9141 

 1.0985 0.0985 0.0734 0.6923 1.5047 0.8123 0.6145 1.5824 0.9679 

200 
80 

 1.6054 -0.394 0.3990 0.3933 2.8175 2.4242 0.1612 3.0496 2.8884 

 0.9307 -0.069 0.0161 0.6996 1.1618 0.4622 0.6554 1.2061 0.5507 

 1.0773 0.0773 0.0192 0.7973 1.3573 0.5600 0.7437 1.4109 0.6672 

100  2.4850 0.4850 1.6030 0.5011 4.4690 3.9679 0.1211 4.8489 4.7277 
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 1.0211 0.0211 0.0067 0.7616 1.2807 0.5191 0.7119 1.3304 0.6185 

 0.9935 -0.006 0.0251 0.7084 1.2786 0.5702 0.6538 1.3332 0.6794 

Table 6: Estimate, Bias, MSE, LB, UB and AL of the GMOIL distribution for I=(α=2, 
b=0.5, θ=0.8) under TIIC 

  Ps ML Bias MSE 90% 95% 

LB UB AL LB UB AL 

100 

80% 

 2.4216 0.4216 2.0883 -1.074 5.9176 6.9920 -1.743 6.5871 8.3309 

 0.5059 0.0059 0.0063 0.3219 0.6899 0.3680 0.2867 0.7252 0.4385 

 0.8059 0.0059 0.0562 0.3856 1.2261 0.8405 0.3051 1.3066 1.0014 

90% 

 2.7311 0.7311 3.1689 -0.886 6.3487 7.2351 -1.579 7.0414 8.6206 

 0.5527 0.0527 0.0103 0.3779 0.7274 0.3495 0.3445 0.7609 0.4164 

 0.8404 0.0404 0.0746 0.4247 1.2561 0.8313 0.3451 1.3357 0.9905 

100% 

 2.0118 0.0118 2.0404 -0.618 4.6424 5.2611 -1.122 5.1461 6.2685 

 0.5183 0.0183 0.0087 0.3815 0.6552 0.2737 0.3553 0.6814 0.3261 

 1.0131 0.2131 0.1826 0.5514 1.4748 0.9234 0.4630 1.5633 1.1002 

200 

80% 

 2.2503 0.2503 1.4083 0.0801 4.4205 4.3404 -0.335 4.8361 5.1715 

 0.4870 -0.013 0.0037 0.3690 0.6049 0.2359 0.3464 0.6275 0.2811 

 0.8118 0.0118 0.0177 0.5090 1.1146 0.6055 0.4511 1.1725 0.7215 

90% 

 1.9954 -0.004 0.7632 0.1799 3.8109 3.6310 -0.167 4.1586 4.3263 

 0.5058 0.0058 0.0022 0.4002 0.6114 0.2112 0.3800 0.6316 0.2516 

 0.9030 0.1030 0.0563 0.5824 1.2236 0.6412 0.5210 1.2849 0.7639 

100% 

 2.0663 0.0663 0.7215 0.2780 3.8545 3.5765 -0.064 4.1970 4.2614 

 0.4985 -0.001 0.0016 0.4077 0.5893 0.1816 0.3903 0.6067 0.2163 

 0.8654 0.0654 0.0581 0.5644 1.1664 0.6020 0.5068 1.2240 0.7172 

Table 7: Estimate, Bias, MSE, LB, UB and AL of the GMOIL distribution for II=(α=2, 
b=0.5, θ=1.2),  under TIIC 

  Ps ML Bias MSE 90% 95% 

LB UB AL LB UB AL 

100 
80% 

 2.2612 0.2612 2.2824 -0.804 5.3272 6.1319 -1.391 5.9143 7.3062 

 0.5358 0.0358 0.0201 0.3347 0.7369 0.4022 0.2962 0.7755 0.4792 

 1.4793 0.2793 0.3203 0.7747 2.1839 1.4092 0.6398 2.3189 1.6791 

90%  2.4616 0.4616 1.8287 -0.716 5.6398 6.3565 -1.325 6.2484 7.5737 
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 0.5385 0.0385 0.0120 0.3710 0.7060 0.3350 0.3389 0.7381 0.3992 

 1.2395 0.0395 0.1022 0.6038 1.8751 1.2712 0.4821 1.9968 1.5147 

100% 

 2.1653 0.1653 1.4852 -0.456 4.7866 5.2426 -0.958 5.2885 6.2465 

 0.5027 0.0027 0.0060 0.3708 0.6345 0.2637 0.3456 0.6598 0.3142 

 1.2906 0.0906 0.1231 0.6655 1.9157 1.2503 0.5458 2.0354 1.4897 

200 

80% 

 2.5052 0.5052 1.0483 0.0940 4.9164 4.8224 -0.367 5.3781 5.7458 

 0.4969 -0.003 0.0058 0.3745 0.6194 0.2448 0.3511 0.6428 0.2917 

 1.0874 -0.112 0.0369 0.6536 1.5212 0.8676 0.5705 1.6043 1.0338 

90% 

 1.6211 -0.378 0.9512 0.2197 3.0226 2.8030 -0.048 3.2910 3.3397 

 0.4760 -0.024 0.0046 0.3764 0.5756 0.1992 0.3573 0.5946 0.2373 

 1.3660 0.1660 0.0991 0.9158 1.8161 0.9003 0.8296 1.9023 1.0727 

100% 

 2.2344 0.2344 1.3488 0.3661 4.1027 3.7366 0.0083 4.4604 4.4521 

 0.4926 -0.007 0.0045 0.4030 0.5822 0.1792 0.3858 0.5994 0.2135 

 1.2331 0.0331 0.0221 0.7855 1.6807 0.8952 0.6998 1.7664 1.0667 

Table 8: Estimate, Bias, MSE, LB, UB and AL of the GMOIL distribution for III=(α=2, 
b=1.2, and θ=1.2) under TIIC 

  Ps ML Bias MSE 90% 95% 

LB UB AL LB UB AL 

100 

80% 

 1.9598 -0.040 3.2120 -1.545 5.4647 7.0098 -2.216 6.1358 8.3521 

 1.2367 0.0367 0.3814 0.1389 2.3345 2.1956 -0.071 2.5447 2.6160 

 1.3722 0.1722 0.0885 0.8670 1.8775 1.0105 0.7702 1.9742 1.2040 

90% 

 2.7134 0.7134 2.7892 -0.927 6.3538 7.2808 -1.624 7.0509 8.6750 

 1.3083 0.1083 0.1493 0.5494 2.0673 1.5178 0.4041 2.2126 1.8085 

 1.1602 -0.039 0.0613 0.7111 1.6092 0.8981 0.6251 1.6952 1.0700 

100% 

 2.0990 0.0990 1.1530 -0.180 4.3783 4.5586 -0.616 4.8148 5.4315 

 1.2142 0.0142 0.0433 0.7266 1.7017 0.9751 0.6333 1.7951 1.1618 

 1.2841 0.0841 0.0441 0.8233 1.7450 0.9217 0.7350 1.8332 1.0982 

200 

80% 

 3.1361 1.1361 4.4934 -0.561 6.8338 7.3955 -1.269 7.5419 8.8117 

 1.3506 0.1506 0.1913 0.5634 2.1377 1.5743 0.4127 2.2884 1.8757 

 1.1202 -0.079 0.0647 0.7935 1.4469 0.6534 0.7309 1.5094 0.7785 

90% 

 2.1020 0.1020 1.2252 0.1409 4.0630 3.9221 -0.234 4.4385 4.6731 

 1.2022 0.0022 0.0496 0.7336 1.6707 0.9371 0.6439 1.7605 1.1166 

 1.2280 0.0280 0.0384 0.9086 1.5475 0.6390 0.8474 1.6087 0.7613 
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100% 

 1.4262 -0.573 0.5781 0.3414 2.5110 2.1696 0.1337 2.7187 2.5851 

 1.1144 -0.085 0.0382 0.8025 1.4262 0.6237 0.7428 1.4859 0.7431 

 1.3834 0.1834 0.0390 1.0554 1.7115 0.6560 0.9926 1.7743 0.7817 

Table 9: Estimate, Bias, MSE, LB, UB and AL of the GMOIL distribution for IV=(α=2, 
b=1, θ=1) under TIIC 

  Ps ML Bias MSE 90% 95% 

LB UB AL LB UB AL 

100 

80% 

 2.4729 0.4729 3.9227 -1.682 6.6281 8.3104 -2.478 7.4238 9.9018 

 1.2564 0.2564 0.4592 0.1787 2.3341 2.1555 -0.027 2.5405 2.5682 

 1.1680 0.1680 0.1408 0.7195 1.6166 0.8972 0.6336 1.7025 1.0690 

90% 

 2.4432 0.4432 2.0767 -0.729 5.6162 6.3460 -1.337 6.2238 7.5612 

 1.0918 0.0918 0.1583 0.5256 1.6580 1.1324 0.4171 1.7664 1.3493 

 0.9950 -0.005 0.0233 0.5974 1.3925 0.7951 0.5213 1.4687 0.9474 

100% 

 2.6344 0.6344 3.8963 -0.433 5.7018 6.1347 -1.020 6.2891 7.3095 

 1.0410 0.0409 0.0792 0.6566 1.4253 0.7687 0.5830 1.4989 0.9159 

 1.0107 0.0107 0.0966 0.6112 1.4102 0.7990 0.5347 1.4867 0.9520 

200 

80% 

 2.5879 0.5879 2.8297 -0.122 5.2981 5.4203 -0.641 5.8170 6.4583 

 1.0750 0.0750 0.0652 0.6057 1.5443 0.9386 0.5158 1.6342 1.1184 

 1.0329 0.0329 0.0746 0.7300 1.3357 0.6057 0.6720 1.3937 0.7217 

90% 

 1.8454 -0.154 0.3432 0.2696 3.4213 3.1518 -0.032 3.7231 3.7553 

 0.9904 -0.009 0.0308 0.6712 1.3096 0.6385 0.6100 1.3708 0.7607 

 1.0397 0.0397 0.0071 0.7584 1.3211 0.5628 0.7045 1.3750 0.6705 

100% 

 3.1733 1.1733 3.8377 0.5580 5.7887 5.2308 0.0571 6.2896 6.2324 

 1.0986 0.0986 0.0238 0.8075 1.3898 0.5823 0.7517 1.4456 0.6938 

 0.9256 -0.074 0.0403 0.6486 1.2026 0.5540 0.5955 1.2556 0.6601 

6 Applications to real data   
Two real data sets are analyzed to characterize the behavior of the GMOIL distribution in 
practice. The first data set is picked from Linhart et al. [Linhart and Zucchini (1986)]. 
These data were discussed by Hassan et al. [Hassan, Elgarhy, Mohamd et al. (2019); 
Jamal, Elbatal, Chesneau et al. (2019)]. The second data are collected from Aarset 
[Aarset (1987)] which represent the failure times of 50 devices. These data were handled 
by Hassan et al. [Hassan and Assar (2019)]. In both data, the results of the fits are 
compared with the power Lindley (PL) by Ghitany et al. [Ghitany, Al-Mutairi, 
Balakrishnan et al. (2013)], extended Lindley (EL) by Bakouch et al.  [Bakouch, Al-
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Zahrani, Al-Shomrani et al. (2012)], Lindley(L), alpha power transmuted L (APTL) see 
(Dey et al. [Dey, Ghosh and Kumar (2019)]), alpha power extended exponential (APEE) 
(Hassan et al. [Hassan, Mohamd, Elgarhy et al. (2019)]) and IL distributions. The pdfs of 
the APTL, APEE and EL are given by; 
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1 1
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Statistics measures like; minus log-likelihood (-log L), Kolmogorov-Smirnov (KS) test 
statistic, Akaike information criterion (AIC), corrected AIC (CAIC), Bayesian 
information criterion (BIC) and Hannan-Quinn information criterion (HQIC) are 
obtained. These measures are applied to test the superiority of the GMOIL distribution in 
comparison to some other models.  

Data 1: Linhart and zucchini data 
The first data set represents a sample of 30 failure times of air-conditioned system of an 
airplane. The data are:  23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 
120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95. The ML estimates, standard errors 
(SEs) of parameters and the above statistics measures are given in Tab. 10.  

Table 10: Analytical outcomes of the GMOIL and competing models for Linhart and 
Zucchini data 

Model ML Estimates (SE) -Log L AIC BIC CAIC HQIC KS 

GMOIL 

ˆ 79.48 (171.565)α =  
ˆ 2.893 (2.517)b =  
ˆ 2.147 (2.633)θ =  

151.53 309.061 307.492 309.984 310.405 0.1379 

APEE 

ˆ 0.161 (0.282)α =  
-4ˆ 2.01 10 (0.024)β = ×  

ˆ 0.011 (0.022)γ =  
176.631 359.262 357.694 360.186 360.607 0.14683 

APTL 
ˆ 0.1 (0.1037)α =  
ˆ 0.011 (0.024)γ =  183.415 370.83 369.784 371.274 371.727 0.2803 

EL 

ˆ 0.634 (1.995)α =  
ˆ 0.194 (0.161)β =  
ˆ 104.392 (149.921)θ =  

217.635 441.27 439.701 442.193 442.615 0.86825 
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PL 
ˆ 1.525 (0.155)β =  

3 3ˆ 2.63 10 (2.058 10 )θ − −= × ×  
195.999 395.999 394.953 396.443 396.895 0.4927 

L ˆ 0.033 (0.0043)θ =  161.637 325.274 324.751 325.416 325.722 0.3453 

IL ˆ 12.037 (2.052)θ =  159.267 320.533 320.011 323.422 320.982 0.234 

From Tab. 10, we conclude that the GMOIL model is the best fitted model compared 
with APTL, APEE, EL, PL, L and IL models. The estimated pdfs, cdfs, sfs and pp plots 
for the fitted models are displayed in Fig. 2. We conclude that the GMOIL model offers a 
better fit for the Linhart and Zucchini data. 
 

 
 

  
Figure 2: Estimated pdf, cdf, sf and pp plots of the GMOIL and other competing 
distributions for Linhart and Zucchini data 

Data 2: Aarset data 
The second data represent 50 failure times of devices. The data are:  0.1, 0.2, 1, 1, 1, 1, 1, 
2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 
67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85,85, 86, 86. The ML estimates, 
SEs of the model parameters and analytical measures are provided in Tab. 11.  
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Table 11: Analytical results of the GMOIL and competing models for Aarset data 

Tab. 11 shows that the GMOIL model can be more adequate model for explaining the 
provided data than the other models. More details are shown in Fig. 3.  
 

  

Model ML Estimates (SE) -Log L AIC BIC CAIC HQIC KS 

GMOIL 

ˆ 3472 (2808.291)α =
ˆ 11.563 (9.145)b =
ˆ 0.453(0.182)θ =  

244.093 494.186 493.282 495.109 496.37 0.1944 

APEE 

-10ˆ 0.0606(3.44 10 )α = ×
6ˆ 1400(2.653 10 )β = ×
-3ˆ 0.016(1.658 10 )γ = ×  

304.783 615.566 614.663 616.49 617.751 0.19985 

APTL 
ˆ 1.258(0.9024)α =
ˆ 0.044(0.0063)γ =  293.083 590.165 589.563 590.61 591.621 0.1951 

EL 

ˆ 1.068(17.205)α =
3ˆ 0.217(2.128 10 )β −= ×

3ˆ 168.806(6.413 10 )θ −= ×  

348.441 702.883 701.98 703.405 705.067 0.86086 

PL 
ˆ 1.753(0.196)β =

3 3ˆ 1.825 10 (1.535 10 )θ − −= × ×  
305.67 615.34 614.738 615.595 616.796 0.3249 

L ˆ 0.043(0.0043)θ =  251.43 504.861 504.56 505.003 505.589 0.199 

IL ˆ 2.846(0.334)θ =  324.041 650.082 649.781 650.168 650.811 0.6288 
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Figure 3: Estimated pdf, cdf, sf and pp plots of the GMOIL and other competing 
distributions for Aarset data  

We conclude that the GMOIL distribution is more appropriate than the other models (see 
Fig. 3). 

7 Conclusions  
A new three-parameter extended form of the inverse Lindley distribution related to 
Marshall-Olkin-G class is proposed. The new distribution is named as the generalized 
Marshall-Olkin inverse Lindley distribution. Some main properties of the new model are 
given. Estimation of the model parameters is approached by maximum likelihood method 
for complete and censored samples. Point and approximate confidence interval estimators 
of the model parameters are obtained. Simulation study is designed to evaluate the 
performance of the estimates. Two applications explain that the proposed distribution 
provides consistently better fits than the other competitive models.   
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