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Abstract: The state of cutting tool determines the quality of surface produced on
the machined parts. A faulty tool produces poor surface, inaccurate geometry and
non-economic production. Thus, it is necessary to monitor tool condition for a
machining process to have superior quality and economic production. In the pre-
sent study, fault classification of single point cutting tool for hard turning has been
carried out by employing machine learning technique. Cutting force and vibration
signals were acquired to monitor tool condition during machining. A set of four
tooling conditions namely healthy, worn flank, broken insert and extended tool
overhang have been considered for the study. The machine learning technique
was applied to both vibration and cutting force signals. Discrete wavelet features
of the signals have been extracted using discrete wavelet transformation (DWT).
This transformation represents a large dataset into approximation coefficients
which contain the most useful information of the dataset. Significant features,
among features extracted, were selected using J48 decision tree technique. Clas-
sification of tool conditions was carried out using Naïve Bayes algorithm.
A 10 fold cross validation was incorporated to test the validity of classifier. A
comparison of performance of classifier was made between cutting force and
vibration signal to choose the best signal acquisition method in classifying tool
fault conditions using machine learning technique.

Keywords: Fault diagnosis of cutting tool; Naïve Bayes classifier; decision tree
technique

1 Introduction

Condition monitoring of cutting tool is necessary to ensure efficient machining operation with minimal
tooling costs and minimal down time. Tool condition monitoring (TCM) in machining is essential to predict
tool wear and kind of surface finish produced on workpiece. Tool fault diagnosis is one method of TCM. Tool
wear estimation by conventional Taylor’s tool life equation is prone to either underestimation or
overestimation [1]. Excessive replacement of tool leads to huge tooling cost. Consequently, valuable
resource and precious time are at stake [2]. Most down time in machining is caused due to tool breakage
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and tool handling. The only technique that is viable in reducing the down time during machining is Tool
Condition Monitoring (TCM). TCM involves monitoring tool health status by acquiring real time tool
condition information using sensors and transducers such as accelerometer [3–5], dynamometer [6],
acoustic emission (AE) sensor [7], current sensor [8], surface profiler [9], pyrometer [10] and charge
coupled device (CCD) camera [11]. The sensor data will be in raw form or in time-domain, which is not
in information revealing form. These sensor data have to be processed to improve subjective quality and
to detect components of interest in a measured signal [12]. Various signal processing techniques used by
researchers include; Fourier transform, short time Fourier transform, wavelet transform, etc., However, to
make the condition monitoring automatic, precise and accurate the monitoring has to happen online. The
condition of fault would be many in numbers. In such cases the monitoring system has to learn from the
previous experience and be able to recognize the fault in the system as and when they occur. This pre
recorded (by previous experience) faulty conditions serve as signature signals which act as reference for
fault identification during actual running condition.

Tool condition monitoring can be carried out either by direct measurement or by indirect measurement.
Non-contact, direct measurement of cutting tool edges with sophisticated systems give accurate information
about tool wear. Jurkovic et al. [13] used CCD camera to create 3D image of relief surface to measure tool
wear of carbide inserts. The technique had the characteristic of measuring the profile depth with the help of
projected lased light using a diode and linear projector. Uehara et al. [14] used laser sensor which
reconstructs 3D image of milling tool profile with laser displacement and intensity technique to evaluate
geometric failures of tool. The technique was able to detect the location of tool chipping and length of flank
wear at an accuracy of 40 micron. Schmitt et al. [15] employed machine vision system to measure tool wear
and classify them by neural network based on active contour algorithm. Tools were held in special fixture for
image acquisition of tool wear. Image processing chain comprised feature extraction, classification and tool
wear measurement. Ramirez-Nunez et al. [16] used infrared thermography to monitor tool breakage during
milling process under dry condition and wet conditions. Healthy state or broken state of a tool is determined
by analysing temperature gradients in the cutting zone. Direct measurement yields accurate readings only in
limited condition. However, cutting fluid, surrounding the tool, forms the barrier for direct measurement.
Nowadays, indirect method of tool wear monitoring is found to be more effective for online monitoring of
machining operation with advancement of signal processing, image processing and artificial intelligence.

Indirect measurement method uses sensors and transducer signals such as force signal, vibration signals,
Acoustic Emission (AE) signals, current signatures and temperature readings. Acquired signals are raw in
nature, which need to be processed to understand the hidden information about the ailment in the system.
Dimla [17] followed experimental and analytical methods to correlate tool wear with measured vibration
signal and cutting force signal independently for turning operation. It was found that z-direction of
cutting force and vibration signal were sensitive to the tool wear. Hesser et al. [18] retrofitted an old CNC
milling machine to monitor tool wear by embedding programmable sensor (Bosch XRD sensor platform)
which sends vibration information of machining process through wireless communication mode. Two tool
condition healthy and worn tool were considered for the study. Tool state classification was carried out
using machine learning approach. Various machine learning techniques were used to classify tool state.
Score, recall and precision evaluated performance of these models. Liu et al. [19] applied signal-
processing techniques such as time domain analysis, Fast Fourier Transform (FFT) analysis and wavelet
decomposition method for both vibration signal and cutting force signal corresponding to milling of thin
wall feature to recognise the complex machining condition. Bhuiyan et al. [20] carried out experimental
investigation to monitor tool abrasion, surface finish and chip formation using accelerometer and acoustic
emission sensors in turning operation. Plaza et al. [21] monitored on-line surface roughness of finish
turning operation on CNC lathe by applying singular spectrum analysis to vibration signal acquired
during machining operation.
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Various machine learning techniques followed in literature to monitor various systems include neural
networks, fuzzy logic and artificial intelligence. Understanding deep hidden information in a signal is
achieved by extracting remarkable features such as Discrete Wavelet Transform (DWT) features,
statistical features, histogram features, etc. Further, significant features among extracted features are
selected and fault conditions are classified. Salgado et al. [22] estimated surface roughness for turning
operation using support-vector machine. Kannatey et al. [23] adopted classifier fusion technique to
improve tool wear monitoring for coroning process (a finishing operation). Cuka et al. [24] performed
embedded tool condition monitoring of end milling tool with the signals acquired from dynamometer,
microphone, accelerometer and current sensor using machine learning technique. Sugumaran et al. [25]
used decision tree to monitor health condition of roller bearing using vibration signal. Features of
vibration signal were deduced using statistical analysis. Elangovan et al. [26] compared fault
classification based on feature selection using J48 algorithm and principal component analysis to monitor
turning tool using vibration information.

Force and vibration signals are used for tool fault detection, tool chatter detection, due to the complex
relationship that exists between vibrations, cutting force and process dynamics. Several researchers presented
machine learning techniques on various machining processes and found it effective in diagnosing the
machining faults. However, none have reported use of cutting force for turning operation with machine
learning technique despite its advantages. Hence, there is a need to study the tool condition monitoring
using cutting force signal in conjunction with machine learning technique for tool fault diagnosis. Cutting
force provide thorough insight into tool fault diagnosis. In this article, we attempt to compare the
performance on classification of tool faults carried out using both vibration and cutting force signal with
machine learning technique applied. Healthy and three faulty condition of tool were considered for the
current study. The classifier was verified using 10 fold cross validation with 66% of total data as training
data set and remaining as test data.

2 Methodology

Sequential steps followed for fault diagnosis of single point cutting tool during hard turning is shown in
Fig. 1. Both healthy and simulated faulty tools were used for machining oil hardened nickel steel workpiece.
Cutting force signals and vibration signals were acquired using cutting tool dynamometer and accelerometer.
Pre-processing of signal was carried out independently for each signal type in order to feed to the
transformation tool. Discrete wavelet features were extracted from the signals through discrete wavelet
transform (DWT) which was a MATLAB code. DWT yields 8 wavelet coefficients (features) for each
single second data. Significant features are selected from the coefficients yielded by DWT. This selection
of significant features was made by J48 decision tree algorithm. The tree represents the significant
features for classification in pictorial form with logic of classification visible explicitly. Decision tree can
be used as feature selector as well as classifier if, it provides good classification accuracy else, different
other classifiers tested to classify the tool conditions. In this paper, Naïve Bayes algorithm was used to
classify the tool faults. Since two signal types are used, the classification accuracy obtained with vibration
and cutting force signal were compared to see which sensor signal is more suitable for tool fault
classification.

3 Machine Learning Applied to Machining Process

Machine learning aims at development of computer programs in the form of models. These models can
get access to data and find patterns in them to learn automatically. Learning starts with examinations of given
data. The objective of examining the data is to watch for trends in data and make suitable decisions for the
new data based on the trained examples. The prime intention to do so is to allow the computers, learn for
themselves and adjust parameters of model accordingly [27].
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3.1 Wavelet Transform Analysis
Wavelet as a mathematical tool used to divide a continuous-time signal into different scale components.

The wavelets are scaled and translated over a finite-length waveform. This finite length waveform is known
as mother wavelet and scalable and translatable wavelets are called daughter wavelets. Wavelet transforms
can represent functions that have discontinuities and sharp peaks. Wavelet transformation deconstructs and
reconstructs non-stationary signals accurately, where traditional Fourier transform fails to do so [28–29].

Wavelet transforms is used to transform data, then encode the transformed data. Wavelet transforms can
be of two types. First, discrete wavelet transforms (DWTs); second, continuous wavelet transforms (CWTs).
DWTs use a specific subset of scale and translation values. CWTs operate over every possible scale and
translation and CWT are generally used for signal analysis [30–31].

3.1.1 Feature Extraction Using Discrete Wavelet Transform
The effective way of representing large data (signal) is achieved by correlating with approximation

coefficients. These coefficients contain most useful information of dataset [32]. Decomposed signal has
detail coefficients and approximation coefficients. Detailed coefficients describe high-frequency
coefficients while approximation coefficients describe low-frequency coefficients [33]. Approximation
coefficients will be considered in each feature vector for the formation of the vector which is shown in
pictorial form in Fig. 2. Feature V1 is level one decomposition. V2 is level two decomposition and so on.

Wavelet considered for present study is Haar wavelet. Haar low pass filter computes simple average while
Haar high pass filter computes simple difference. The basis function for the DWT are the filter coefficients.

The DWT feature vector is given by,

vdwt ¼ vdwt1 ; vdwt2 ; . . . ::vdwtn

� �T
(1)

vdwti is the element associated to the different resolutions and can be calculated as follows,

Cutting force measurement 
using dynamometer

Feature extraction 
( DWT features)

Selection of features [J48 decision 
tree]

Classification of features by 
Naïve Bayes Algorithm

Required information of tool condition 
(Healthy/flank wear/ Broken/ Ext. overhang)

Machining with single point cutting 
tool

Vibration signal measurement 
using Accelerometer

Figure 1: Methodology followed to classify tool faults using machine learning technique
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vdwti ¼ 1

ni

Xni
j¼1

W 2
i;j; i ¼ 1; 2………8 (2)

n1 ¼ 28; n2 ¼ 27……:; n8 ¼ 20 (3)

vdwti is ith feature vector element in DWT vector,

ni is the number of samples in the sub band,

w2
i;j is the sub band for the jth detailed coefficient.

DWT has different wavelet types namely, Haar wavelet, Daubechies wavelet and Newland transform.

The mother wavelet function H(l) of Haar wavelet represented as

H lð Þ ¼
1 0 � l < 0:5

�1 0:5 � l < 1
0 else

8<
: (4)

The scaling function S(l) of mother wavelet represented as

S lð Þ ¼
1 0 � l < 1

0 else

8<
: (5)

The Haar function Hm,n for every pair belonging to R is

Hm;n lð Þ ¼ 2
m
2H 2ml � nð Þ; l 2 R (6)

Haar function supported on the right-open interval. It has integral 0 and norm 1 in the Hilbert space L2(R),Z
R
Hm;n lð Þdl ¼ 0; jjHm;njj2L2 Rð Þ ¼

Z
R
Hm;n lð Þ2dl ¼ 1 (7)

Z
R
Hm1;n1 lð ÞHm2;n2 lð Þdl ¼ dm1;m2dn1;n2 (8)

di;j Represents kronecker delta.
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Figure 2: Signal decomposition to obtain approximation coefficient and detailed coefficient
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3.2 Selection of Features Using Decision Tree
Decision tree represents decisions and decision making rules visually and explicitly. Decision trees are

simple to understand and make good interpretation of data and they are the effective ways of decision
making. They reduce ambguity in decision making. Decision tree displays logic of classification for
interpretation unlike neural network (NN) which uses black box algorithm [30].

A decision tree has nodes, branches, and roots to represent the classification of samples. Node represents
feature (attribute), branch represents decision rule and leaf represents an outcome. A decision tree will have
single root node for whole training set of data [34]. A new node is added to the tree for every partition.

The detailed steps involved in developing the decision tree are listed below:

a) The tree starts with a node representing the training samples of data collected.

b) If the samples are all of same class, then they are labelled as leaf.

c) Otherwise, the algorithm will divide the samples to individual classes based on the entropy-based measure
known as information gain by discretizing attribute to select optimal threshold.

d) To create the branch, samples are portioned for each interval.

e) The algorithm uses same steps mentioned above repeatedly to form the decision tree.

f) This repetition process to form the tree stops only after one of the following criteria is met

i) When all the samples of a node given belongs to one class.
ii) When there is no attribute remaining to partition the samples.
iii) When samples get exhausted for the branch test attribute.

3.3 Classification Using Naïve Bayes Classifier
Naïve Bayes classifier (NBC) belongs to family of probabilistic classifiers, which is built on Bayes

theorem of probability. It predicts the class of unknown dataset. It is simple but highly effective
probabilistic learning method, applied to predictive diagnosis and other applications. The classifier relates
attribute set with class variable by applying probability and statistics knowledge. The classifier learns
features of training data set while analysing it [35]. [36] used Naïve Bayes algorithm to classify healthy
and faulty condition of milling tool, which resulted in 96.9% classification accuracy. The algorithm
assumes that all attributes (Ti) are independent when class (K) value is given.

Naïve Bayes uses following steps for classification:

� Learning conditional probability of each attribute Ti from the class label K.

� Classification is done by applying Bayes rule, to compute probability of K when T1, …, Tn are given.

� The probability of a class Ki given an instance I = {T1, …, Tn} for n observations is given by:

pðKi Ij Þ ¼ pðI Kij Þ � pðKiÞ=pðIÞ (9)

/ pðT1; …;Tn Kij Þ � pðKiÞ (10)

¼
Yn
j¼1

pðTj Kij Þ � pðKiÞ (11)

where,

� p(I) = probability of predictor,

� p(Ki) = prior probability of the class,

� p(Ki/I) = posterior probability of class(Ci) when predictor (I) is given.

� p(I/Ki) = probability of predictor when class is given
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It is assumed that features are independent of each other for a set of random variables. It is impossible to
estimate all the parameters without such an assumption [37]. Naive Bayes is fast in response and thus, could
be used for making real time predictions. It has higher success rate while classifying multi-class prediction.

4 Experimental Validation

Experiments were conducted on all geared high precision universal lathe machine powered by three-
phase induction motor with cutting conditions mentioned in Tab. 1.

Oil hardened nickel steel was used as a workpiece material for the study. It is a hard steel whose chemical
composition is listed in Tab. 2. It finds numerous applications in manufacturing of stamping dies, thread
cutting tools, reamers and blanking tools.

Fig. 3 shows the schematic representation of the experimental setup for understanding the acquisition
and recording of cutting force and tool vibration during machining process.

Kistler dynamometer type 9257B was used to acquire cutting force during machining whose
specifications are shown in Tab. 3. The Tab. 3 lists the sensitivity of the dynamometer in various
directions, range of measuring the cutting force and operating temperature of the device. Dynamometer
had sampling frequency of 11.6 kHz. The signal generated by the piezoelectric dynamometer flows to
multi channel charge amplifier type 5070A to condition the signal. The conditioned signal flows into data
acquisition system 5697A with integrated A/D card. Finally, the data is visualised on the computer screen.

Vibration signal are acquired using tri-axial accelerometer sensor (YMC145A100). The analog output of
accelerometer is converted into voltage by National Instruments data acquisition (DAQ) device.
Specification of the sensor are show in Tab. 4.

4.1 Experimental Procedure
Single point cutting tool was mounted on tool dynamometer, which was secured firmly on the tool post

as shown in inset of Fig. 4. The direction of various force components Fx, Fy and Fz can be seen in inset of
Fig. 4. Cutting conditions were set according to test plan (such as speed, feed and depth of cut). Data
acquisition system was used for acquiring force signals from tool dynamometer, which was amplified by
charge amplifier and sent to DynoWARE software for post processing. The force measuring system was

Table 1: Details of cutting conditions

Work material Oil hardened nickel steel

Tool holder Sandvik PCLNR2020K12

Insert material Coated carbide (diamond shape)

Cutting speed 56 m/min

Feed 0.3 mm/rev

Depth of cut 2 mm

Various conditions of tool Healthy, overhang, worn flank and broken tool

Table 2: Chemical composition of oil hardened nickel steel

Element C Si Mn Cr W V Mo Ni Fe

Weight percentage (%) 0.82 0.18 0.52 0.49 – 0.19 0.13 0.05 Rest
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Figure 3: Schematic representation of experimental setup

Table 3: Specification of kistler 9257B dynamometer

Range
Fx, Fy, Fz (kN)

Sensitivity
(Pc/N)

Natural Freq. (kHz)
Fn(x, y, z)

Capacitance
(pF)

Operating Temperature
Range

Fx, Fy Fz
−5 to 10 −7.5 −3.7 3 to 5 220 0 to 70°C

Table 4: Specification of accelerometer used in the experimentation

Parameter Specification

Modal Number YMC121A100

Sensitivity (mV/g) X:104.1
Y:99.28
Z:106.3

Measuring Range(g) ±50
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calibrated prior to measurement. Rough machining was done to remove the unevenness over the workpiece
and to remove the rust layer formed on the workpiece. Machining was started and measurement of cutting
force for the set cutting condition and tool condition is taken. Machining time is set for 40 seconds out of
which 30 second was the time for data acquisition, to allow measurement system to be stabilized prior to
measurement. Tool conditions were changed keeping cutting conditions constant. The experiments were
carried out for four different tool conditions. Different conditions of tool insert considered in the present
study are shown in Fig. 5.

Figure 5: Photographic image of various tool wear (a) Healthy tool (b) Extended overhang (c) Worn flank
(d) Broken tool

Figure 4: Experimental setup containing lathe machine with force measuring and analyzing system
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Case 1. Healthy tool with proper mounting (Fig. 5a).

Case 2. Healthy tool but extended overhanging (Fig. 5d).

Case 3. Worn flank with proper mount (Fig. 5c).

Case 4. Broken tool while mounted properly (Fig. 5b).

A fresh and brand new tool insert was used for the case 1. However, in case 2, the insert used was healthy
but tool holder was extended by 45 mm extra to simulate the condition of tool mounted with extended
overhang. A worn flank insert was selected in case 3. Similarly, broken tool while machining similar
workpiece was chosen in case 4. Cases 1, 3 and 4 were mounted properly without extended overhang.
Case 2 to case 4 are the typical tool condition experienced in machining industries.

5 Results and Discussion

The detailed discussion of results of feature extraction, feature selection and classification of the tool
fault diagnosis using cutting force signal data is explained in this section.

5.1 Cutting Force Signals
Cutting force signals were recorded for healthy tool, tool with extended overhang, insert with flank wear

and a broken insert at a constant cutting speed of 572 RPM, 0.3 mm/rev feed and 0.5 mm depth of cut. For
each tool condition, 30 samples were recorded.

Cutting force signals acquired for various conditions of tool are shown in Figs. 6–9. The sampling
frequency was 16.66 kHz. As tangential force is the major cutting force with maximum amplitude, it was
considered for the analysis of machining process. Graphs in Figs. 6–9 depict the cutting force of various
conditions of tool. The cutting force plotted here correspond to Z-direction. Z-direction implies tangential
direction where cutting force is maximum. The effect of tool deflection due to tool failure is more
prominent in tangential direction. The amplitude of peaks were changing and range of signal was also
changing but it does not give any information of the tool diagnostics.

Fig. 6 corresponds to healthy tool mounted properly; Fig. 7 corresponds to extended overhang. Cutting
condition was maintained same for all the cases of tool state. The variations observed in signals was not
significant to distinguish between proper mount and extended overhang. In such condition, it was
necessary to opt for signal processing technique, which takes minor changes in signal to distinguish
accurately. However, signal processing yields result pertaining to classification; if proper sensor and

Figure 6: Time domain plot of cutting force signal of healthy tool mounted properly
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Figure 7: Time domain plot of cutting force signal of healthy tool mounted with extended overhang

Figure 8: Time domain plot of cutting force signal of worn flank

Figure 9: Time domain plot of cutting force signal of broken tool
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programming is established in the system (to be monitored while machine learning makes the system learn
automatically with the examples).

Fig. 8 corresponds to signal of flank wear, which induces high cutting force. Fig. 9 is the force signal for
tool breakage. With tool breakage, the tool loses its geometry, rises cutting force. Pictorial representation of
cutting force is not just enough to classify the tool condition. In fact, these signals have to be analysed further
to get the deep information buried in the signal to classify the tool state accurately.

5.2 Tool Vibration Signal
Tool vibration was acquired using accelerometer with a sampling frequency of 25.6 kHz. The Fig. 10

shows the time domain plot of the vibration signals for various tool conditions. Preliminary observation
at the signals indicate that the amplitude vibration is increasing form healthy state to overhang, then for
flank wear and breakage. Such signals of various tool conditions have to be recognized by a monitoring
system to contribute for a good machining.

5.3 Feature Extraction for Cutting Force Using DWT
In the current study, ‘Haar’ wavelet was used in the discrete wavelet transformation. The DWTextracted

8 features (V1 to V8) from each signal. There were a set of 120 signals with 30 signals for each class. The
classes considered are healthy, overhang, flank wear and broken tool. Tab. 5 shows only 4 signals for each
class for reference.
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Figure 10: Time series plot of vibration signal of various tool conditions: (a) healthy tool mounted properly
(b) healthy tool mounted with extended overhang (c) tool with flank wear while mounted properly (d) broken
tool while mounted properly
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Table 5: Discrete wavelet features extracted from the cutting force signal

Wavelet coefficients Tool condition/Class

V1 V2 V3 V4 V5 V6 V7 V8

14.30 11.80 13.10 20.50 46.50 102.00 40.40 130.00 Healthy

15.40 12.00 12.70 24.00 62.00 142.00 41.60 112.00

19.50 13.40 14.00 25.00 53.00 145.00 55.00 204.00

17.30 13.00 14.30 23.30 52.80 123.00 66.20 183.00

16.00 12.80 14.10 27.00 82.10 240.00 74.70 187.00 Overhang

18.00 14.40 14.70 24.50 60.10 127.00 61.20 185.00

17.50 14.60 14.30 31.80 89.50 244.00 76.30 194.00

16.50 14.10 13.50 24.30 55.60 111.00 51.80 158.00

345.00 240.00 66.90 99.50 66.10 173.00 49.40 122.00 Flank wear

269.00 187.00 52.60 80.40 55.70 133.00 46.10 154.00

199.00 141.00 41.20 65.90 70.30 197.00 57.20 141.00

278.00 194.00 62.90 133.00 381.00 1210.00 103.00 424.00

9.05 8.36 10.80 28.30 103.00 556.00 2700.00 19600.00 Broken tool

9.08 7.84 10.40 26.50 118.00 588.00 2930.00 21400.00

9.19 8.32 10.50 25.20 97.60 530.00 3010.00 22400.00

8.54 7.98 9.80 23.90 98.00 437.00 2890.00 21300.00

Table 6: Discrete wavelet features extracted from the vibration signal

Wavelet coefficients Tool condition/Class

V1 V2 V3 V4 V5 V6 V7 V8

0.051 0.144 0.260 0.074 0.068 0.049 0.040 0.046 Healthy

0.050 0.142 0.271 0.073 0.069 0.043 0.037 0.048

0.052 0.148 0.267 0.071 0.067 0.049 0.029 0.051

0.050 0.149 0.240 0.078 0.071 0.048 0.028 0.039

0.157 0.510 1.110 0.837 0.391 0.160 0.151 0.070 Overhang

0.151 0.486 1.090 0.932 0.365 0.157 0.149 0.091

0.157 0.479 1.050 0.905 0.420 0.161 0.144 0.105

0.163 0.506 1.110 0.926 0.450 0.170 0.126 0.079

0.248 0.979 2.340 2.730 1.170 1.080 0.356 0.241 Flank wear

0.253 0.959 2.440 2.870 1.130 1.100 0.373 0.308

0.266 1.010 2.370 3.010 1.030 0.963 0.310 0.245

0.278 1.060 2.490 3.060 0.994 0.925 0.260 0.275

1.980 4.770 4.150 4.750 0.901 1.250 0.441 0.337 Breakage

2.020 4.590 3.540 3.880 1.040 0.986 0.426 0.267

2.290 4.970 3.960 4.610 1.260 1.610 0.531 0.327

2.210 4.570 3.740 4.020 1.210 1.210 0.371 0.335
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5.4 Feature Extraction for Vibration Signal Using DWT
As like for cutting force signal, vibration signal was transformed to obtain wavelet coefficients which are

tabulated in Tab. 6. The tool condition and feature extraction method remained same for vibration signal also.

5.5 Decision Tree for Feature Selection
The J48 algorithm was used to form the decision tree. The algorithm was fed with labelled wavelet

coefficients to classify the classes which were derived from DWT. Out of 8 features extracted in DWT,
only 6 features were used by the decision tree to classify the tool state. In decision tree, the classes are
represented by rectangular boxes. The box contain number of instances classified correctly as well as
instances classified incorrectly using the rule mentioned in the branch. The decision tree formed is shown
in Fig. 11. All instances of flank wear were classified using single feature V3 and all instances of broken
tool were classified using two features V3 and V2. Healthy and overhang were classified using 6 features
with 14 branches. These two classes required more features and branches because of data similarity in
both the classes. To classify flank wear feature, V3 should be greater than 15.7. To classify breakage, V3
should be less than or equal to 15.7 and V2 should be less than or equal to 9.99. Flank wear and broken
tool used one and two features respectively because of their well distinguished pattern in their signal and

Figure 11: J48-the decision tree used for feature selection for cuttting force signal
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feature. However, to classify overhang and healthy, six features were used because of data overlap between
them. Thus, they required feature inside feature to classify them.

Fig. 12 represent decision tree formed from the wavelet coefficients of vibration signals. In Fig. 12, V1 is
the root node through which the whole tree is formed. V1 > 0.058 among V1 < 0.168 are classified as
overhang else healthy or breakage. Similarly, flank wear is classified using V1, V2 and V5 and so on for
rest other classes.

5.6 Classification Using Naïve Bayes Algorithm for Cutting Force
Naïve Bayes algorithm used 10 fold cross validation method, with 66% training data set and 34% testing

data set. Confusion matrix tabulated in Tab. 7 represents the number of instances being classified into classes.
Across the row are classes and down the column are the classes, being classified into various classes.
Referring to first row, out of 30 instances of a healthy class 29 were classified as healthy, one was
misclassified as overhang. Referring to second row, 27 out of 30 were correctly classified as overhang
while 3 were misclassified as healthy. Referring to third row, all instances of flank wear were correctly
classified as flank wear. Referring to fourth row all instances of broken tool classified correctly.

Figure 12: J48 decision tree for vibration signal

Table 7: Confusion matrix for Naive Bayes classifier

Classified as → Healthy Overhang Flank wear Broken tool

Healthy 29 1 0 0

Overhang 3 27 0 0

Flank wear 0 0 30 0

Broken tool 0 0 0 30
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Referring to Tab. 8, the terms used in the table are briefed as follows: True Positives (TP) are fractions of
instances that are correctly classified into their respective classes. False Positives (FP) are fractions of
instances that are wrongly classified into other classes. Precision for a class is the number of True
Positives divided by the number of True Positives and False Positives in that class.

5.7 Classification Using Naive Bayes for Vibration Signal
Following Tab. 9 shows the confusion matrix for vibration signal where in which Naïve Bayes classified

tool faults using vibration signal at 70% accuracy. i.e., 84/120 were correctly classified to their respective
classes, 36/120 were misclassified to other classes. This misclassification is due to data similarity in both
classes and also inefficient classification algorithm.

Tab. 10 tabulates the detailed classification accuracy chart formed by Naïve Bayes algorithm for
vibration signals.

6 Conclusions

In this article, fault diagnosis of carbide tool inserting with healthy and simulated faults were carried out.
Extended overhang, worn flank and broken tool were the faulty conditions considered for the current study.

Table 8: Detailed classification accuracy chart for Naive Bayes algorithm

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

Healthy 0.967 0.033 0.906 0.967 0.935 0.996

Overhang 0.9 0.011 0.964 0.9 0.931 0.996

Flank wear 1 0 1 1 1 1

Broken tool 1 0 1 1 1 1

Weighted avg. 0.967 0.011 0.968 0.967 0.967 0.998

Table 9: Confusion matrix for Naive Bayes classifier for vibration signal

Classified as → Proper Overhang Flank wear Breakage

Proper 30 0 0 0

Overhang 0 30 0 0

Flank wear 0 0 6 24

Breakage 6 0 6 18

Table 10: Detailed classification accuracy chart for Naive Bayes algorithm for vibration signal

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

Proper 1 0.067 0.833 1 0.909 0.996

Overhang 1 0 1 1 1 1

Flank wear 0.2 0.067 0.5 0.2 0.286 0.896

Breakage 0.6 0.267 0.429 0.6 0.5 0.833

Weighted avg. 0.7 0.1 0.69 0.7 0.674 0.931
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Tool fault diagnosis was carried out using vibration and cutting force signal. Discrete wavelet features were
extracted through discrete wavelet transformation from the acquired vibration and cutting force signals. The
transformation yielded 8 features, V1 to V8 for each signal. Significant features, which give relevant
information about different classes of tool condition, were selected by using J48 algorithm. The tree
selected 6 features out of 8 as significant for cutting force signal and 3 features for vibration signal. Naïve
Bayes algorithm was used to classify the faulty condition of the tool. 10 fold cross validation was used to
train the algorithm. The algorithm was trained with 66% of total data and remaining 34% as testing data.
Naïve Bayes algorithm classified the instances with 96.667% accuracy using cutting force signal while
70% accuracy using vibration signal. Very characteristic pattern in cutting force signal makes it possible
to classify tool faults effectively. Hence, cutting force signals are best signals for fault diagnosis in
comparison to vibration signals.
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