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Abstract: The geometric model and the analysis model can be unified together
through the isogeometric analysis method, which has potential to achieve seam-
less integration of CAD and CAE. Parametric design is a mainstream and success-
ful method in CAD field. This method is not continued in simulation and
optimization stage because of the model conversion in conventional optimization
method based on the finite element analysis. So integration of the parametric mod-
eling and the structural optimization by using isogeometric analysis is a natural
and interesting issue. This paper proposed a method to realize a structural optimi-
zation of parametric complex shapes by using isogeometric analysis. By the given
feature curves and the constraints, a feature frame model is built. Based on the
feature frame model, a parametric representation of complex shape is obtained.
After adding some auxiliary curves, the feature frame model is divided into many
box-like patches in three dimension or four-sided patches in two dimension.
These patches are built into parametric patches by using volume interpolation
methods such as Coons method. Based on the parametric patches, isogeometic
analysis is applied. Thus, the relationships are constructed among the size para-
meters, the control points and the physical performance parameters. Then the sen-
sitivity matrix could be derived based on the relationships. The size optimization
is carried out in the first stage by taking the size parameters as variables. Based on
the result of size optimization, shape optimization with the constraints of stress is
carried out in the second stage by taking the control points as variables. Serval
planar complex shapes are taken as example to verify our method. The results ver-
ify that the parametric modeling and structural optimization can be united together
without model conversion. Benefit from this, the optimization design can be exe-
cuted as a dark box operation without considering the concrete modeling and ana-
lysis by input of the sizes, constraints and loads.

Keywords: Isogeometric analysis; parametric design; structural optimization;
sensitivity analysis; complex shape

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Modeling in Engineering & Sciences
DOI:10.32604/cmes.2020.09896

Article

echT PressScience

http://dx.doi.org/10.32604/cmes.2020.09896
http://dx.doi.org/10.32604/cmes.2020.09896


1 Introduction

In the stage of product optimization design, phase, the initial CAD model can be optimized based on the
results obtained during the simulation analysis phase. The optimal CAD model improves the performance of
the CAD products [1–4]. Structural optimization has always been an important research area because it
usually attempts to integrate structural analysis, optimization algorithms and geometric modeling into an
automated design. The main purpose of structural optimization is to improve structural characteristics,
such as reducing the stress concentration and weight, and increasing the stiffness by changing the
structure boundary geometry. Optimization is divided into three stages: size optimization, shape
optimization and topology optimization [5]. Topological optimization is to determine the best product
prototype by changing the topological structure according to the best force transmission path in a given
material design domain. Shape optimization takes the boundary shape of the structure as the optimization
object. It takes the node coordinates as the design variables. Finally it improve the performance of
product by changing the boundary shape [6–7]. Size optimization is the optimization of discrete
dimensional variables to determine the final accurate dimensional model of the product.

In traditional structural optimization, the design model is converted into the finite element model in the
process of applying FEA method. Transformation of design model, analysis model and optimization model
leads to inaccuracy and tediousness. In order to describe the boundaries to be optimized, earlier method took
node coordinates as design variables [8]. Taking the node coordinates of finite element model has the
following disadvantages [11]. Firstly, a large number of design variables are needed to describe the shape
of the boundary. Secondly, the independent changes of each node in the optimization iteration can easily
lead to grid distortion and distortion. Thirdly, the model of design, analysis and optimization are not
unified, so that data transmission can only be unidirectional.

Isogeometric optimization method has received more and more attentions recently [9–10]. Benefiting
from the superiority of splines in shape expression, shape optimization based on isogeometric Analysis
has achieved great success [12–13]. However, the current isogeometric analysis and optimization methods
encounter difficulties when facing the complex shapes or models because of the complexity existing in
the stage of construction and analysis.

For the 2D complex shapes, we do not directly treat design model but its feature frame model as the
optimization object. In this way, the design variables are greatly reduced. The optimization object is
closer to the designer’s intent since the feature sizes of the product are mainly mainly the designer’s
concern. The feature frame model is used to control the shape of overall model and detail. The designer
is allowed to edit the product model by a few feature parameters. Thus, the parametric modeling based on
feature sizes and the optimization based on the parametric model are unified together. The contributions
of this paper as follows:

1) A framework supporting parametric modeling, isogeometric analysis and optimization is proposed.
The framework supports to construct the relations existing among the design size variables, control points
and physical performance parameters, which will help to derive the sensitivity matrix for optimization.

2) Structural optimization including shape and size optimization is realized with the help of sensitivity
matrix to reach the optimization of global and local performance by taking the sizes and control points as the
design variables.

2 Related Works

The isogeometric analysis method based on volume parametric model was first proposed by Hughes in
2005 [14]. Compared with other methods, he application of isogeometric analysis to product design has more
advantages. The consistency of the design model and the analysis model are ensured, and the seamless
integration between the models is achieved. It will obtain more precise result than the traditional finite
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element method which uses geometry approximation. The current research topics of isogeometric analysis
include: 1) the basic theory of isogeometric analysis, including accuracy calculation, convergence,
continuity and singularity, and so on [15–16]; 2) improvement of Isogeometric analysis method, such as
boundary element method, collocation method, etc. [17–18]; 3) extension of isogeometric analysis based
on various spline basis functions [19–20]; 4) application of geometric analysis for various practical
applications [21–22]. Before widely exploited in engineering filed, isogeometric analysis of complex
shapes is an important and necessary issue. Due to the inherent attribute of volume parameterization
presented with tensor product, parameterization and analysis of complex shapes is a bottleneck problem.
There have been some works that try to solve this problem, such as wear coupling and trimmed multi-
patch merging or tearing [35–36].

We call the optimization method based on isogeometric analysis as isogeometric optimization, which
has been carried out in the field of size optimization, shape optimization and topology optimization. Great
research progress has been made in shape optimization based on isogeometric optimization benefiting
from the superiority of splines in expressing shape [23–28]. There have some tentative studies on
topology optimization, but the current research has not made much progress due to the limitations of the
spline function in expressing topology [29–32]. There has few studies on size optimization based on
isogeometric optimization [33,42–46], because it is not an intuitive way to present the curved shapes
expressed as splines into sizes which are mostly horizontal, vertical, and angular. At the same time, the
shapes expressed by splines are mostly free shapes, and parametric modeling of these shapes is not a
trivial work. Since isogeometric optimization uses NURBS splines as basis function, which improves the
continuity of the computational domain, sensitivity analysis becomes an important issue in isogeometric
optimization problems [34].

3 Overview of Our Algorithm

In our method, a feature frame model composed of feature curves is firstly constructed. The feature
curves can be acquired through given sizes or extracting from a point cloud model. A parametric feature
frame model can be driven to modify by adding some constraints. Then the feature frame model is
divided into many box-like subdomains by adding some curves. Volume interpolation such as Coons
method and the optimization methods applied on the inner control points are used to create volumetric
solid. By using the IGA method, displacement, stress and other physical parameters of each control point
can be obtained after applying boundary conditions and constraints on to the analysis model [37].
The relationships between physical parameters and characteristic parameters are established. According
to the above established relationships, the sensitivity matrix can be obtained by the derivatives of
physical parameters with respect to feature parameters. Through the optimization algorithm and the
sensitivity matrix, the feature parameters and the corresponding feature frame model are updated until
the given iteration termination conditions are satisfied. The work process of product optimization
design is shown in Fig. 1.

Feature size

Feature curve Feature frame model All control points Isogeometric 
analysis

Size or shape 
Optimization 

Feature size value 
updated

Iterative 
termination

End optimization

Adding constraint Coons interpolation

Sensitivity matrixN

Y

Figure 1: Flow chart of optimization process based on feature frame
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4 Generation of 2D Parametric Complex Model

4.1 Domain Composition
The first step of the isogeometric analysis is creating the parametric computational domain.

Computational domain with complex boundary or topology is supposed to be divided into multi
parametric quadrilateral computational domains. This problem is similar to the domain decomposition
method by dividing the solving region into a number of sub-systems or sub-regions according to some
certain rules. The methods can be divided into two categories, non-overlapping subdomain decomposition
and overlapping domain decomposition, as shown in Fig. 2. In the figure, (a) denotes the None-
overlapping domain decomposition, (b) denotes the overlapping domain decomposition.

Assuming the computational domain � is divided into a series of subdomain {�i}, the overall domain
with overlapping domains can be expressed as follows:

� ¼ �1 [ �2……�n; �i \ �j 6¼ [; i 6¼ j:

And the non-overlapping domain is,

� ¼ �1 [ �2……�n; �i \ �j ¼ [; i 6¼ j:

4.2 Parametric Modeling Method
In this paper, all the subdomains denote NURBS surfaces, so the objective of modeling is to construct

these subdomains. A feature frame model is consisted of feature points, feature curves or feature surfaces.
The feature points mainly emphasize the morphological location of details but they are inadequate to
describe the whole shape. The shape of the surface has a specific function, which is synthesized by the
feature curves. Though the whole content of the shape can be expressed, it is too over complicated and
not easy to be operated. The feature curves contain important modeling information that can be linked to
the feature points and the feature surfaces. They have no cumbersome operations caused by excessive
number of points. They also have no redundancy of surfaces, so the processing of the feature curves is
more superior to that of the feature points and feature surfaces.

Here, feature frame model is only composed of feature curves. The feature curves can be generated by
curve parameterization method by giving the sizes. The feature curves can also be extracted from point
cloud models. All the feature curves are linked by all kinds of geometric constraints. The whole
process is depicted in Fig. 3.

When constructing the feature curve frame, the following basic principles should be considered when
designing the characteristic curve: 1) Feature curves have semantic meaning in order to reflect the shape,
size and position of the design object; 2) The feature curves are easy to edit in order to control the shape
or size during the interactive operation; 3) The feature curves are simple in order to reduce the difficulty
of modeling.

Figure 2: Decomposition with overlapping domains and non-overlapping domains
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Following the three principles, the curves of profiles and sections are selected as feature curves, as well
as the curves with design significance. The feature curves are stratified into geometric layer, constraint layer
and semantic layer. The geometric layer is generally composed of control points, knot vectors or interpolation
points. The layer constitutes the lowest level of the feature curve. The constraint layer is composed of the
constraints of geometry, dimension and topology, which are generated during the process of generation
and modification of feature curves. The semantic layer describes the semantic parameters and functions of
the feature curves. The semantic parameters are defined for the control feature curves according to the
actual requirements, such as height, length, width, girth.

The mathematic form of the feature curve can be defined as F = {D; R; S}. F denotes the feature curve. D
is the set of control points. R is the constraint type illustrated in Tab. 1. S is the semantic parameter of the
feature curve.

After generation, the feature frame can be modified to get a new model. There are two ways to realize the
modifications: size-driving and sketch-driving. Size-driving means to drive the target feature curve by
modifying its sizes. Sketch-driving refers to driving the target feature curve by sketch interaction. During
the process of driving, it is necessary to use appropriate constraint solving methods to maintain the
constraints between the characteristic curves. Resultantly, a new feature frame can be generated.

Figure 3: Construction of parametric model through feature elements

Table 1: Constraints of feature curves

Constraint
classification

Simple constraint (SC) Complex constraint (CC)

Geometric
constraint

Topologic
constraint

Size constraint Compound constant

Unitary
constraint

Self-symmetry (F1) Coplanar (F2)
Collinear (F3)

Curve length (F4) Polygon constraint (F5)
Control point following
motion (F6)
Self-intersection (F7)
Surface constraint (F8)
Single loop constraint (F9)
Double loop constraint (F10)

Binary
constraint

Symmetry (F11) Concurrent (F12)
Coplanar (F13)
Tangent (F14)

Size proportion (F15)
angle (F16)

Quadrant constraint (F17)

CMES, 2020, vol.124, no.1 207



Based on the feature frame, some key points are generated according to the given sizes and the
parametric relations among them. On the basis of these key points, all the boundary curves of the four-
sided subdomain can be obtained. If we only discuss the case in two dimension, all the subdomains
denote the NURBS surfaces. The feature frame is divided into multi subdomains by adding some curves.
Then all the control points of each subdomain can be acquired using the interpolation method such as
Coons method. Accordingly, the parametric representation of the whole model can be finished. Thus, the
relation between the size parameters and the control points can be built.

If we discuss the case in three dimension, the thing gets complicated. The first difficulty exists in the
segmentation of the feature frame. Dividing the feature frame into many cube-like subdomains is far from
a simple task. The second difficulty exists in the volume parameterization. Construction of volume
parameterization for each subdomain is the core task of the research of parameterization and has attracted
many scholars’ interests. Here we only focus on the two dimensional case.

5 Isogeometric Analysis of Complex Model

5.1 Basic Formulation of IGA
If given a set of knot vectors ½n1; n2; n3;……; nnþpþ1�, the B-spline curve can be defined as [34],

CðnÞ ¼
Xn
i¼1

Ni;pðnÞPi (1)

where Pi is the set of control points. Ni;p is the B-spline basis function with the order p. Similarly, the B-spline
surface can be defined as,

Sðn; gÞ ¼
Xn
i¼1

Xm
j¼1

Ni;pðnÞNj;qðgÞPi;j (2)

B-spline solid is defined as,

V ðn; g; fÞ ¼
Xn
i¼1

Xm
j¼1

Xl
k¼1

Ni;pðnÞNj;qðgÞNk;rðfÞPi;j;k (3)

In this paper, the linear elastic problem is taken as an example for study. The principle of minimum
potential energy is applied to obtain the equation of equilibrium according to relative mechanics
principles and variation principles.

Ku ¼ f (4)

where u is the array of unknowns for the control points. f is the loads applied on the model. K is the stiffness
matrix presented as follows,

K ¼
Z
�

BTDBd� (5)

To calculate the stiffness matrix K, three domains are defined. They are the physical domain � and its
subdomain or element �e, the parameter domain �̂ and its subdomain or element �̂e, and the parent domain
~�, respectively. The relative mapping relations are defined as follows. ~fe :

~� ! �̂e is the mapping from the
parent domain to the parameter subdomain. S : �̂e ! �e is the mapping from the parameter subdomain to
the physical subdomain. Therefore, the function is S � ~fe for mapping Xe : ~� ! �e from the parent domain
to the physical subdomain. For the three dimensional case, an element in the parameter space is
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�̂e ¼ ½ni; niþ1� � ½gj; gjþ1� � fk ; fkþ1½ �. Any point in parameter space n; g; fð Þ can be expressed as follows

with the point ~n; ~g; ~f
� �

by the mapping ~fe :
~� ! �̂e

n
g
f

24 35 ¼ ~feð~nÞ ¼ 0:5�
niþ1 � nið Þ~nþ niþ1 þ nið Þ
gjþ1 � gj
� �

~gþ gjþ1 þ gj
� �

fkþ1 � fkð Þefþ fkþ1 þ fkð Þ

264
375 (6)

The Jacobian transformation matrix of mapping S : �̂e ! �e is

J1 ¼

@x

@n
@x

@g
@x

@f
@y

@n
@y

@g
@y

@f
@z

@n
@z

@g
@z

@f

26666664

37777775 (7)

The Jacobian transformation determinant for the transformation from the parameter coordinate to the
parent unit coordinate is

J2 ¼

1

2
jiþ1 � jið Þ 0 0

0
1

2
hiþ1 � hi

� �
0

0 0
1

2
ziþ1 � zið Þ

266664
377775 (8)

The Jacobian determinant of mapping Xe : ~� ! �e is

J ¼ J1 � J2 (9)

The integral form of the stiffness matrix in the whole physical space is as follows.

K ¼
Xnel
e¼1

Z
�e

Ke ¼
Xnel
e¼1

Z
�e

BT
eDBed�e ¼

Xnel
e¼1

Z
�̂e

BT
eDBe J1j jd�̂e ¼

Xnel
e¼1

Z
~�e

BT
eDBe Jj jd ~�e (10)

where ne is the number of the elements or subdomains. The item B is defined as follows.

B ¼ B1 B2 � � � Bs � � � Bne½ �T (11)

Bs ¼

@Rs

@x
0 0

@Rs

@y

@Rs

@x
0

0
@Rs

@y
0 0

@Rs

@z

@Rs

@y

0 0
@Rs

@z

@Rs

@z
0

@Rs

@x

2666664

3777775 (12)

Rs is defined as follows,
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Rs ¼ Ri;p nð ÞRj;q gð ÞRk;r fð Þ
s ¼ k � 1ð Þ � m� nþ j� 1ð Þ � nþ i; 1 	 i 	 n; 1 	 j 	 m; 1 	 k 	 l

ne ¼ l � m� n

(13)

Then, the matrixes of strain and stress can be computed as follows,

e ¼ 1

2
ruþrTu
� � ¼ Bu (14)

r ¼ De ¼ DBu (15)

where, D is a constant matrix.

For the plane stress problem, D if defined as follows,

D½ � ¼ E

1� l2

1 l 0
l 1 0

0 0
1� l
2

264
375 (16)

For the plane strain problem, D if defined as follows. Where E represents the Elastic Modulus, l
represents Poisson’s ratio.

D½ � ¼ E 1� lð Þ
1þ lð Þ 1� 2lð Þ

1
l

1� l
0

l
1� l

1 0

0 0
1� 2l
2 1� lð Þ

2666664

3777775 (17)

5.2 IGA for Multi-Patches
One model can be divided into many subdomains. The whole interface curve is shared by two

subdomains. The equation of equilibrium for each subdomain is integrated into the global equation of
equilibrium. By solving the equation, the analysis of the whole structure is realized. If the two
subdomains don’t share the same interface curve, a connectivity matrix is imported to establish a
correspondence between the two subdomains. The following derivation is in accordance with the
subdomains with the same interface curve [38].

Considering a plane linear elastic with a regionΩ, the regionΩ is divided into r non-overlapping regions
�m (m = 1, 2, … , r). Suppose r = 2, � ¼ �1 \ �2, as shown in Fig. 4.

�rrm ¼ bm in �m

rm � nm ¼ tm on Smr
um ¼ um on Smu
r1 � n1 ¼ �r2 � n2 on S�

u1 ¼ u2 on S�

(18)

where um denotes the unknown displacement field. rm denotes the stress tensor. bm denotes volume force. tm

and um are the external traction and the displacement respectively for the boundary Sm that is composed of Smr
and Smu . n

m is the outward unit normal of Sm. The last two equations ensure the continuity of traction and
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displacement of boundary S�. n1 and n2 are the outward unit normal of �1 and �2 respectively. According to
the method [38], the stiffness matrix in multiple patches is expressed as:

K ¼ Kb þ Kn þ Knð ÞT þ Ks (19)

The relevant stiffness matrix is given by:

Kb ¼
X2
m¼1

Z
�m Bmð ÞTDmBmd�m (20)

Kn ¼ �v
R

S� R1ð ÞTnD1B1dS � 1� vð Þ R S� R1ð ÞTnD2B2dS

v
R

S� R2ð ÞTnD1B1dS 1� vð Þ R S� R2ð ÞTnD2B2dS

" #
(21)

Ks ¼
R

S�a R1ð ÞTR1dS � R S�a R1ð ÞTR2dS

� R S�a R2ð ÞTR1dS
R

S�a R2ð ÞTR2dS

" #
(22)

Rm
i;j n; gð Þ is a binary NURBS basis function supporting the mth patches

�̂ ¼ n1; nnþpþ1

� �� g1; gmþpþ1

� �
.

Ri;j n; gð Þ ¼ Ni;pðnÞNj;qðgÞ (23)

The force vector f is expressed as

f ¼
X2
m¼1

Z
�m Rmð ÞTbmd�þ

X2
m¼1

Z
Smr Rmð ÞT tmdS (24)

Substitute Eqs. (19) and (24) into Eq. (4), we can get the equation of equilibrium for the whole domain.
By solving the equation, we can get the matrix of displacement u for each patch. If the number of subdomain
is more than two, the relevant matrices of stiffness and load are listed here.

Figure 4: Decomposition of the solution domain

CMES, 2020, vol.124, no.1 211



Kb ¼
Xnph
ph¼1

Z
�ph Bph
� �T

DphBphd�ph

Kn ¼
�v

Pnph�1

ph¼1

R
S� Rph
� �T

nDphBphdS � 1� vð Þ Pnph�1

ph¼2

R
S� Rph�1
� �T

nDphBphdS

v
Pnph�1

ph¼1

R
S� Rphþ1
� �T

nDphBphdS 1� vð Þ Pnph�1

ph¼2

R
S� Rph
� �T

nDphBphdS

266664
377775

Ks ¼

Pnph�1

ph¼1

R
S�a Rph
� �T

RphdS � Pnph�1

ph¼2

R
S�a Rph�1
� �T

RphdS

� Pnph�1

ph¼1

R
S�a Rphþ1
� �T

RphdS
Pnph�1

ph¼2

R
S�a Rph
� �T

RphdS

266664
377775

f ¼
Xnph
ph¼1

Z
�ph Rph
� �T

bphd�þ
Xnph
ph¼1

Z
Sphr

Rph
� �T

t phdS

(25)

where ph denotes the index of the subdomain, nph is the total number of all the subdomains.

6 Structural Optimization

6.1 Optimization Principle
For the linear elastic problem, the single object of structure optimization is usually to minimize the

volume or the area of the structure [39–41]. There are two optimization function. The objective function
w1 is represented for the flexibility of the model by the formula w1 bi½ �ð Þ ¼ f Tu. The objective function
w2 is represented for the von Mises stress by the formula w2 aj

� �� � ¼ rvon. The design variables bi is the
feature sizes, and aj is the coordinate component of control points to be optimized. In two dimensional
case, there are two coordinate components denoting x and y. All the coordinate components of the
optimized control points are arranged into a linear set aj

� 	
.

min w1 bi½ �ð Þ ¼ f Tu

w2 aj
� �� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xx þ r2yy þ rxx � ryy

� �2 þ 6r2xy
2

s
st: V 	 V �

Ku ¼ f

aj
� �

min 	 aj
� � 	 aj

� �
max

bi½ � min 	 bi½ � 	 bi½ �max

(26)

6.2 Derivation of Sensitivity Matrix
The derivative of objective function in the formula (26) with respect to ai needs to be calculated.

dw1

dbi
¼ d f Tuð Þ

dbi
¼ df T

dbi
uþ f T

du

dbi
(27)

Since the load vector is independent of bi, so
df T

dbi
¼ 0. Thus the first item of the formula (27) is

eliminated and the following formula comes out.
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dw1

dbi
¼ f T

du

dbi
(28)

To calculate the formula (28), the item
du

dbi
is required to compute. From the equation of equilibrium

Ku ¼ f, we can get the formula (29) by deriving the equation on both sides of it. The formula (30) is
also obtained by transposing the item.

dK

dbi
uþ K

du

dbi
¼ 0 (29)

du

dbi
¼ �K�1 dK

dbi
u (30)

Taking the formula (30) into the formula (28), we can get the following formula since the matrix K is
symmetric.

dw1

dbi
¼ f T

du

dbi
¼ �f TK�1 dK

dbi
u ¼ �uTKTK�1 dK

dbi
u ¼ �uT

dK

dbi
u (31)

According to the chain rule of derivation, we can get,

dw1

dbi
¼� uT

dK

daj
� daj
dbi

u

According to the definition of aj, the item
daj
dbi

can be written as
d Pj:x Pj:y½ �

dbi
. Since we have constructed

the relation between the control points and the feature sizes in Section 4.2, the item
daj
dbi

can be derived from

the parametric representation of each subdomain.

For another object function,

dw2

daj
¼ drvon

daj
(32)

If defining r
^ ¼ ½rxx ryy rxx � ryy

ffiffiffi
6

p
rxy�, we can get rvon ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
^
r
^T
=2

q
and then get the

sensitivity matrix according to the partial derivative of rvon with respect to aj.

drvon
daj

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2r
^
r
^T

q r
^ dr

^T

daj
(33)

If introducing a matrix A, r
^
can also be written as the following matrix.

r
^T ¼

1 0 0
0 1 0
1 �1 0
0 0

ffiffiffi
6

p

2664
3775 r xx ryy rxy½ �T¼ ArT (34)

If defining C ¼ ATA, we can get following formula since r ¼ ½rxx ryy rxy � ¼ DBu.

CMES, 2020, vol.124, no.1 213



drvon
daj

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2rCr

p rC
dðrTÞ
daj

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2rCr

p rCDB
duT

daj
(35)

Taking the formula into the Eq. (33), we can get

drvon
daj

¼ � rCDBffiffiffiffiffiffiffiffiffiffiffiffi
2rCr

p ðK�1 dK

daj
uÞT (36)

Calculating both
dw1

daj
and

dw2

daj
requires to solve

dK

daj
. For K ¼ Kb þ Kn þ Knð ÞT þ Ks, we should firstly

get
@Kb

@aj
;
@Kn

@aj
;
@Ks

@aj
. The problem is further deduced as

@Kb
e

@aj
;
@Kn

e

@aj
;
@Ks

e

@aj
since Kb;Kn;Ks are all assembled by

Kb
e ;K

n
e ;K

s
e. The design variable aj is not included in Ks

e, so
@Ks

e

@aj
will vanishes.

@Kb
e

@aj
¼
X2
m¼1

ð
Z

�m

@ Bm
e

� �T
@aj

Dm Bm
e Jmj jd�m þ

Z
�m Bmð ÞTDm

@ Bm
e

@aj
J mj jd�m

þ
Z

�m Bm
e

� �T
Dm Bm

e

@ Jmj j
@aj

d�mÞ
(37)

@Kn
e

@aj
¼

@Kn;11
e

@aj

@Kn;12
e

@aj
@Kn;21

e

@aj

@Kn;22
e

@aj

2664
3775¼ 1

2
�

� R S�e R1
� �T

nD1 @B
1
e

@aj
dS � R S�e R1

� �T
nD2 @B

2
e

@aj
dSR

S�e R2
� �T

nD1 @B
1
e

@aj
dS

R
S�e R2
� �T

nD2 @B
2
e

@aj
dS

2664
3775 (38)

When calculating
@Kn

e

@aj
;
@Ks

e

@aj
, we need to integrate along the curve S. Under the premise of ensuring the

continuity of the sub-patches, the Gaussian integral of the linear element can be used to solve the interface
integral, that is to calculate the sum of the integrand which is transformed by the curve S�.

@kn;11e

@aj
¼ � 1

2
�
Z

S�e R1
� �T

nD1 @B
1
e

@aj
dS¼�

Xngp
i¼1

R1
� �T

nD1 @B
1
e

@aj
wi (39)

In the formula, ngp denotes the number of Gaussian integration points, and wi is the weight.

@Kn
e

@aj
¼ 1

2
�

�Pngp
i¼1

R1
� �T

nD1 @B
1
e

@aj
wi

Pngp
i¼1

R1
� �T

nD2 @B
2
e

@aj
wiPngp

i¼1
R2
� �T

nD1 @B
1
e

@aj
wi

Pngp
i¼1

R2
� �T

nD1 @B
2
e

@aj
wi

2664
3775 (40)

In the above formula, the items of
@Bm

e

@aj
and

@ Jmj j
@aj

should be derived. In order to calculate these two

items, two matrices are defined in the first place.

Derivative on both sides of Eq. (11):

@Bm
e

@aj
¼ @ Bm

1 Bm
2 � � � Bm

s � � � Bm
ne

� �
@aj

(41)

According to Eq. (12):
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Bs ¼

@Rs

@x
0 0

0
@Rs

@y

@Rs

@y

0 0
@Rs

@x

2666664

3777775 (42)

We can get Eq. (43) by substituting Eq. (42) into Eq. (11):

Bm
e ¼

R1;x 0 0
0 R1;y R1;y

0 0 R1;x

R2;x 0 0
0 R2;y R2;y

0 0 R2;x

� � �
� � �
� � �

Rne;x 0 0
0 Rne;y Rne;y

0 0 Rne;x

24 35 (43)

Two matrices Tm; T̂m can be defined by elements of Bm
e . B

m
e can be obtained by Tm

e through element
transformation, and T̂m

e can be obtained by mapping transformation of Tm
e .

Tm
e ¼

R1;x R1;y
R2;x R2;y

..

. ..
.

Rne;x
Rne;y

26664
37775 T̂m

e ¼

R1;n R1;g
R2;n R2;g

..

. ..
.

Rne;n
Rne;g

26664
37775 (44)

According to Eq. (7):

Jm
1
¼

dx

dn
dx

dg
dy

dn
dy

dg

2664
3775 (45)

We can get,

T̂m
e ¼ J1

mTm
e (46)

If the formula (3) is written into a matrix formation, we can get the following expression for one
calculating element.

Ve
m n; gð Þ ¼ x

y

� �
¼ Pm

e

� �T
Rm
e (47)

where Rm
e ¼ R1 R2 � � � Rs � � � Rne½ �T and Rs have been defined in the formula (13). Pm

e is the
coordinate matrix of all the control points in a calculating element.

Pm
e ¼ x1 x2 � � � xne

y1 y2 � � � yne

� �
(48)

On derivate of the formula (47) on both sides, we can get the formula (49).

@Vm
e

n
@Vm

e

g

� �
¼ @Rm

e

n
@Rm

e

g

� �
Pm
e þ Rm

e

@Pm
e

n
@Pm

e

g

� �
(49)

The second item after the equal-sign of the formula (49) is equal to zero. According to the definition of
T̂ , the following formula can be derived.
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Jm
1
¼ T̂m

e P
m
e (50)

On the derivate of the formula (46) and the formula (50) on both sides respectively, we can get the
formula (51).

@Tm
e

@aj
¼ �Tm

e

@Jm
1

@aj
Jm1
� ��1 ¼ �Tm

e

@ Pm
e

� �T
@aj

T̂m
e Jm1
� ��1 ¼ �Tm

e

@ Pm
e

� �T
@aj

Tm
e (51)

According to the definitions of the matrices B and T, which are defined in the formula (11) and (43)

respectively, we can get
@Bm

e

@aj
by rearranging the non-zero items of

@Tm
e

@aj
.

Next,
@ Jme
 
@aj

is calculated. To avoid confusion with the parameter of J2, the parameter of aj is written into

the form ap since there is no relationship between them.

@Pm
e

@aj
¼

@x1
@aj

@y1
@aj

@x2
@aj

@y2
@aj

..

. ..
.

@xne
@aj

@yne
@aj

26666666664

37777777775
(52)

According to formula (13), formula (53) is obtained:

Jm
2
¼

1

2
niþ1 � nið Þ 0

0
1

2
gjþ1 � gi
� �

264
375 (53)

And we can get the following equation based on Eq. (15):

Jme
  ¼ Jm1

  J2mj j (54)

Taking the derivative of both sides of formula (53) to get formula (55):

@ Jme
 
@aj

¼
@ Jm

1

  � Jm
2

 � �
@aj

¼ Jm
2

  � @ Jm
1

 � �
@aj

¼ Jm
2

  � Jm1
  � tr Jm1

� ��1 @J
m
1

@aj

� �
¼ Jm

2

  � Jm1
  � tr Jm1

� ��1 @ Pmð ÞT
@aj

Mm

 !

¼ Jm
2

  � Jm1
  � tr Jm1

� ��1
Mm @ Pmð ÞT

@aj

 !
¼ Jme
  � tr �m @ Pmð ÞT

@aj

 ! (55)

where tr (Z) denotes the sum of the diagonal elements of Z. The load applied on the model is independent of

the design variable, so the derivative of the element load array F to the design variables is 0, i.e.,
@f e
@aj

= 0. By the

above Eqs. (51) and (55), we can learn
@Bm

e

@aj
and

@ Jme
 
@aj

.
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Bringing these two data into Eqs. (36), (37) and (39), we are able to respectively calculate
@kbe
@aj

which is

the derivative of element volume matrix to design variable,
@kne
@aj

and
@kse
@aj

are the derivatives of the element

coupling matrix to design variables.

Optimization algorithm is the key technology that influences the quality and efficiency of shape
optimization. This paper employs the method of moving asymptotes called MMA [36]. The MMA
algorithm is used to update the design variables in each iterative step by using the sensitivity matrix.

7 Examples and Discussions

We select two planar complex models to verify our method. The first is a connecting-rod and the
second is a load-bearing part. In the two examples, the elasticity modulus E is equal to 1e5 and the
Poisson’s ratio ν is equal to 0.3. Since the constraints of each model are not same, a general feature
frame model cannot be given. The size optimization is performed directly on the feature frame model
with the objective of flexibility by taking the size parameters as design variables. Based on the result of
the size optimization, shape optimization is realized with the objective of equivalent stress by taking
the control points as the design variables.

7.1 Example 1: Optimization of Connecting-Rod
The connecting-rod model has 9 size parameters. The feature frame model is constructed according to

these size parameters, as shown in Fig. 5a. After adding some auxiliary curves, the feature frame model is
subdivide into 12 sub-patches. Each sub-patch is interpolated as NURBS surfaces, as shown in Fig. 5b. The
degree of the 12 sub-patches is equal to 2 in both parameter directions of U and V, and the knot vectors in the
two parameter directions are {0,0,0,1,1,1}. Giving all the parametric equations is a tedious work, so we select
some key points and give the equations of them. All the parameters in the equations are denoted in Fig. 5a.
Then, all the control points of all the subdomains can be obtained using the Coons method on the basis of
these key points. The constraints listed in the Tab. 1 are applied on the parametric model, such as the
geometric constraint F1 and F11, the topologic constraint F3 and F14, the size constraint F4. Since
parametric design for 2D model is not a complex work, we will not give the detail here.

P1 ¼
x1
y1

� �
¼ �1R1þ 0R2 � � � 0L2

0R1þ 0R2 � � � 0L2
� �

¼ �R1

0

� �

P2 ¼
x2
y2

� �
¼ 0R1þ 0R2þ � � � 1

2
L5þ � � � 0L2

0R1þ 0R2þ � � �L3 � � � 0L2

24 35 ¼
1

2
L5

L3

24 35
P3 ¼

x3
y3

� �
¼ 0R1þ 0R2þ � � � 1L5þ � � � 0L2

0R1þ 1R2þ � � � 0L2

� �
¼ L5

R2

� �
P4 ¼

x4
y4

� �
¼ 0R1þ 0R2þ � � � 1L1þ 1L5 � � � 0L2

0R1þ 0R2þ � � � � 1R5 � � � 0L2
� �

¼ L1þ L5

�R5

� �

P5 ¼
x5
y5

� �
¼ 0R1þ 0R2þ � � � 1L1þ 1L5þ 1

2
L2� L1ð Þ � � � 0L2

0R1þ 0R2þ � � � � 1L4 � � � 0L2

24 35 ¼
1

2
L1þ L2ð Þ þ L5

�L4

24 35
The two distributed load P1 = 100 N and P2 = 100 N are applied to the center of the right hole. Full

constraint is applied to the left hole. The objective of optimization is to minimize the global flexibility
and local equivalent stress of the structure. Optimization functions consists of two functions. The first is
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w1 Pi½ �ð Þ ¼ f Tu and the second is w2 Pi½ �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xx þ r2yy þ rxx � ryy

� �
2 þ 6r2xy

2

s
. During the optimization

process, the area of the model is less than a given value and the rules of the Elasticity.

A global flexibility optimization is performed, then an optimization of the local equivalent stress is
applied. As shown in Figs. 6a and 6b, in the case of V ≤ V0 = 371, the flexibility is 610 and 507 before
and after optimization. As shown in Fig. 6c, the maximum equivalent stress before optimization is at the
slot. The slot is in a state of stress concentration with the value 4300. While in Fig. 6e, the maximum
equivalent stress is cut down to 3700. The optimization efficiency reaches 16%, with the area decreasing
and the stress concentration disappearing. The iteration process of objective functions is shown in Fig. 7.
The size parameters before and after optimization are shown in Tab. 2.

7.2 Example 2: Optimization of Load-Bearing Part
The second example is a load-bearing part from a planar flexible mechanism. As shown in Fig. 8a, the

constraints and loads are imposed the parametric model, and the layout of the sub-patches that amount to 34
is displayed in Fig. 8b. The degree of these sub-patches is 2 in both U and V parameter direction. The knot
vectors in the two parameter directions are {0, 0, 0, 1, 1, 1}. Similar with the first example, we select some
key points to give the formulation of them and then get the parametric representation of all the subdomains.

The constraints is also applied on the model, such as F11, F14 and F4. Fixed displacement constraints
are applied in three places depicted in the figure. The applied point load F is equate to 1000N. The target of
optimization is minimization of the flexibility w1 Pi½ �ð Þ ¼ f Tu and the equivalent stress

w2 Pi½ �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xx þ r2yy þ rxx � ryy

� �
2 þ 6r2xy

2

s
with the constraint of the area and the rules of the Elasticity.

P1 ¼
x1
y1

� �
¼ 0a1þ 0a2þ � � � 0L2

0a1þ 0a2þ � � � 1d þ 2eþ 1f 1þ 1g � � � 0L2
� �

¼ 0

d þ 2eþ f 1þ g

� �
P2 ¼

x2
y2

� �
¼ 1a1þ 1a2þ � � � 0h2

0a1þ 0a2þ � � � 1d þ 1eþ 1f 2þ � � � 0h2

� �
¼ a1þ a2

d þ eþ f 2

� �

P3 ¼
x3
y3

� �
¼

1a1þ 1a2� R1þ � � � 0h2
0a1þ 0a2þ � � � 1d þ 1

2
eþ � � � 0h2

" #
¼

a1þ a2� R1

d þ 1

2
e

" #

From the result presented in the Fig. 9, the flexibility is 4721 and 3800 before and after optimization with
the area constraint V 	 V0 = 862. The optimized rate was 19%. The optimization of equivalent stress follows
the size optimization. As seen in the Fig. 9c, the ring groove notch has the most severe stress concentration
with the value 32483. In Fig. 9e, the maximum equivalent stress is reduced after optimization with the

Figure 5: Connecting-rod. (a) The feature frame model with constraints and loads. (b) Layout of sub-
patches
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value 24175. The optimization efficiency of stress concentration is 29%. The iterative process of the
objective function is shown in Fig. 10. The parameters of the parametric load-bearing model before and
after optimization are shown in Tab. 3.

Figure 6: Optimization result of Connecting-rod. (a) Cloud chart of displacement in Y direction before
optimization. (b) Cloud chart of displacement in Y direction after optimization. (c) Cloud chart of
equivalent stress before optimization. (d) Cloud chart of equivalent stress after optimization. (e) Partially
enlarged figure for the area in (c) enclosed by the dotted line. (f) Partially enlarged figure for the area in
(d) enclosed by the dotted line
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Figure 7: Iterative process. (a) Optimization of flexibility. (b) Optimization of equivalent stress

Table 2: Dimensions before and after optimization of the connecting-rod model

Name of parameters Before optimization After optimization

R1 5.42 7.42

R2 4 4

R5 1 1

L1 15 15

L2 42 42

L3 5.13 5.267

L4 −4.33 −2.83

R6 1 3

R3 5 5

R4 4.2 2.8

Figure 8: Model of load-bearing model. (a) Dimensions of the load-bearing model. (b) Sub-patches layout
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Figure 9: Optimization result of load-bearing part. (a) Cloud chart of displacement in Y direction before
optimization. (b) Cloud chart of displacement in Y direction after optimization. (c) Cloud chart of
equivalent stress before optimization. (d) Cloud chart of equivalent stress after optimization. (e) Partially
enlarged figure for the area in (c) enclosed by the dotted line. (f) Partially enlarged figure for the area in
(d) enclosed by the dotted line

Figure 10: Iterative process. (a) For flexibility optimization. (b) For Equivalent stress optimization
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8 Conclusions

Our method has serval advantages. The method combines the parametric design method with the
isogeometric analysis. By constructing the relationship chain between design size parameters, control
points and physical performance parameters, the feature frame model is used to control the overall and
details of the shape. This allows the user to edit the product model through a few feature size parameters.
This also avoids the complex modeling operations caused by traditional shape optimization using finite
element nodes as design variables. Thus the parametric modeling and optimization are unified together.

Benefit from the parametric design, our method lightens the burden on the designer and transfer the
designer’s special attention from mesh operation during the stage of analysis and optimization to the
creative design itself. The designers will put their attentions on optimization of the key part sizes, without
taking into account nonsignificant sizes. It will be easier and more accurate to capture the designer’s
design intent, since it is a very important thing for computer-aided design software or computer-aided
engineering software.

Thirdly, the computation efficiency is significantly improved for the variables of design and optimization
are greatly reduced. In the design process, the interactions among the model of design, analysis and
optimization are more convenient. This greatly reduces the product research period. Due to the B-spline
basis function, the sensitivity matrix is easily acquired because the entire model has complete continuity.

It must be mentioned that the feature frame models presented in this paper is simple, so the constraints
between the feature curves are single and simple as well. Meanwhile, the Coons does not always work well if
the subdomains are not divided well when the model is complex. Henceforth, the next work is to construct
the feature frame model with complex feature elements and constraints. More volume parameterization
methods can also be applied onto the model. Thus, our method will be able to treat the more complex
optimization problem.
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Table 3: Dimensions before and after optimization of the load-bearing mode

Name of parameters Before optimization (mm) After optimization (mm)

a 55 55

b 42 42

c 37 37

d 5 2.13

e 2 2

f1 5 7.52

f2 5 3.17

g 2 0.4

h1 5 6.9

h2 5 3.21
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