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Abstract: This paper presents a topology optimization method for variable stiff-
ness composite panels with varying fiber orientation and curvilinear fiber path.
Non-uniform rational B-Splines (NURBS) based Isogeometric analysis (IGA) is
utilized for the numerical computation of the general minimum compliance pro-
blem. The sensitivity analysis of the structure compliance function for the density
and bi-layer orientation is conducted. The bi-layer fiber paths in the design
domain are generated using streamline method and updated by divided pieces
reselection method after the optimization process. Several common examples
are tested to demonstrate the effectiveness of the method. The results show that
the proposed method can generate more manufacturable fiber paths than some
typical topology optimization methods.

Keywords: Isogeometric analysis; fiber angle optimization; variable stiffness
composites

1 Introduction

Fiber reinforced composite materials have been widely applied in the automotive and aerospace
industries because of their high strength-to-weight ratios [1–5]. With the emergence of advanced
manufacturing technology et al Automated Fiber Placement (AFP) [6–8], variable-stiffness composite
panels with curvilinear fiber path can be manufactured. According to the previous studies [4,7], such
variable-stiffness composites (VSC) are more promising for lightweight structure design and optimization
compared with the traditional fiber-reinforced composites. Since the mechanical properties of VSC
strongly depend on the fiber orientations, a large amount of efforts have been made to optimize the fiber
orientations, as well as the material distributions using a variety of numerical strategies [5,9–11].

Topology optimization [12] is one of the most widely used structural optimization techniques for both isotropic
material structures [13–18] and composite structures [10,19,20]. In recent years, efficient topology optimization
methods have been developed, such as data-driven optimization method [21], high-efficiency isogeometric
topology optimization method [18,22,23] and feature-driven optimization method (FDO) [14,24,25].

For optimization of anisotropic composites, Stegmann et al. [20] used a solid isotropic material
penalization (SIMP) approach to solve the anisotropic multi-layer laminates topology optimization
problem. To exclusively deal with fiber orientations, discrete material optimization (DMO) was proposed
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[19,20]. The manufacturing constraint problems based on the DMO have been studied [26]. The element
angles are set as design variables and they are constantly updated to several specific constant values such
as (0°, ±45°, 90°) in the optimization process. Similar methods such as the shape functions with
penalization (SFP) [27,28], and the bi-value coding parameterization method (BCP) [29,30] were
developed. The element angles in these two methods are constantly updated by attaching to the shape
functions and logic bi-values respectively. Zhou et al. [31] proposed a multi-component topology and
material orientation optimization method (MTO-C) to optimize the densities and fiber angles for the
composite materials. The multi-components were employed to represent a set of materials with
different fiber orientations. In these methods, the fiber angles are set as several candidate values in the
design patches. The optimization problems are treated as multi-material topology optimization
problems. The free material optimization (FMO) method takes the material performance parameters as
the variables instead of element angles. Both the distribution of material and the material itself can be
freely varied in the FMO method [32,33]. As most of the fiber paths in variable-stiffness composites
are curvilinear and the fiber angles varied in the design domain, the most significant material
parameters are the fiber angles. The continuous fiber angle optimization method (CFAO) uses the
continuous element fiber angles as the design variables. As studied in the literatures [8,10,34], the
CFAO method are effective to optimize the fiber angles, but the continuous spatial variation of fiber
angle may lead to local minima problems. Different strategies such as Shepard interpolation [34], iso-
parametric projection method [10], Poisson’s equation for material orientation optimization [35], and
the normal distribution fiber optimization with fiber continuity (NDFO-C) method [8] are employed to
improve the manufacturability of the fibers.

The optimization techniques mentioned in the previous references generated and optimized the fiber
path based on the local fiber angles [6,10]. These fiber path generation methods are called indirect
parameterization techniques [8]. The disadvantage of these indirect methods is that additional treatment
considering manufacturability constraints is necessary in case of poor manufacturability, such as
discontinuous, and large curvature of the fiber paths. There is another method to generate and optimize
the fiber path called the “top-down” method. The fiber paths are firstly predefined by various parameters
and then the local element angles are calculated according to the tangent angle of the fiber paths. The
paths are directly optimized using the fiber path parameters as design variables [4,7,36–40]. Variety of
shape description functions, such as linear variation function [4], flow field function [7,36–40] and cubic
polynomial function [7,36–38] are employed to describe the fiber paths. These methods are more
convenient to obtain fiber geometric information and manufacturability constraints, such as fiber path
curvatures, gaps and overlaps. However, the geometric complexity of the fiber paths is limited [8,39].

As the geometric complexity may lead to numerical computation accuracy problems in the general
structure response analysis process, a new numerical computation method called isogeometric analysis
(IGA) is used to improve the accuracy and effectiveness [7,36–40]. The IGA [41] is a novel efficient
numerical method in modern computational mechanics [42]. The application of the IGA in shape and
topology optimization problems for variable stiffness composite shells are widely studied [7,36–38]. This
method shows advantages over traditional FEA methods in variable-stiffness fiber anger optimization
problems. It is found that the IGA is extremely suitable for shape and topology optimization of complex
shells and the VSC because of the accurate geometric representation and high-order continuity. Since the
element fiber angles differ in the design domain, high continuous basis functions are needed to ensure the
continuity of mechanical property along with the fiber path directions.

The concept of the IGA is firstly proposed by Hughes and his co-workers in 2005 [42]. Since then the
IGA received wide attention from researchers and developed rapidly in a variety of domains [43–46]. The
IGA directly uses the basis functions of a computer-aided design (CAD) model as the shape functions of
the computer-aided engineering (CAE) analysis model. The analysis element models exactly represent the
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geometry of the structures. Generally, the IGA models are based on NURBS [16,18,23], which is the most
thoroughly developed and most widely used CAD technology. In addition, high-order elements are used with
k-refinement strategies, which are very efficient and robust for solving physical problems [41,42]. The IGA is
more accurate than other CAE methods, such as finite element method (FEM), boundary element method
(BEM) and Meshless methods, especially for handling the model with complex boundaries [15,17,22,23].
Due to the high accuracy and high continuity, the IGA is widely used in shape optimization [47,48] and
topology optimization [18,49,50] problems to overcome the drawbacks of the traditional FEM. The
applications of the IGA in structural optimization are comprehensively reviewed in [18].

Most of former references considered singer layer fiber angle optimization problems [29–35]. However,
most of the straight fiber and variable-stiffness fiber-reinforced composites are manufactured by multiple
layers [51,52]. Multi-layered fiber angle optimization problems are considered in some of the former
literatures [7,36–40]. The two-layered variable-stiffness composites optimization problems and some
stiffen structure optimization problems also play an important part in composite structure design and
optimization [39,51–53].

In this paper, a bi-layer continuous fiber angle optimization (Bi-CFAO) method based on the IGA is
proposed to optimize the element densities and two-layered variable-stiffness composite fiber angles. The
fiber paths are generated using streamline functions. The partition reselection procedure is used to
recombine the local discontinuous regions and to generate the continuous fiber paths. Continuous fiber
paths are generated without local small curvatures, thus retaining the optimal result information of the
local element fiber angles to the maximum extent. Several numerical examples are presented to illustrate
the proposed method.

The organization of this paper is as follows. Section 2 briefly introduces the fundamentals of the IGA
framework and the basic theory of SIMP based Bi-CFAO method. Section 3 describes the proposed IGA
based Bi-CFAO method. And the numerical implementations are introduced. In Section 4, the fiber path
generation process and the density and angle optimization procedures are presented. Thereafter
benchmark examples and discussions are presented in Section 5 to demonstrate the efficiency and
stability of the proposed method. Finally, conclusion and future research are summarized in Section 6.

2 Basic Theory

2.1 Summary of NURBS for IGA
In the IGA [18,49,50], non-uniform rational B-splines (NURBS), constructed from B-splines, are

commonly used for the numerical discretization [54–57]. A knot vector Π, which consists of n spline
basis functions, is a sequence of non-decreasing real numbers representing parametric coordinates of a curve:

Π ¼ fg1; g2; � � � ; gnþpþ1g (1)

where p is the order of the B-spline. The interval [η1, ηn+p+1] is called a patch, and the knot interval [ηi, ηi+1)
is called a span. Given a knot vector, the B-spline basis functions are recursively defined following the Cox-
de Boor formula [58]:

For zero-order (p = 0),

Bi;pðgÞ ¼ 1
0

�
if gi � g < giþ1

otherwise
(2)

And non-zero order (p > 0)
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Bi;pðgÞ ¼ g� gi
giþp � gi

Bi;p�1ðgÞ þ
giþpþ1 � g

giþpþ1 � giþ1
Biþ1;p�1ðgÞ (3)

It is observed that the B-spline basis functions constitute a partition of unity.Xn

i¼1
Bi;pðgÞ ¼ 1 (4)

Two-dimensional B-spline basis functions are constructed as tensor products,

B
j;q

i;pðg; nÞ ¼ Bi;pðgÞBj;qðnÞ (5)

where Bi,p(η) and Bj,q (ξ) are univariate B-spline basis functions of order p and q, corresponding to knot
vectors Π = {η1, η2, …, ηn+p+1} and Ψ = {ξ1, ξ2, …, ξm+q+1}.

A bivariate B-spline surface is obtained as the tensor product of two B-spline curves

Sðg; nÞ ¼
Xn
i¼1

Xm
j¼1

Bj;q
i;pðg; nÞPi;j (6)

where Pi,j are the control points. The patch for the surface is now the domain [η1, ηn+p+1] × [ξ1, ξm+q+1].

NURBS basis functions are obtained from B-splines by assigning a positive weight ωi to each basis
function

Ni;pðgÞ ¼ Bi;pðgÞxiPn
j¼1 Bj;pðgÞxj

(7)

The basis functions for two-dimensional NURBS are constructed as

Nj;q
i;p ðg; nÞ ¼

Bi;pðgÞBj;qðnÞxi;jPn
k¼1

Pm
l¼1 Bk;pðgÞBl;qðnÞxk;l

(8)

where ωi,j is the weight value of the control point Pi,j in the NURBS surface. And ωi,j is corresponding to the
tensor product Bi,p(η) Bj,q (ξ) and the control point Pi,j. Note that if the weights of rational basis functions are
all equal, then NURBS becomes B-splines. And note that for the circle, cylinder, cone, and sphere the weight
values are not equal. They should be determined by the shape of the curves, surfaces and the control points.
More details are referred to [16,37,56].

In IGA, these basis functions are used for both shape representation and physical field approximation.
A NURBS surface of order p in η direction and order q in direction ξ is a bivariate piecewise rational
function of the form

Sðg; nÞ ¼
Xn

i¼1

Xm

j¼1
Nj;q
i;p ðg; nÞPi;j (9)

where Pi,j are the control points in this paper. It should be noted that Pi,j can refer to either the control points
or a specific physical quantity that is associated with [22,41,42].

2.2 Basic Theory of SIMP Based Bi-CFAO Method
In general, the SIMP approach takes element density as design variable and then analyzes the

effectiveness of the density to determine which is most desirable. All the element densities at the
beginning of the optimization process have the same value, the main objective is to drive the most
desirable densities to 1 and meanwhile drive the others to a predefined minimum value which approach to 0.
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Similar to the SIMP method, the CFAOmethod simultaneously set the element density and element fiber
angle as design variables, the density allows the optimization of material layout distribution. Meanwhile, the
fiber angle represents the optimized orientation of continuous fiber on the design domain. The fiber angles are
often set as the same value at the beginning. The constraints on the angle design variables are set as -90° to
90° or 0° to 360°. And the element fiber angle may increase or decrease according to the sensitivity in the
optimization process and is driven to the most effective value. The fiber angle of each element can be
continuously updated during the optimization process.

In the proposed Bi-CFAO, the element angles of two layers are set as design variables. And the two
angles of each element are set as perpendicular, which represents the vertical orthogonality fiber paths of
the two layers.

2.3 Optimization Model
In this paper, the IGA based Bi-CFAO method for compliance minimization under available volume

constraint is considered. The corresponding problem formulation can be written as:

Find: x = {xe}, θ = {θe}, where e ∈ [1, n].

Minimize: c x; hð Þ ¼ UTKU ¼ Pn
e¼1 xeð ÞquTe ½ke heð Þ þ ke h0e

� ��ue
Subjected to:

VðxÞ=V0 � f,

KU = F

0 � xe � 1; �90� � hmin � he � hmax < 90� (10)

where x is the element density vector, θ is the element angle vector, n is the element number, c is the
compliance, U, K and F are the global displacements, global stiffness matrix and force vectors,
respectively, ue and ke are the element displacement field and the element stiffness matrix, q is the
penalization factor (set as 3 in this paper), which is similar with SIMP approach [12,13]. V0 and f are
the design domain volume and prescribed volume constraint fraction. θmin and θmax are respectively
the lower and upper bound of the design variables θe.

For numerical implementation purposes, as a common practice in the literature [13], a density filter
transformation is often applied to avoid the checkerboard patterns. In the present work, the form of
density filtering is taken as:

xe ¼ 1P
i2Ne

H ei

X
i2Ne

H eixi (11)

where xe is the filtered density which is referred to as the physical element density of element e and updated
by a set of element densities xi which has the center-to-center distance smaller than the filter radius rmin, and
Hei is a weight factor defined as:

H ei ¼ maxð0; rmin � eðe; iÞÞ (12)

where ε(e, i) is the distance between element e and i.

In the present study, the plane-stress quadrilateral element is used. The global stiffness matrix K is
obtained by assembling elemental stiffness matrices given by elemental stiffness matrices. The orthotropic
material element stiffness matrix Ke in CFAO method is different from the isotropic SIMP method:
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KeðheÞ ¼
ZZ

hBT ½CeðheÞ þ Ceðh0eÞ�Bd�e (13)

where 2D integration is performed over each element domain Ωe, h is the element thickness normal to the
plane of the structure, B is the strain-displacement matrix and Ce is the element orthotropic constitutive
matrix, θe and θ′e are element angles (θ′e = θe ± 90° ). The elastic matrix for orthotropic material with
angle θe is defined as:

CeðheÞ ¼ TðheÞCTðheÞT (14)

where C is the original elastic matrix without rotation of fiber; T is the transformation matrix which is
affected by fiber angle θe. More details are referred to [10,34].

C ¼ 1

1� txytyx

Ex tyxEx 0
txyEy Ey 0
0 0 Gxy

2
4

3
5 (15)

TðheÞ ¼
cos2he sin2he �2 cos he sin he
sin2he cos2he 2 cos he sin he

cos he sin he � cos he sin he cos2he � sin2he

2
4

3
5 (16)

where Ex and Ey are the Youngs modulus, Gxy is the shear modulus, vxy and vyx are the Poisson’s ratios.

2.4 Design Sensitivity Analysis
In the minimum compliance problems, the compliance sensitivity for an arbitrary geometry parameter

can be written as:

@c

@xe
¼ �uT

@K

@xe
u ¼ �

Xn
e¼1

ðqxeq�1ue
T ½kesðheÞ þ ke

sðh0eÞ�ueÞ (17)

The derivatives of c for the fiber angles are obtained as

@c

@he
¼ �uT

@K

@he
u ¼� xe

que
T

�ZZ
�e

h

�
BT @T�1

@he
þ @T�1

@h0e

� �
CT�TB

þBTT�1C
@T�T

@he
þ @T�T

@h0e

� �
B

�
d�

	
ue

(18)

The derivatives differ from element to element in the design domain, as the fiber angles are set as in
element-lever.

3 IGA Based Bi-CFAO Method

In this section, the IGA based optimization method for Bi-CFAO is addressed. In the isogeometric Bi-
CFAO method, IGA is used to replace the general numerical computation method FEM. The NURBS basis
functions (e.g., Eqs. (8) and (9)), which represent the CAD models, are directly used in structural analysis as
shape functions in NURBS based IGA. Hence, a variable x (e.g., density, displacement, or force) whose
parametric coordinate is (ξ, η) can be evaluated from the control point values

xðg; nÞ ¼
Xn
i

Niðg; nÞxi (19)

where x and N are the variable value and the basis function of i-th control point, respectively.
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In terms of the NURBS interpolation, the element stiffness matrix Ke can be constructed as

KeðheÞ ¼
ZZ

hBT ½CeðheÞ þ Ceðh0eÞ�Bd�e ¼
ZZ

hBT ½CeðheÞ þ Ceðh0eÞ�B J1j j J2j jd�e (20)

where J1 and J2 are the transformation relationship that map integrals from the NURBS parametric space to
the physical space, and from the integration parametric space to the NURBS parametric space respectively.
More details are referred to [15,16,18,22,23], and [57].

3.1 Control-Point Based IGA in Bi-CFAO
Unlike the FEM method, the physical models in the IGA are represented by the NURBS basis functions

in control points. And they are translated from the NURBS parametric space instead of the FEM Lagrange
elements. The NURBS basis functions in the control-points are both used in the geometric models and
structural analysis models. In the NURBS based IGA, the design variables can be set on the control
points instead of setting on the element nodes, so that the topology optimization filed of the layout could
be directly used in the CAD models. The sensitivities of the objective function c with respect to the
control points are written as

@c

@exi ¼
X

j2ei
@c

@xeij

@xeij
@exi ¼ �

X
j2ei qxeij

q�1ueij
T ½keij sðheÞ þ keij

sðh0eÞ�ueij
@xeij
@exi (21)

where exi denotes the variable (i.e., density) of the i-th control point, ei is the element set on which the i-th
control point influences, eij is the j-th element of ei. The derivation in the former chain derivation process
can be calculated as

@xeij
@exi ¼

X
k2ej NiðkcÞ (22)

where kc denotes the center of the k-th element in the element set ej which is the j-th element influenced by
the control point i, and Ni(kc) is the NURBS basis function of control point i corresponding to the center of
element k.

3.2 Optimization Algorithm
In the present work, the well-known MMA optimizer [59] is adopted to solve the topology and angle

optimization problems formulated in the former sections. The element stiffness matrices are calculated in
the IGA progress, and the derivatives of the element stiffness matrix and the derivatives of structural
compliance for fiber angles in every related control point are calculated in the design sensitivity progress.

The optimization process will be terminated when the convergence criterion is satisfied. In this paper, the
convergence criterions are defined as the iteration number is larger than max iterations number N or the
density and fiber angles of the current iteration is less than δ (δ is the preset convergence error, in this
work δ = 0.0001).

4 Generate Fiber Path

4.1 Generate Fiber Path and Update the Fiber Angle
After the fiber angles are obtained by the optimization process, the fiber paths can be drawn in the

MATLAB function stream slice. The sine and cosine of the element angles and the coordinates of
the element center points are set as inputs. In this work, the fiber paths are generated as streamlines by
the fiber angles. Because the fiber orientation at each arbitrary point is tangent to the fiber paths, the fiber
path is similar to the streamline. The fiber path generation process can be implemented in other software
as well, such as the Tecplot [60].
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In this paper, the fiber paths in both two layers are generated. And it should be noted that the fiber path
generation procedure can be performed during and after the optimization iterations to plot the fiber path
results. In this work, the fiber paths are generated in every ten iterations to show the path updating with
the optimization iterations. More details about the fiber paths generating and visualizing process are refer
to references [60,61].

As discussed previously in [8,34] the optimized fiber angles in one layer may lead to local spatial
discontinuities or other manufacturing conflicts such as large fiber path curvatures problems or fiber path
flexibility problems. In this paper, the angles in two layers are considered as perpendicular orthogonal in
the design domain. And it is found that, some of the local discontinuity may vanish if the angles are
replaced by the angle results in the next layer. After the optimization process, an angle reselection process
is performed to reduce the local discontinuities of the fiber paths. The procedure of fiber angle reselection
progress is shown in Tab. 1.

The variables are explained in the upper lines, as shown in Tab. 1. The double line arrow⇒/⇐ represent
the Matlab functions and the user-defined functions respectively. As show in Tab. 1, there are three user-
defined functions: fit, curvature_radius, and classify_angles.

Firstly, initialize the counter i and l. Then generate the fiber paths using the function streamslice in
Matlab. After that the user-defined function fit is performed to generate the fit equations of the paths. In
the fit function, quadratic polynomial equations are used. And then the fitted equations are used to

Table 1: Algorithm for angle reselection procedure

Angle reselection procedure

i, j, k, l: counter r, rnew: minimal curvature radius Idx_s: index of max size

L, Lf1, Lf2, Lnew: fiber paths n: number of elements aa: average of angles

X, Y: element coordinates ag: angle groups jc: judgement criterion

a, anew: element angles s: angle group size idx_a: index of reselected angles

1: i = 0, l = 0

2: streamslice(X, Y, a) ⇒ L, [L f1] ⇐ fit (L), [r] ⇐ curvature_radius(Lf1)

3: for j = 1: n, [ag] ⇐ classify_angles(a), end

4: for k = 1:4, size(find(ag==k)) ⇒ s(k), max(s) ⇒ idx_s, end

5: mean(a(idx_s)) ⇒ aa

6: find((a – aa) > jc) ⇒ idx_a, a(idx_a) +90° ⇒ anew (idx_a)

7: find(anew) > 90°) ⇒ idx_a, anew (idx_a) – 180° ⇒ anew (idx_a)

8: streamslice (X, Y, anew) ⇒ Lnew, [Lf2] ⇐ fit (Lnew), [rnew] ⇐ curvature_radius(Lf2)

9: while i < 5 and l < 1

10: if mean(rnew) > mean(r)

11: l = 1,

12: else

13: l = 0, i = i + 1, a = a + 45°, go to 2

14: end

15: end
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calculate the minimal curvature radius in the curvature_radius function. After that, the classify_angles
function classifies the fiber angles to 4 groups (a. Horizontal (θe∈(-22.5°, 22.5°)), b. Vertical (θe∈[67.5°, 90°)
or θe∈[-90°, -67.5°]), c. Oblique up (θe∈[22.5°, 67.5°)), d. Oblique down (θe∈(-67.5°, -22.5°]), according
to the directions of the fibers.

The variable ag represents the index of the angle groups. The fourth line returns the max size of the four
angle groups s. And the fifth line finds the average of angles in the angle groups idx_s. The sixth line get the
element angles which should be updated according to the difference between the fiber angles of element and
the average value of the s angles. If the difference between the fiber angles is bigger than jc, then the angle is
added with 90°. The angle bound jc in this paper is set as 67.5°. After updating, the new angles should be
updated in the range of [-90°, 90°). If the angle is out of this range, then add 180° or -180°. After this step,
the minimal curvature radii of the new paths are calculated in line 8. If the average value of minimal curvature
radii of the new paths rnew is bigger than r, then output the new paths. Otherwise, the same updating progress
will be performed with the initial angles adding 45° and -45°, the angles are updated according to the new
angles. After this step, the reselection progress will be terminated.

The angle reselection procedure can be performed during or after the optimization iteration process. And
the flowchart of angle reselection procedure is shown in Fig. 1. It should be noted that this angle reselection
procedure may reduce the angle local discontinuity problem, but the effectiveness cannot be guaranteed.

4.2 Optimization Procedure
The evolution procedure of the IGA Bi-CFAO is similar to the conventional SIMP based CFAO, but the

mechanics analysis is implemented by the NURBS-based IGA, and the density sensitivity numbers are based
on the NURBS control points, the fiber angles of two layers are set as perpendicular orthogonal and the
current layer angles are set as design variables as well as the densities.

Start

Reset the element 
angles of the 

minimal group 

Classify the 
element angles

Input element 
angles and  
coordinates

Current layer 
element angles 

±45

Minimal 
curvature radius 

bigger ?

Generate the 
streamlines 

with the angles 

Calculate the minimal  
curvature Radius of 

fiber path

Output fiber 
path

Stop
YesNo

Figure 1: The flowchart of angle reselection procedure
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The optimization procedure can be outlined as follows:

Step 1. Define optimization parameters such as target volume V0, penalization parameter q.

Step 2. Set up material properties such as Young’s modulus Ex, Ey and Poisson’s ratio vxy, and boundary
conditions such as forces and supports.

Step 3. Generate NURBS spaces for IGA.

Step 4. Analyze the structural response by IGA based on NURBS spans (an IGA span is similar to an
element defined in FEM) (Section 2.3).

Step 5. Calculate the sensitivity numbers of NURBS based control points (Eq. (21)).

Step 6. Update the design variables using the MMA optimization process, i.e., the densities and the fiber
angles on the control points.

Step 7. Repeat Steps 4–6 until the objective volume V0 and the convergence criterion are satisfied.

Fig. 2 shows the flowchart corresponding to the above procedure.

5 Examples

Numerical examples of minimal compliance optimization problems are presented to demonstrate the
characteristics of the IGA based Bi-CFAO method. The domain integration scheme defined by Eqs. (18)
and (21) is used to evaluate the design sensitivities.

All the examples are run on a laptop: the CPU is an Intel core i7 10710U 1.6 GHz, the RAM is 16 GB,
the OS is Windows 10, and the software environment in MATLAB R2015a. The Young’s modulus for the
composite material is Ex = 1.0, Ey = 0.1 and the Poisson’s ratio is 0.36. For simplicity, the target volume is set
as V0 = 0.8. A Gauss quadrature rule of 3 × 3 is used for quadratic IGA elements. And the conventional
9 nodes quadratic finite element is used to perform FEM computing.

5.1 Cantilever Beam
The first numerical example is the short cantilever beam design problem, which is one of the most used

benchmark topology optimization problems. It is used to verify the effectiveness of the proposed Bi-CFAO

Start
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Optimization 
parameters

Set up material 
properties and 

boundary conditions 

Generate IGA 
NURBS spaces 

Analyze the 
structural response 

by IGA

Constraint 
satisfied?

Stop

Calculate the 
sensitivity to density 

and angle  

Update the design 
variables by MMA

No

Yes

Figure 2: The flowchart of IGA based Bi-CFAO optimization procedure
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method compared to conventional design approaches. The design domain is a W × H rectangle with a
concentrated force located at the midpoint of the right side, W = 2 m, H = 1 m, and it is shown in Fig. 3.
In this paper, the design domain has meshed in different sizes to compare the calculation efficiency
between IGA and FEM.

The calculation efficiency is here measured by the average time at each step, as shown in Tab. 2. The
results show that the speedup of IGA/FEM ranges from 2.8 to 4.5, values prove the higher efficiency of
the IGA method, which meets the results presented by literatures [15–17,22]. It should be noted that both
of mechanical property evaluation procedures and structure response analysis procedures for IGA and
FEM are different and are compared in this paper. The computational costs of other CFAO procedures
such as the sensitivity analysis and variable updating procedures are the same and they are not counted in
this comparison.

The Convergence history of the objective function and the volume ratio over the iterations are shown in
Fig. 4. The objective function value is larger during the initial iterations and it decreases rapidly in the former
20 iterations. The element density converges fast and the material distribution almost invariable after about
40 iterations.

The fiber angle updating history of Bi-CFAO and the conventional CFAO method are presented in
Tab. 3. The results in the 1st, 40th, 100th iterations are listed for simplicity. The results for CFAO are
listed in the first column, the fiber angles in the other layer are the same as this layer. The results for Bi-
CFAO are listed as the three columns. The former two columns represent the first and second layers,
respectively. The third column represents the mixed results of the two layers. It is easy to find that the
fiber angles in both Bi-CFAO and method are mostly continuous in the design domain, but locally
discontinuous exist in both two methods (shown in 40th and 100th fiber angles).

The fiber paths are generated by MATLAB and the results show that the fiber paths are more neat and
smoother in Bi-CFAO than conventional CFAO. The fiber paths in the 1st layer in BI-CFAO in the last
iteration is compared with the result in conventional CFAO (the former two images in the last row in
Tab. 3), to compare the two methods under the same conditions.

Design domain
F

W

H

Figure 3: Design domain with boundary conditions and dimensions of the cantilever beam

Table 2: Compare of calculating efficiency between IGA and FEM by the average time of each optimization
iteration

Cases DOFs of FEM DOFs of IGA FEM time (s) IGA time (s) Speed up

16 × 8 1122 360 0.34 0.12 2.8

32 × 16 4290 1224 1.39 0.43 3.2

64 × 32 18,354 4488 9.3 2.75 3.4

128 × 64 69,426 17,160 89.2 30.3 2.9

256 × 128 269,874 67,080 1787.0 395.4 4.5
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1

40

100

Iterations CFAO Bi-CFAO, 1st Layer Bi-CFAO, 2nd Layer Bi-CFAO, 2 Layers

Table 3: Comparison of fiber angles and paths obtained by CFAO and Bi-CFAO optimization iteration

Figure 4: Convergence history of the objective function of the cantilever beam
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The minimum curvature radii of all the fiber paths are calculated using the streamlines shown in Tab. 3.
and the results are shown in Fig. 5. The x values xi are the normalization of the minimum curvature radius
values (yi). The normalization expression is xi = (yi -min(yi))/(max(yi) - min(yi)) × 10. The average value of
the minimum curvature radii obtained by Bi-CFAO is 83.3, meanwhile, the average value by CFAO is 32.9.
The minimum value of the paths is 8.2 and 1.2 by Bi-CFAO and CFAO, respectively. The improvement rate
is 2.5 and 6.8, respectively. It is noted that the curvature varies from point to point in the same fiber path.
Some local sharp points are found in the paths while most of the points are smooth in the paths. These
local sharp points may impact the calculation of the minimum curvature radius. The improvement of the
smoothness of the fibers meets the need of the manufacturing process.

Fig. 6 shows the convergence history of the objective function with the two methods. The volume
constraints are both set as 0.8, and the element stiffness matrix is calculated using two perpendicular
orthogonal layers which are described in the former sections. The element stiffness matrix in Bi-CFAO
utilizes the mean value of the two-element stiffness matrices of the 2 layers (Ke = 0.5*(Keθe + Keθe+90°)),
to compare the two methods under the same conditions. The objective function obtained by Bi-layer fiber
angles (θe and θ′e)/2 are compared with two identical layer fiber angles (θs and θs)/2. Where the element
fiber angles θe and θ′e are the two-layer element fiber angles in Bi-CFAO, and θs represents the single-

Figure 5: The minimum curvature for all the fiber paths in CFAO and Bi-CFAO

Figure 6: Convergence history of the objective function with CFAO and Bi-CFAO of the cantilever beam
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layer fiber angles in CFAO. It is found that the objective function is 68.1 in Bi-CFAO, and the value is 56.8 in
CFAO method. The structure compliance in Bi-CFAO is bigger than CFAO and the drawback is 19.9%. It is
roughly attributable to the focusing optimization of each element angle in a single layer while almost half of
the Bi-layer angles are not.

The advantage of Bi-CFAO is the smoother fiber path, which can improve structural performance. It
is not modeled in the composite structure response calculation process in this paper because a higher
fidelity modeling method considering accurate modeling fiber-matrix structures is needed. The profit
and loss of the double-layer fiber angle optimization results may be compensated when a higher
fidelity model is utilized.

Fig. 7 shows the fiber angle and fiber path results obtained through the proposed optimization method
starting from different initial fiber angle arrangements, i.e., θel

0 = 0° and θel
0 = 90°. The optimized fiber angles

and the final fiber paths of the two models differ from one to another. The obtained fiber paths are almost
identical except for some paths in partial domains. The objective functions of the two models are not
significant. Meanwhile, the maximum curvature and uniformity of the fiber paths are almost the same in
most parts of the design domain and different in partial domains.

5.2 MBB Beam
The Messerschmidt-Bolkow-Blohm (MBB) beam problem is another commonly used benchmark

problem for topology optimization methods. MBB beam is a simply supported beam subject to a vertical
force at the middle point of the bottom sideline. Due to symmetry, only half MBB beam is modeled and
symmetry boundary conditions are applied. The design domain is a W × H rectangle, in this paper W = 2 m,
H = 1 m, which is shown in Fig. 8.

Figure 7: Initial fiber angle arrangement of cantilever beam (a) Fiber angle result of 0° (b) Fiber angle result
of 90° (c) Fiber path result of 0° (d) Fiber path result of 90°
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In Fig. 9. the convergence history of objective functions is presented. The density of all the elements
which represent the material distribution renovated rapidly in the former 40 iterations. In the last 60
iterations, the updating of the fiber angles and element densities changes not obviously.

The fiber angle updating history in the 1st, 40th, 100th iterations of Bi-CFAO and the conventional
CFAO method are presented in Tab. 4. The fiber angles in both Bi-CFAO and method are mostly
continuous in the design domain, but locally discontinuous exist in both two methods (shown in 40th and
100th fiber angles). It is found that the local discontinuity in CFAO are more serious than the results in
Bi-CFAO.

The fiber paths are generated and the results show that the fiber paths are more neat and smoother in Bi-
CFAO than conventional CFAO. The fiber paths in the 1st layer in BI-CFAO in the last iteration is compared
with the result in conventional CFAO (the former two images in the last row in Tab. 4), to compare the two
methods under the same conditions.

The minimum curvature radius values are shown in Fig. 10. The average value of the minimum
curvature radius obtained by Bi-CFAO is 552.1, meanwhile, the average value by CFAO is 29.9. The
minimum value of the paths is 1.68 and 0.18 by Bi-CFAO and CFAO, respectively. The improvement
rate is 18.5 and 9.3, respectively. It is noted that the max curvature radius obtained in the bottom-left
corner in the design domain where the fiber paths are approximately straight lines. More sharp turns are
found in the fiber paths in CFAO. The fiber paths in Bi-CFAO are smoother and neater than the single-
layer CFAO, which is beneficial to reduce the performance damage due to manufacturing.

F

Design domain H

W

Figure 8: MBB beam design domain

Figure 9: Convergence history of the objective function of MBB beam
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Iterations CFAO Bi-CFAO, 1st Layer Bi-CFAO, 2nd Layer Bi-CFAO, 2 Layers

1

40

100

Table 4: Comparison of fiber angles and paths MBB beam

Figure 10: The minimum curvature for all the fiber paths in CFAO and Bi-CFAO MBB beam
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The comparison of the objective function of MBB beam is shown in Fig. 11. It is found that the objective
function is 83.4 Bi-CFAO, and the value 58.5 in CFAO method. The objective function is bigger than CFAO
method and the drawback is 42.6%. The differences of fiber path shapes between Bi-CFAO and CFAO are
significant meanwhile the smoothness quality cannot be guaranteed in CFAO. It shows that the objective
function and the smoothness are two contradictory characters, the fiber paths in CFAO are located in the
most effective position but their curvature is bigger than Bi-CFAO. The fiber paths in Bi-CFAO are
smooth but the objective function is worse than CFAO. This is roughly because the objective functions
are calculated considered no manufacturing constraints.

Fig. 12 shows the fiber angle and fiber path results obtained through different initial fiber angle
arrangements, i.e., θel

0 = 0° and θel
0 = 90°. The optimized fiber angles and the final fiber paths of the two

models differ from one to another. Most of the shapes of the fibers are the same while the fibers are
different in a few partial domains. Which implies that the optimization is not dependent on the initial
designs, the initial fiber angles do have limited impact with the path qualities.

5.3 Quarter Annulus
This example is a benchmark TO problem which is always been utilized in NURBS based IGA topology

optimization both in LSM, SIMP and BESO framework. The design domain is a quarter annulus with curved
boundaries and the inner radius r = 1 m and outer radius R = 2 m which is shown in Fig. 13. The edge in the
bottom is fixed and a concentrated force F is horizontally loaded at the left-top corner. In this example, the
element angle and density are optimized with both FEM and IGA method. And the efficiency of these two
methods are compared.

The element size is 32 × 32 and the convergence history of objective function and volume constraint is
shown in Fig. 14. The process of density convergence is similar to the previous examples. After 40 iterations
the element density and the structure layout change little and the objective function remains stable.

The comparison of the two methods are shown in Fig. 15. The fiber angles obtain by the two methods are
different. And the results shown in (c) and (d) are mostly consecutive in both of the design domain. The
discontinuity of the fiber paths (local area with larger curvature fiber path in the design domain) appears
in both of the two methods. And similar to the former examples, the uniformity and smoothness of fiber
paths are improved when Bi-CFAO is used.

Figure 11: Convergence history of the objective function with CFAO and Bi-CFAO of MBB beam
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Figure 12: Initial fiber angle arrangement of MBB beam. (a) Fiber angle result of 0° (b) Fiber angle result of
90° (c) Fiber path result of 0° (d) Fiber path result of 90°

F

Design domain

r
R

 

Figure 13: Quarter annulus design problem

Figure 14: Convergence history of the objective function quarter annulus
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Figure 15: Angles and fiber paths of Conventional CFAO and Bi-CFAO of the quarter annulus. (a) CFAO
angles 1st iteration. (b) Bi-CFAO angles 1st iteration. (c) CFAO angles final iteration. (d) Bi-CFAO angles
final iteration. (e) CFAO paths. (f) Bi-CFAO paths
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Fig. 16 shows the impact of the initial fiber angle arrangement on the final results of fiber angles and fiber
paths. It is shown that the initial fiber angle arrangement may lead to little different optimized fiber angles in
the design domain. From Figs. 16(c) and 16(d), the final fiber paths differ in partial parts of the design
domain, but it is also easy to find that in the two results the fiber shapes in most domains are similar to
each other. Further investigation on how to obtain a smoother fiber path according to different optimized
fiber angles is needed, and it is vital when manufacturing constraints are considered.

6 Conclusion and Future Research

In this paper, we propose an IGA based topology and material orientation optimization method to
simultaneously optimize the topology and fiber angles of the composite structure. In the proposed
method, the sensitivity numbers for both densities and angles are calculated based on the NUBRS control
points. The structural response analysis is performed by the IGA. For verifying the efficiency of
calculation, the NURBS-based IGA method is compared with the quadratic finite element method
(9 nodes). The computing cost of the structure response analysis and the sensitivities analysis are
contained in the statistics. Three benchmark problems are performed to demonstrate the effectiveness of
this method. The IGA based Bi-CFAO method assisted by NURBS shows significant speedup compared
with the FEM (2.8 to 4.5 in the related cases).

The fiber angles obtained by the Bi-CFAO and conventional CFAO are compared. The fiber angles are
utilized to generate fiber paths. The angle reselection procedure is used to investigate the smoothness of the
optimized angles by calculating the minimum curvature radius of the paths. The minimum curvature radii of
the fiber paths are calculated. It is found that the minimum radii obtained by the Bi-CFAO method are bigger

Figure 16: Initial fiber angle arrangement of the quarter annulus. (a) Fiber angle result of 0° (b) Fiber angle
result of 90° (c) Fiber path result of 0° (d) Fiber path result of 90°
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than that obtained by the CFAO. Meanwhile, the objective function values of the Bi-CFAO are bigger than
that of CFAO. The influence of initial fiber angle values is presented by the numerical examples. It is found
that the proposed method is stable. The NURBS based Bi-CFAO method is efficient for structure response
analysis, topology optimization and fiber angle optimization. Smooth fiber paths with big curvature radii can
be obtained by the proposed method.

Future research will focus on using the IGA based high fidelity numerical structure response analysis to
deal with the inaccurate fiber-matrix modeling problem. Since the examples in this paper are all simple
shapes, the future study can be extended to the design domain with arbitrary holes or other complex
shapes. Although in this paper, only the minimum compliance problem is settled, the proposed Bi-CFAO
method will not be restricted to this specific problem. The proposed Bi-CFAO method can be extended to
deal with other problems, such as compliant mechanism problems [23] and Buckling optimization
problems [38,40,62]. Moreover, the proposed method can be further improved in many aspects: e.g.,
using parallel computing with GPU or MPI to accelerate the IGA based angle optimization process [63].
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