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Abstract: Structural components may enter an initial-elastic state, a plastic-hardening state
and a residual-elastic state during strong seismic excitations. In the residual-elastic state,
structural components keep in an unloading/reloading stage that is dominated by a tangent
stiffness, thus structural components remain residual deformations but behave in an elastic
manner. It has a great potential to make model order reduction for such structural
components using the tangent-stiffness-based vibration modes as a reduced order basis. In this
paper, an adaptive substructure-based model order reduction method is developed to perform
nonlinear seismic analysis for structures that have a priori unknown damage distribution. This
method is able to generate time-varying substructures and make nonlinear model order
reduction for substructures in the residual-elastic phase. The finite element program OpenSees
has been extended to provide the adaptive substructure-based nonlinear seismic analysis. At
the low level of OpenSees framework, a new abstract layer is created to represent the
time-varying substructures and implement the modeling process of substructures. At the high
level of OpenSees framework, a new transient analysis class is created to implement the
solving process of substructure-based governing equations. Compared with the conventional
time step integration method, the adaptive substructure-based model order reduction method
can yield comparative results with a higher computational efficiency.

Keywords: Adaptive substructure modeling, model order reduction, nonlinear seismic
analysis, computer programming, OpenSees.

1 Introduction

With the rapid growth of computational capacities and simulation techniques, the finite
element methods have been extensively recognized as a tool for high-fidelity simulation
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of large and complex structures. Nevertheless, it’s still expensive to increase the resolution
in simulations for detailed nonlinear behaviors. The model order reduction methods have
drawn massive attention due to their capacity to balance accuracy and efficiency.

Model order reduction (MOR) methods basically project a full order model onto a lower
dimensional space, which is spanned by a reduced order basis. According to the
definitions of reduced order basis, the MOR methods are classified as the proper
orthogonal decomposition (POD) [Kerschen and Golinval (2002); Chatterjee (2000);
Kerschen, Golinval, Vakakis et al. (2005)], proper generalized decomposition (PGD)
[Ladevèze, Passieux and Néron (2010); Chinesta, Ammar and Cueto (2010); Nouy
(2010)], reduced basis (RB) method [Hesthaven, Rozza and Stamm (2016); Quarteroni,
Manzoni and Negri (2016); Rozza, Huynh and Patera (2007); Grepl (2005)], component
mode synthesis (CMS) [Hurty (1963); Bampton and Craig (1968)], and machine learning
approaches [Mohamed (2018); Moosavi, Stefanescu and Sandu (2015)], etc. Such
projection-based MOR methods have gained mature application in linear systems and
achieved major computational savings. During recent decades, these projection-based
MOR methods were also advanced to cope with nonlinear systems and encourage
application in large and complex structures.

The POD constructs the reduced order basis in an a posteriori manner through directly
solving the original problem. While the PGD generates the reduced order basis in an a
priori manner using an iteration algorithm. Starting from the POD and PGD techniques, a
group of methods are triggered to reduce the dimension of nonlinear systems, such as
Discrete Empirical Interpolation method [Chaturantabut and Sorensen (2010); Aguado,
Chinesta, Leygue et al. (2013)], Hyper reduction method [Ryckelynck (2009); Amsallem,
Zahr and Farhat (2012)], and Gauss Newton with Approximation Tensor method
[Carlberg, Farhat, Cortial et al. (2012); Farhat, Avery, Chapman et al. (2014)]. Recently,
the POD has been incorporated with domain decomposition methodology for the
dynamic analysis of elastic-plastic structural problems [Corigliano, Dossi and Mariani
(2015)]. And the PGD has incorporated with the Reference Point Method to construct the
reduced order model of a nonlinear problem [Capaldo, Guidault, Néron et al. (2017)]. On
the other side, the RB method makes model order reduction by carrying out an offline-
online framework. The offline stage takes responsibility for selecting the reduced basis
functions, and the online stage is in charge of obtaining the coefficients of the reduced
basis functions. The RB method has been advanced to deal with nonlinear issues, such as
the Reduced-Basis-Element Method [Maday and Rønquist (2002, 2005)], Static-
Condensation Reduced-Basis-Element method [Huynh, Knezevic and Patera (2013a,
2013b); Vallaghé and Patera (2014)], etc. The RB method recently integrated the
machine learning method to treat nonlinear problems in the online stage [Guo and
Hesthaven (2018)]. Taking advantage of machine learning, regression-based methods for
model order reduction have applied to nonlinear problems, such as artificial neural
networks [Moosavi, Stefanescu and Sandu (2015)] and the Gaussian process regression
[Nguyen and Peraire (2016)]. As a substructure-based MOR method, the CMS method

80 CMES, vol.124, no.1, pp.79-106, 2020



partitions the finite element model into a set of substructures, and selects a small number of
substructure modes as reduced order bases to capture the dominant vibration characteristics.
The CMS method has also been applied to model order reduction for nonlinear dynamic
models, such as nonlinear landing simulation of aircraft system [He, Wang and Chen
(2016)], soil-structure interaction simulation [Wang and Jiang (2012)], etc.

For nonlinear seismic analysis of civil structures, structural components in plastic regime are
usually sparsely distributed. The CMS method has a great advantage to simulate the sparsely
distributed damage. Because the entire structure is divided into linear and nonlinear
substructures, and the degrees of freedoms (DOFs) of linear substructures can be
substantially condensed by reduced order bases. Nevertheless, the distribution of damaged
structural components is a priori unknown because of the randomness of seismic
excitations. Thus the linear-nonlinear interface can’t be determined in advance. To cope
with the issue, the authors have previously proposed an adaptive substructure modeling
strategy [Fang, Wang and Li (2018)] that integrated the CMS method to simulate tall
buildings with a priori unknown damage distribution. One issue limits the application of
the previously proposed method. When the ground motion intensity increases to a strong
nonlinear level, the distribution of damaged structural components expands spatially, which
results in a small portion of linear substructures and a large portion of nonlinear
substructures. The MOR effect is lowered for linear substructures. Therefore, it’s
considerably essential to develop an adaptive substructure-based MOR method that
considers both the adaptive substructure modeling and nonlinear model order reduction.

The substructure-based MOR method has already been implemented in commercial finite
element (FE) programs, such as ABAQUS [ABAQUS (2019)] and ANSYS [ANSYS
(2019)], etc. The substructure modeling techniques in these programs require the prior-
prescribed linear-nonlinear interface, which is unable to simulate time-varying substructures
during the seismic loading period. Meanwhile, the flexibility and extensibility of
commercial FE programs are usually limited to a few user-defined materials or elements.
Thus it’s recommended to implement the adaptive substructure-based MOR method in an
open source program for nonlinear seismic analysis. In the last two decades, OpenSees
[Mckenna, Scott and Fenves (2010)] has become one of the most popular programs for
numerical simulation of earthquake engineering due to its great flexibility and extensibility.
The architecture of OpenSees is designed according to the software design pattern provided
by Gamma et al. [Gamma, Helm, Johnson et al. (1995)], which is organized with the
ability to sustainably integrate the newest research outcomes. For instance, the OpenSees
has incorporated with peridynamic theory to simulate discontinuous problems in civil
engineering, such as concrete cracks [Gu, Wang and Huang (2019); Sun, Li, Gu et al.
(2019)]. And the OpenSees has been advanced with high-performance triangular shell
element and explicit algorithm for strong nonlinear analysis [Lu, Tian, Sun et al. (2019);
Lu, Xie, Guan et al. (2015)]. It’s believed that the OpenSees architecture is suitable for
implementing the adaptive substructure-based MOR method.
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The objective of this paper is to develop an adaptive substructure-based MOR method with
the capacity of nonlinear model order reduction, and implement this method in OpenSees for
nonlinear seismic analysis. During an earthquake excitation, structural components may
undergo the initial-elastic state, the plastic-hardening state, and the residual-elastic state.
In the residual-elastic state, the residual deformation remains and structural components
behave in an elastic manner. An adaptive substructure modeling strategy has incorporated
with substructure-based MOR methods to make DOF reduction in each phase. A new
abstract layer of substructure and a new transient analysis class are created to implement
the modeling process of substructures and the solving process of substructure-based
governing equations, respectively. Some existing classes are modified, so as to merge the
new classes with the original software architecture. The numerical performance is tested
through a nonlinear RC structure subjected to seismic excitations.

In Section 2, the adaptive substructure modeling strategy is introduced, and the substructure-
based MOR methods in three types of phase are deduced. In Section 3, the implementation
of the adaptive substructure-based MOR method is described using the graphical Unified
Modeling Language notation. In Section 4, the accuracy and efficiency are tested using a
12-story RC frame structure under seismic excitations. Section 5 summarizes the
conclusions of the investigation.

2 Adaptive substructure-based MOR method

During the strong seismic excitation, damaged structural components are distributed
sparsely in general, and the damage distribution expands spatially as the input
acceleration amplitude increases. To accelerate the nonlinear seismic analysis, the
substructure-based MOR method is employed for FE simulation due to its flexible
substructure modeling for sparse damage distribution. Meanwhile an adaptive
substructure modeling strategy is developed to adjust the MOR method to the gradually
expanding damage distribution. It means the substructure modeling should be time-
varying as the damage distribution is changing during the seismic loading period. The
whole seismic loading period is classified as three types of phase, i.e., the initial-elastic
phase, the plastic-hardening phase and the residual-elastic phase. The adaptive
substructure-based model order reduction (AMOR) method utilize an adjustable
substructure modeling strategy and substructure-based MOR approaches during each type
of phase. Fig. 1 shows the flowchart of the AMOR method.

The governing equation of a nonlinear structure can be formulated as Eq. (1)

Mg€ugþCg_ugþKgugþRðug; _ugÞ¼fg (1)

where Mg, Cg and Kg are the mass, damping, and stiffness matrices, respectively; Rðug; _ugÞ
and fg are the nonlinear restoring force vector and external force vectors, respectively. ug is
the displacement vector. The subscript ‘g’ denotes the global DOFs of the nonlinear
structure. The substructure-based MOR approaches are developed for Eq. (1) during
different phases, and the formulation are introduced as follows.
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2.1 Initial-elastic phase
At the initial period of seismic loads, all structural components keep elastic due to the low
input acceleration amplitudes. This period is considered to be the initial-elastic phase.

Since the whole structure is initially elastic, the governing equation can be formulated using
a few modal coordinates as follows:

Me
d€q

e
dþCe

d _q
e
dþKe

dq
e
d¼fed (2)

Figure 1: Flowchart of the adaptive model order reduction method
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where Me
d¼ΦT

dMgΦd, Ce
d¼ΦT

dCgΦd, Ke
d¼ΦT

dKgΦd, fed¼ΦT
d fg are the mass, damping,

stiffness matrices and external load vector in the modal coordinate space, respectively.
Φd is the dominant vibration modes that are selected as a set of reduced bases. qed is the
corresponding displacement coordinates in modal coordinate space. The subscript ‘d’
represents the modal coordinate space that is constructed using dominant vibration
modes. The superscript ‘e’ represents the initial-elastic phase.

In the governing equation Eq. (2), the seismic response is obtained through the
superposition of dominant vibration modes. Normally, a small number of vibration
modes are able to simulate the dynamic response of the structure under seismic
excitation. Thus the FE model DOFs can be reduced substantially for large and complex
structures, and the nonlinear seismic analysis during the initial-elastic phase is
remarkably accelerated.

2.2 Plastic-hardening phase
After the initial-elastic phase, the input acceleration amplitude increases and yield a larger
structural deformation. For severe ground shakings, structural components may enter an
inelastic phase, during which the plastic strain increase and cause strain hardening in
constitutive models. This period is considered to be the plastic-hardening phase.

Once structural components enter nonlinear stage, the displacement vector ug is partitioned
into three sub-vectors, i.e., ug¼ ul ub unf gT . The subscripts ‘l’, ‘b’ and ‘n’ stands for the
DOFs inside the linear substructures, on the linear-nonlinear interface and inside the
nonlinear substructures, respectively. The model order reduction is made only for linear
substructures, while the linear-nonlinear interface and the nonlinear substructures remain
in their original form. And the DOF reduction is conducted through the coordinate space
transformation. The displacement vector is transformed from the physical coordinate
space to the hybrid coordinate space as Eq. (3):

ul
ub
un

8<
:

9=
; �

�Φd �Ψb 0
0 Ib 0
0 0 In

2
4

3
5 qpl

upb
upn

8<
:

9=
; (3)

where �Φd is the selected vibration modes of linear substructures, and �Ψb is the constraint
modes of linear substructures. Ib and In are both identity matrices. qpl is the displacement
vector of linear substructures in modal coordinate space, while the sub-vector upb and upn
remain unchanged in physical coordinate space. The superscript ‘p’ stands for the plastic-
hardening phase. Thus the governing equation is formulated in hybrid coordinate space
as Eq. (4).

Mp
h€u

p
hþCp

h _u
p
hþKp

hu
p
hþRp

h¼fph (4)
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where

Mp
h¼

�ΦT
dMll

�Φd
�ΦT
dMll

�Ψb 0
�ΨT
bMll

�Φd
�ΨT
bMll

�ΨbþMbb 0
0 0 Mnn

2
4

3
5;Kp

h¼
�ΦT
dKll

�Φd 0 0
0 Kbb�KblKll

�1Klb Kbn
0 Knb Knn

2
4

3
5;

Cp
h¼

�ΦT
dCll

�Φd
�ΦT
d ðCll

�ΨbþClbÞ 0
ð�ΨT

bCllþCblÞ�Φd
�ΨT
bCll

�ΨbþCbl
�Ψbþ �ΨT

bClbþCbb Cbn
0 Cnb Cnn

2
4

3
5

Rp
h¼

0
0

Rnðun; _unÞ

8<
:

9=
;; uph¼

qpl
upb
upn

8<
:

9=
;; fph¼

�ΦT
d f l

�ΨT
b f lþfb
fn

8<
:

9=
;

uph is the displacement vector in the hybrid coordinate space. Rp
h is the nonlinear restoring

force vector. The subscript ‘h’ represents the hybrid coordinate space that is composed of
physical coordinates and modal coordinates.

In the governing equation Eq. (4), the seismic response of linear substructures is obtained
using the superposition of dominant modes, while the interface and the nonlinear
substructures still remain in physical coordinate space without DOF reduction. Such a
DOF reduction method will achieve great computational savings when the proportion of
linear DOFs is large and the number of selected substructure modes is small. When new
structural components enter nonlinear stage, the linear and nonlinear substructures are
remodeled and the partition of displacement vectors in Eqs. (3) and (4) is updated.

2.3 Residual-elastic phase
After the plastic-hardening phase, the severe shaking is attenuated and input acceleration
amplitudes drop back to a low level. Structural components keep in an unloading/
reloading stage that is dominated by a tangent stiffness. Thus Structural components
remain residual deformations but behave in an elastic manner. This period is considered
to be a residual-elastic phase.

In the residual-elastic phase, the governing equation is represented in an incremental form.
The displacement vector of nonlinear substructures un is calculated by a summation of the
response at the previous time step and an elastically incremental response Dun at the current
time step. The incremental displacement vector Dun is transformed from the physical
coordinate space to the modal coordinate space that is spanned by tangent-stiffness-based
vibration modes. Thus the incremental displacement vector is formulated as Eq. (5).

Dul
Dub
Dun

8<
:

9=
; �

�Φd
�Ψb 0

0 Ibb 0
0 ~Ψb

~Φd

2
4

3
5 Dqerl

Duerb
Dqern

8<
:

9=
; (5)
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where ~Φd is the selected vibration modes of nonlinear substructures, and ~Ψb is the constraint
modes of nonlinear substructures. It’s noted that ~Φd is calculated using the tangent stiffness
of nonlinear substructures. Dqerl and Dqern are the incremental displacement of the linear and
nonlinear substructures in modal coordinate space, respectively. The superscript ‘er’
represents the residual-elastic phase. Thus the governing equation is formulated in an
incremental form as follows.

Mer
h D€u

er
h þCer

h D _uerhþKer
h Du

er
h ¼Dferh (6)

where

Mer
h ¼

�ΦT
dMll

�Φd
�ΦT
dMll

�Ψb 0
�ΨT
bMll

�Φd
�ΨT
bMll

�ΨbþMbbþ~ΨT
bMnn

~Ψb
~ΨT
bMnn

~Φd
0 ~ΦT

dMnn
~Ψb

~ΦT
dMnn

~Φd

2
4

3
5;

Ker
h ¼

�ΦT
dKll

�Φd 0 0
0 Kbb�KblKll

�1Klb�KbnKnn
�1Knb 0

0 0 ~ΦT
dKnn

~Φd

2
4

3
5;

Cer
h ¼

�ΦT
dCll

�Φd
�ΦT
d ðCll

�ΨbþClbÞ 0

ð�ΨT
bCllþCblÞ�Φd

�ΨT
bCll

�ΨbþCbl
�Ψbþ �ΨT

bClbþCbb
þ~ΨT

bCnn
~ΨbþCbn

~Ψbþ ~ΨT
bCnb

� �
ð~ΨT

bCnnþCbnÞ~Φd

0 �ΦT
d ðCnn

~ΨbþCnbÞ �ΦT
dCnn

�Φd

2
664

3
775

Dferh ¼
�ΦT
dDf l

�ΨT
bDf lþDfbþ ~ΨT

bDfn
~ΦT
dDfn

8<
:

9=
;;Duerh ¼

Dqerl
Duerb
Dqern

8<
:

9=
;

In the governing equation Eq. (6), the seismic response of linear substructures is obtained
using the superposition of vibration modes based on initial stiffness, while nonlinear
substructures are simulated through the superposition of tangent-stiffness-based vibration
modes. Only the substructure interface remains in its original form without DOF
reduction. When the acceleration amplitude drops down to low level after severe ground
shakings, such a MOR method will surely achieve a further DOF reduction. The Eq. (6)
is solved during the residual-elastic phase before new damaged structural components
arise, or existing damaged structural components return to the plastic-hardening phase.
The plastic-hardening phase and residual-elastic phase will alternate with each other until
the end of seismic excitations.

2.4 AMOR algorithm
In order to proceed the AMOR analysis, the Newton-Raphson method is utilized to solve the
abovementioned governing equations by conducting an iterative solution procedure, and the
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Newmak-β integration method is employed. The processing steps of the AMOR algorithm is
summarized as below.

Step 1: Initial preparation (t¼0)

a) Mg, Cg, Kg and fg are given.

b) The whole structure initially elastic and Eq. (2) is constructed.

c) Time interval Dt is determined.

d) Parameters c and b are determined in the Newmak-β method.

e) Determine the maximum iteration number imax.

Step 2: Start a new time step: t¼tþDt

a) Initialize iteration number i¼0

b) Use direct integration method to determine the trial values uð0ÞgtþDt ; _u
ð0Þ
gtþDt ; €u

ð0Þ
gtþDt

n o
c) If. (Initial-elastic phase)

Values uð0ÞgtþDt ; _u
ð0Þ
gtþDt ; €u

ð0Þ
gtþDt

n o
are transformed to qð0ÞdtþDt ; _q

ð0Þ
dtþDt ; €q

ð0Þ
dtþDt

n o
in modal coordinates

using matrix Φd.

Else.

Values uð0ÞgtþDt ; _u
ð0Þ
gtþDt ; €u

ð0Þ
gtþDt

n o
are transformed to uð0ÞhtþDt ; _u

ð0Þ
htþDt ; €u

ð0Þ
htþDt

n o
in hybrid coordinates

using matrix in Eqs. (3) or (5).

Step 3: Solve current time Step

a) Determine generalized tangent matrix

If. (Initial-elastic phase) ~KðiÞ
dtþDt¼

1

bDt2
MdtþDtþ

c
bDt

CdtþDtþKdtþDt

Else. ~KðiÞ
htþDt¼

1

bDt2
MhtþDtþ

c
bDt

ChtþDtþKhtþDtþ
@Rh

@uhtþDt

����
uðiÞhtþDt

þ c
bDt

@Rh

@_uhtþDt

����
_uðiÞhtþDt

b) Determine generalized unbalance vector

If. (Initial-elastic phase) ~PðiÞ
dtþDt¼fdtþDt�MdtþDt€u

ðiÞ
dtþDt�CdtþDt _q

ðiÞ
dtþDt�KdtþDtq

ðiÞ
dtþDt

Else. ~PðiÞ
htþDt¼fhtþDt�MhtþDt€u

ðiÞ
htþDt�ChtþDt _u

ðiÞ
htþDt�KhtþDtu

ðiÞ
htþDt�RhðuðiÞhtþDt ; _u

ðiÞ
htþDtÞ

c) Solve the generalized equilibrium equation.

If. (Initial-elastic phase) ~KðiÞ
dtþDtðqdtþDt�qðiÞdtþDtÞ¼~PðiÞ

dtþDt

Else. ~KðiÞ
htþDtðuhtþDt�uðiÞhtþDtÞ¼~PðiÞ

htþDt

d) Transform the displacement vector to ugtþDt in physical coordinates.

e) Convergence test.

f) If. (solution is converged) go to Step 4
Else if. (i> imax) fail to converge and go to the Step 8.
Else start a new iteration: i¼iþ1 and go to Step 3(a)
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Step 4: Check damage state

a) Check the damage state of all structural components. If damage state changes, go to
Step 5; otherwise go to Step 7.

Step 5: Adaptive substructure modeling

a) If the structural components are in the initial-elastic phase, model them as linear
substructures that behave in elastic manner.

b) If the structural components are in the plastic-hardening phase, model them as nonlinear
substructures that behave in plastic manner.

c) If the structural components are in the residual-elastic phase, model them as nonlinear
substructures that behave in elastic manner.

Step 6: update the governing equation in hybrid coordinates.

a) If Step 5(a) is reached, make DOF reduction for linear substructures using vibration
modes based on initial stiffness. Eq. (2) is constructed.

b) If Step 5(b) is reached, make DOF reduction for linear substructures using vibration
modes based on initial stiffness, while nonlinear substructures remain in their original
form. Eq. (4) is constructed.

c) If Step 5(c) is reached, make DOF reduction for linear substructures using vibration
modes based on initial stiffness, while make DOF reduction for nonlinear
substructures using vibration modes based on tangent stiffness. Eq. (6) is constructed.

d) Go back to Step 3(a).

Step 7: Submit the solution

a) Commit the converged displacement values.

b) If it’s not the last time step, go to Step 2; otherwise go the Step 8.

Step 8: END

3 AMOR implementation in OpenSees

Implementation of the AMOR method requires program modifications over class
inheritance at both the low level and the high level of OpenSees framework. At the low
level of OpenSees framework, a ModelBuilder object populates the objects of the nodes,
elements, constraints and load patterns of a FE model through an input script. All the
objects created by the ModelBuilder compose a Domain object. At the high level of
OpenSees framework, the state of each domain component is computed by an Analysis
object, which is composed of constraint handler, time integrator, solution algorithm,
storage of equation and equation solver, etc. To avoid tight coupling of domain
components and the analysis methods, the OpenSees framework provides a layer of
abstraction between objects in the domain and the governing equations. This layer of
abstraction is defined as an AnalysisModel object. However, the implementation of AMOR
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method requires a substructure-based layer of abstraction to achieve the substructure modeling
and substructure-based model order reduction. The DOF reduction of substructures involves
two numerical procedures: the mode calculation and selection, and the assembly of governing
equations in hybrid coordinate space. Significantly, the AMOR analysis has been
implemented with a reanalysis ability to gradually changing the substructure modeling
pattern according to the time-varying structural damage distribution. The class diagram of
the AMOR implementation in OpenSees is shown in Fig. 2.

3.1 Substructure-based abstraction layer
The implementation of substructure-based abstraction layer includes substructure
partitioning and substructure numbering. The substructure partitioning is based on the
topology relation of structural components, while the substructure numbering maps the
substructure DOFs and governing equations.

3.1.1 Substructure modeling
For a given time step during a nonlinear seismic analysis, the damage states of structural
components are determined by their deformation at the previous time step. A pair of
structural components are recognized as two vertices connected by an edge in topology
relation, if they are adjacent and keep in the same damage state. Linear and nonlinear
substructures are both aggregations of a set of structural components that share the same
damage states. Obviously, each substructure is surrounded by other substructures with
different damage states. The class diagram of partitioning substructures is illustrated in
Fig. 3(a). The SUB_Structure class is the additional layer of abstraction between the
AnalysisModel and its component objects. The SUB_Structure is created to provide a
middle-level component object in AnalysisModel and present the linear and nonlinear
substructures in a FE model. The method partitionSubs() in AnalysisModel is defined to
generate SUB_Structure objects and partition linear and nonlinear substructures based on
the topology relation of structural components. Each SUB_Structure can access the nodes

Figure 2: Class diagram of the AMOR implementation in OpenSees
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and elements within it through calling the functions getDOF_GroupIter() and
getFE_ElementIter(), respectively.

3.1.2 Substructure partitioning
Once the substructures are modeled, the substructures are numbered one by one and the
numbering process of each substructure is independent from other substructures. The
internal DOFs of each substructure are numbered individually, and the resulting DOF
numbers are utilized to calculated substructure modes. The shared interface DOFs of
adjacent substructures are numbered together, and keep their DOF numbers unchanged in
the governing equations. The class diagram of partitioning and numbering substructures
is illustrated in Fig. 3(b). The number_Substructures() and number_Equations() are
defined in DOF_Numberer to accomplish the DOF numbering process. The method
number_Substructure() numbers the internal DOFs of substructures, and the numbering
results are prepared for the mode calculation and selection of substructures. Meanwhile,

Figure 3: Class diagram of partitioning and numbering substructures
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the method number_Equations() is responsible for numbering the governing equations in
hybrid coordinates, which includes numbering the vibration modes, constraint modes of
linear substructures and the nonlinear DOFs.

3.2 Substructure-based model order reduction
3.2.1 Mode calculation and selection
The implementation of mode calculation involves solving vibration modes and constraint
modes of substructures. The vibration modes are extracted from solving the eigen
equations for substructures. The eigen equations are based on initial stiffness for linear
substructures and based on tangent stiffness for nonlinear substructures. The constraint
modes are obtained through the implementation of the Guyan reduction method [Guyan
(1965)]. On the other side, the mode selection has only been made for the vibration modes
of substructures. During the initial-elastic period, the effective modal mass is utilized to
rank the importance of vibration modes of the entire structure. During the plastic-hardening
period and residual-elastic period, the effective interface mass is employed to evaluate the
contribution of vibration modes to the dynamic response of substructures. The effective
interface mass [Kammer and Triller (1996)] measures the contribution of each vibration
mode to the internal loads at the interface. And a larger effective interface mass means a
stronger interface coupling effect between two adjacent substructures.

The class diagram of calculating and selecting substructure modes is illustrated in Fig. 4.
The method generateSubstructuremodes() in FrequencyAlgo is defined to take charge of
the mode calculation and selection. The vibration modes are calculated by
generateVibrationmodes() through calling the existing eigenvalue solvers. Meanwhile, the
constraint modes are calculated in generateConstraintmodes() through implementing the
Guyan reduction method. Two methods selectEMMs() and selectEIMs() are defined in
EigenIntegrator to determine the dominant vibration modes of substructures. They are
implemented based on the effective modal mass and effective interface mass, respectively.

3.2.2 Assembly of governing equation in hybrid coordinates
The implementation of governing equations in hybrid coordinates involves assembling load
vectors and stiffness matrices through the transformation matrix in Eqs. (3) or (5). In the
original OpenSees framework, load vectors and stiffness matrices are assembled directly
from nodes and elements to the governing equation. For the AMOR analysis, the load
vectors and stiffness matrices are assembled through multiplication by the transformation
matrix. The model order reduction is conducted during the coordinate space
transformation process. The load vectors and stiffness matrices of substructures that
behave elastically are condensed, while remain in the original form for substructures that
behave plastically. As a result, the linear substructures in any phase and nonlinear
substructures in residual-elastic phase are simulated in modal coordinates, and the
nonlinear substructure in plastic-hardening phase are simulated in physical coordinates.
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The class diagram of assembling the governing equation is illustrated in Fig. 5. The assembly
of governing equations are conducted through iterating each SUB_Structure object by the
methods formSubTangent() and formSubUnbalance(). The methods addSubA() and
addSubB() are defined in FullGenLinSOE in charge of assembling the load vectors
and tangent matrices of governing equations. For linear substructures in any phase and
nonlinear substructures in residual-elastic phase, the governing equations are assembled
through the transformation matrix that is accessed in the SUB_Structure object. While for
the nonlinear substructure in plastic-hardening phase, the DOF_Group and FE_Element
objects contribute to the governing equations directly in their original manner.

3.3 AMOR analysis
The implementation of AMOR analysis involves the reanalysis ability to achieve time-
varying substructure modeling according to the gradually changing structural damage
distribution. When the damage states of structural components change at a time step s,
the trial solution of governing equations at the time step s will be eliminated, and the
time history analysis turns back to the time step s� Dt. A reanalysis step is required here
to proceed the time history analysis based on an updated substructure modeling pattern.
The procedure of reanalysis is as follows:

Step 1: The displacement vectors of the entire structure is transformed from the hybrid
coordinate space to the physical coordinate space. The partition pattern of all the
substructures is updated according to the renewed damage distribution, which results in
divided displacement sub-vectors.

Figure 4: Class diagram of calculating and selecting modes
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Step 2: Vibration modes and constraint modes are calculated and the vibration modes are
selected for substructures. Thus a transformation matrix is formed by those substructure
modes. The governing equation is assembled through this transformation matrix at the
time step s, and re-solved by the existing solver in OpenSees.

Step 3: The displacement vectors of the governing equation at the time step s will be
committed and proceed to the next time step sþDt, if the damage state of structural
components at the time step s remains unchanged from the time step s�Dt. Otherwise,
it’s determined to abandon the trial solution and go to the Step 1.

The sequence diagram of the AMOR analysis is illustrated in Fig. 6. The analyze() is the
most important method, which advances the analysis state of the FE model with the
substructure-based model order reduction, and conducts a reanalysis when the damage
state of structural components changes. Once the damage state of structural components
is updated, the analyze() invokes modelChange() to call partitionSubs() in AnalysisModel
to partition substructures, and call number_Substructures() and number_Equations() in
DOF_Numberer to map substructure DOFs and governing equations. Afterwards,
generateSubstructureModes() and generateTransformationMatrix() in FrequencyAlgo are

Figure 5: Class diagram of forming governing equations in hybrid coordinates
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Figure 6: Sequence diagram for the method AMORAnalysis()
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invoked to calculate and select substructure modes, and form the coordinate transformation
matrix. Subsequently, the analyze() calls the solveCurrentStep() to invoke the methods in
Newmark to assemble the governing equations in hybrid coordinates. The governing
equations is further solved in method solveCurrentStep() through a number of trail
iterations until the convergent solution is found. Only when the damage state of
structural components keeps the same status as the previous time step, the displacement
solutions will be committed and stored in the domain object.

4 Validation

4.1 Description of the test structure
To test the performance of the AMORmethod in OpenSees, a 12-story RC frame structure is
employed to conduct the numerical simulation, as shown in Fig. 7. The section information
of the RC frame structure is listed in Tab. 1.

The two-dimensional model in the load direction is developed in the OpenSees program. All
beams and columns of are modeled with 5 fiber-based nonlinear elements. Five integration
points are considered in order to trace the onset of the yielding state of the beams and
columns. The cross sections of the beams and columns are discretized with 50 fibers. The
concrete fiber is modeled using the uniaxial Kent-Scott-Park concrete material model with
a degraded linear unloading/reloading stiffness and an assigned tensile strength. The
compressive strength of the cover concrete is 30 MPa, and the corresponding strain is

Figure 7: Plan view and elevation view of a 12-story building

Table 1: Section information of a 12-story building

Story Section dimension (mm�mm) Reinforcement area (mm2)

Mid-Columns Side Columns Beams Mid-Columns Side Columns Beams

1-6 600�600 600�600 300�500 7060 7060 3600

7-12 500�500 500�500 250�500 4930 4930 3000
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0.002. The compressive strength and compressive strain of the core concrete are determined
according to the confined concrete model proposed by Kent and Park. The steel rebar fiber is
modeled using the uniaxial bilinear steel material model with kinematic hardening. The yield
strength of the longitudinal rebar in the beams and columns is 400MPa. The Young’s modulus
and strain-hardening ratio of the longitudinal rebar are 200 GPa and 0.01, respectively. The
first three periods of the structure are 1.83 s, 0.63 s and 0.35 s. The Rayleigh damping is
employed in the nonlinear seismic analysis.

The acceleration records from the El Centro, Kobe, Northridge and Parkfield earthquakes
are employed as earthquake inputs. The peak ground accelerations (PGA) of these records
are scaled from 100 gal to 500 gal. The time histories of these acceleration records are
normalized and shown in Fig. 8. And the information of these earthquake records are
summarized in Tab. 2.

The results of nonlinear time history analysis are taken for assessing the accuracy and
efficiency of the AMOR method in OpenSees. All examples are run on a PC workstation
that is equipped with an Intel Xeon E5-2640 CPU@ 2.4 GHz processor and 64 GB of RAM.

Figure 8: Time histories of the normalized earthquake records

Table 2: Information of earthquake records

Event Station name Magnitude (Mw) Depth (km) ID in this paper

Imperial Valley El Centro Array #9 6.95 15.69 El Centro

Kobe, Japan Fukushima 6.90 47.11 Kobe

Northridge Beverly Hills 6.69 23.89 Northridge

Parkfield Cholame 6.00 14.02 Parkfield
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4.2 Seismic response of the test structure
The seismic response of the test structure is simulated by both the conventional time step
integration (TSI) method and AMOR method in OpenSees. The simulation results are
compared to validate the performance of the AMOR method in OpenSees. The story-drift
ratios of the test structure under seismic excitations with PGAs from 100 gal to 500 gal
are shown in Fig. 9. Moreover, the time histories of roof displacement under seismic
excitation with a PGA of 500 gal is shown in Fig. 10. The seismic response of the
AMOR method agrees well with that of the TSI method. To compare the localized
nonlinearity, Fig. 11 plots the moment-rotation curves of a beam element that enter
nonlinear stage under earthquakes with a PGA of 500 gal. The moment-rotation curves
of the AMOR method and the TSI method are also consistent with each other.

To quantitatively measure the accuracy of the AMOR method and the TSI method, the
average relative errors of the story-drift ratio curves are summarized in Tab. 2. The
maximum errors of story-drift ratio for El Centro, Kobe, Northridge, and Parkfield are
approximately 2.76%, 5.15%, 3.47%, and 3.96%, respectively. The simulation error
mainly comes from two aspects. Firstly, the trigger of elastic and plastic state of the
curved concrete constitute model is set as the half of the yield stress, which may induce
minor simulating errors. Secondly, the response of substructure in modal coordinate
space is represented by a number of low-order modes, and the ignorance of high-order
modes introduces additional simulation errors. However, the simulation errors listed in
Tab. 3 are quite small and acceptable.

4.3 Model order reduction and computational time
The effectiveness of the AMOR method mainly depends on the characteristics of initial-
elastic phase and residual-elastic phase. When the duration of these two states is longer
and the switching frequency of different damage states is lower, the AMOR method may
have a better MOR effect. That’s because the longer duration of initial-elastic phase
provides a larger number of time intervals, in which the model order reduction for the
entire structure is available. And the longer duration of residual-elastic phase facilitates
the model order reduction for the nonlinear substructures. On the other side, the lower
switching frequency of different damage states limits the additional computational time
required for modeling substructures and updating governing equations.

Fig. 12 shows the time history curves of the three types of damage state when the test
structure is excited by four earthquakes with various intensities. The symbols “i”, “p”
and “e” stand for three damage states, i.e., the initial-elastic phase, the plastic-hardening
phase, and the residual-elastic phase, respectively. A set of three numbers in a bracket
stands for the ratios of the duration of three damage states to the ground motion duration.
The alternation of different damage states can be clearly observed in time history curves.
As the ground motion intensity increases, the duration of initial-elastic phase and
residual-elastic phase decreases and the switching frequency increases. Since the duration
of these two damage states for all earthquake records are longer than the 80% of seismic
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Figure 9: Time histories of the normalized earthquake records
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loading period. The AMOR has a great potential to make model order reduction for
nonlinear seismic analysis.

The number of DOFs in the AMOR method is suitable to assess the efficiency of the model
order reduction. This study set the DOF reduction ratio as the ratio of hybrid DOFs in the
AMORmethod to the DOFs of the non-reduced model. Fig. 13 describes the DOF reduction
ratio of the test structure simulated by AMOR under four earthquakes with a PGA of
500 gal. It can be clearly seen that the AMOR generates a DOF reduction ratio of around
0.01 and makes a remarkable model order reduction during the initial-elastic period and
the residual-elastic period. For the plastic-hardening period, the DOF reduction ratio
approximately ranges from 0.24 to 0.77. Because of the long duration of the

Figure 10: Time history of roof displacements (PGA=500 gal)

Figure 11: Moment-rotation curves (PGA=500 gal)
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initial-elastic phase and residual-elastic phase, the model order reduction for all four
earthquake records is substantially effective.

The advantage of the AMOR method is to minimize the number of DOFs of governing
equations during different damage states, so as to accelerate the solving process of

Table 3: Average errors of the story drift ratio curves (%)

Ground motion intensity (gal) Seismic input records

El Centro Kobe Northridge Parkfield

100 1.70 2.73 3.47 2.26

200 2.76 5.15 1.46 3.96

300 1.59 3.23 1.46 2.57

400 2.60 0.88 1.12 2.47

500 2.07 1.13 1.64 1.62

Figure 12: Time histories of the three types of damage state
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equations. This investigation compares the simulation time of the AMOR with that of the
TSI, as shown in Fig. 14. The ratios of the simulation time are also summarized in
Tab. 4. When the ground motion intensity is as low as 100 gal, the entire structure keeps
in initial-elastic phase throughout the seismic loading period. The seismic response of the
test structure is simulated by a small number of vibration modes. And the ratio of
simulation time between AMOR and TSI ranges from 30% to 35%. When the ground
motion intensities increase, the test structure enters residual-elastic phase during the
attenuating period of seismic loads. The model order reduction of nonlinear substructures
makes a significant contribution to the solving speed of governing equations. Thus the
ratio of simulation time between AMOR and TSI is reduced to about 40%~60% of TSI.

Figure 13: Time history of DOF reduction ratio (PGA=500 gal)
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It’s been observed that the AMOR method has an improved performance in simulation
efficiency when compared to the TSI method.

5 Conclusions

In this paper, an adaptive substructure-based model order reduction method (AMOR) is
developed, which generates time-varying substructures and makes model order reduction
for substructures in the initial-elastic phase, the plastic-hardening phase and the residual-
elastic phase, respectively. The finite-element software framework OpenSees is extended
to perform the AMOR analysis through implementing a substructure layer of abstraction
and a transient analysis class. The capacity of the AMOR method and its implementation
are tested using a 12-story reinforced concrete frame structure. Acceptable agreements of

Figure 14: Comparison of the simulation time

Table 4: Ratio of the simulation time

Ground motion intensity (gal) Seismic input records

El Centro Kobe Northridge Parkfield

100 0.30 0.33 0.35 0.35

200 0.40 0.38 0.51 0.33

300 0.52 0.50 0.61 0.42

400 0.42 0.41 0.51 0.49

500 0.61 0.41 0.52 0.53

102 CMES, vol.124, no.1, pp.79-106, 2020



the seismic response are achieved between the conventional time step integration (TSI)
method and the AMOR method. The advanced software architecture is validated to be
able to generate time-varying substructures and reduce substructure DOFs in different
damage phases. The simulation efficiency of the AMOR method is higher than the TSI
method. The long duration of the initial-elastic phase and residual-elastic phase increases
the AMOR’s efficiency, while the high switching frequency of different damage phases
decreases the AMOR’s efficiency. In the future work, the influence of the switching
frequency should be eliminated to further reduce the computational time.
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