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Abstract: Genetic Algorithm (GA) has been widely used to solve various optimization 
problems. As the solving process of GA requires large storage and computing resources, 
it is well motivated to outsource the solving process of GA to the cloud server. However, 
the algorithm user would never want his data to be disclosed to cloud server. Thus, it is 
necessary for the user to encrypt the data before transmitting them to the server. But the 
user will encounter a new problem. The arithmetic operations we are familiar with cannot 
work directly in the ciphertext domain. In this paper, a privacy-preserving outsourced 
genetic algorithm is proposed. The user’s data are protected by homomorphic encryption 
algorithm which can support the operations in the encrypted domain. GA is elaborately 
adapted to search the optimal result over the encrypted data. The security analysis and 
experiment results demonstrate the effectiveness of the proposed scheme. 
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1 Introduction 
Cloud computing has been attracting more and more attention as its great storage space 
and strong computing power. It is quite usual to outsource complex work to cloud server. 
Cloud server is often considered semi-honest, which means the cloud server will follow 
the instructions received to complete the corresponding task, but at the same time it will 
record the data generated in the calculation process [Cao, Wang, Li et al. (2011)]. In 
order to ensure the user’s data privacy, it is very important to encrypt the data before they 
are outsourced to the cloud server.  
GA performs well on many optimization problems. It is used to optimize the problems of 
traveling salesman [Li, Sun, Zhou et al. (2014)], resource allocation [Li, Zhang and Yu 
(2012)], siting and sizing of distributed generators [Fu, Lai and Liang (2014)], distribution 
system reconfiguration [Xue, Jiang, Zhao et al. (2017)], carpool matching [Jiau and Huang 
(2016)] etc. Because GA could optimize the problem and do not require any expertise 
related to the problem, it can be applied to any problem that needs to be optimized. 
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However, when the genetic algorithm is used to solve the high dimensional problem, the 
computational complexity is large and the time complexity of solving the problem is high, 
it is difficult to run on the local computer [Berlanga, Rivera, Jesus et al. (2010)]. In the 
big data age, the more data, the better effect of genetic algorithm. At the same time, the 
calculation will take much more cost. And the raw data to be optimized may not be 
leaked to the provider of the genetic algorithm. Therefore, it is proposed to outsource the 
genetic algorithm to the cloud server. The user encrypts the raw data and uploads them to 
the cloud server. The cloud server optimizes the problem while keeping the data private. 
Contribution. A privacy-preserving genetic algorithm outsourcing in cloud computing 
scheme is proposed in this paper. A cloud server becomes privacy-preserving genetic 
algorithm provider. The algorithm user could protect the raw data from revealing to the 
algorithm provide. The major contributions are summarized as follows: 
1) For the first time, this paper proposes a privacy-preserving scheme that outsourcing the 
genetic algorithm to the cloud server. The heavy computing tasks are outsourced to the 
cloud server, so that the user only needs to encrypt data and upload them to the cloud 
server. The data will not be leaked out to the cloud server. 
2) An incomplete re-encryption is designed to compare the magnitude of two cipher data 
encrypted with SH.E, which has never been realized before. 

2 Related work 
A cloud server has a large storage capacity, which provides good storage and extraction 
services. The datasets usually are encrypted before outsourcing to preserve the privacy. 
Searchable encryption has been widely used to support data outsourcing [Fu, Wu, Guan 
et al. (2016b)]. There are different types of ciphertext retrieval method like multi- 
keyword ranked search [Xia, Wang, Wu et al. (2015)], semantic search [Fu, Ren, Shu et 
al. (2016a)], and so on. However, the ciphertext retrieval is a method to search the 
encrypted data. And the cloud server is expected to take on more computing tasks.  
Computing outsourcing is an important application of cloud serves. More and more 
companies want to outsource their work to the cloud server. Especially those problems 
with large amount of data could be solved by using the cloud computing. Li et al. put 
forward to use emerging cloud-computing technologies to solve data-intensive geospatial 
problems in urban traffic systems [Li, Zhang and Yu (2011)]. Balamurugan et al. provide 
a detailed investigation on solving NP-hard problems like scheduling and task allocation 
by using cloud computing [Balamurugan, Visalakshi, Prabhakaran et al. (2014)]. Cloud 
computing could be applied to solve problems in many fields like Industry [Yu and Wang 
(2018)], Economic [Coyle and Nguyen (2019)] etc. 
Genetic algorithm also has a wide range of applications. It can be well linked to cloud 
computing. Task scheduling could be optimized by genetic algorithm, which may greatly 
improve the performance of cloud computing [Habibi, Motameni and Ramezani (2008); 
Zhan, Liu, Gong et al. (2015)]. Huang proposed a framework for solving the problem of 
carpool service problems, by using cloud servers to collect data and genetic algorithms to 
optimize the program [Huang, Jiau and Lin (2015)]. All the data in this framework is 
public, and private preserving is not considered. However, facing the problem that the 
data may be leaked is unavoidable in the process of using the cloud server. Gennaro has 
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shown the theoretical possibility of a general result of secure computation outsourcing 
[Gennaro, Gentry and Parno (2010)] based on Yao’s garbled circuits [Yao (1982)] and 
Gentry’s breakthrough work on fully homomorphic encryption scheme [Gentry (2009)]. 
Based on that, an encrypted genetic algorithm outsourcing in cloud computing is 
proposed in this paper. The algorithm user could process the data in cloud servers without 
worrying about data leakage 

3 Preliminariesns 
As it could enable the genetic algorithm in the cloud server to support the data being 
processed in the encrypted domain, the homomorphic encryption algorithm is selected to 
encrypt the data. The specific parts are introduced as follows. 

3.1 Homomorphic encryption 
Encryption will make data hard to be utilized. Some methods that support encrypted data 
operations have been proposed. Homomorphic encryption is a form of encryption that 
allows computation on ciphertexts, generating an encrypted result which, when decrypted, 
matches the result of the operations as if they had been performed on the plaintext. [Jiang, 
Xu, Wang et al. (2015)]. For example, the plaintext corresponding to the product of two 
ciphertexts encrypted with Paillier (one of somewhat homomorphic encryptions) is equal 
to the product of the plaintexts corresponding to those two ciphertexts. An encryption 
algorithm that can support multiple alternative operations at the same time is called full 
homomorphic encryption, others are called somewhat homomorphic encryption. 
However, the fully homomorphic encryption is difficult to be used because of the high 
computational complexity. A somewhat homomorphic encryption(S.HE) is mentioned in 
[Hu, Wang, Wang et al. (2016)]. This scheme is parametrized by the ring 𝑅𝑅𝑞𝑞 ≜ 𝕫𝕫𝑞𝑞[𝑥𝑥]/
〈𝑥𝑥𝑛𝑛 + 1〉 and a discrete Gaussian error distribution 𝜒𝜒 = 𝐷𝐷𝕫𝕫𝑛𝑛,𝜎𝜎 with standard deviation 𝜎𝜎, 
where 𝑛𝑛 is a power of two, 𝑞𝑞 is an odd prime number, 𝜎𝜎 is a parameter that reflects the 
degree of dispersion. The message space of the scheme is defined by a prime 𝑡𝑡 as 𝑅𝑅𝑡𝑡 ≜
𝕫𝕫𝑡𝑡[𝑥𝑥]/〈𝑥𝑥𝑛𝑛 + 1〉. The tuple (𝑆𝑆𝑆𝑆.𝐺𝐺𝐺𝐺𝑛𝑛, 𝑆𝑆𝑆𝑆.𝐸𝐸𝑛𝑛𝐸𝐸, 𝑆𝑆𝑆𝑆.𝐷𝐷𝐺𝐺𝐸𝐸) is used to represent the key 
generation, the encryption and the decryption procedures in the scheme, respectively.  
𝑆𝑆𝑆𝑆.𝐺𝐺𝐺𝐺𝑛𝑛: Sample a ring element 𝑠𝑠 ← 𝜒𝜒 and define the private key 𝑠𝑠𝑠𝑠 ≜ 𝑠𝑠. Sample a 
uniformly random ring element 𝑎𝑎1 ← 𝑅𝑅𝑞𝑞  and an error 𝐺𝐺 ← 𝜒𝜒 and compute the public 
key 𝑝𝑝𝑠𝑠 ≜ (𝑎𝑎0 = −(𝑎𝑎1𝑠𝑠 + 𝑡𝑡𝐺𝐺),𝑎𝑎1); 
𝑆𝑆𝑆𝑆.𝐸𝐸𝑛𝑛𝐸𝐸(𝑚𝑚,𝑝𝑝𝑠𝑠): For a message 𝑚𝑚 ∈ 𝑅𝑅𝑡𝑡, the encryption algorithm samples 𝑢𝑢 ← 𝜒𝜒, and 
𝑓𝑓,𝑔𝑔 ← 𝜒𝜒, and compute the ciphertext 𝐸𝐸𝑡𝑡 = (𝐸𝐸0, 𝐸𝐸1) ≜ (𝑎𝑎0𝑢𝑢 + 𝑡𝑡𝑔𝑔 + 𝑚𝑚,𝑎𝑎1𝑢𝑢 + 𝑡𝑡𝑓𝑓). 
𝑆𝑆𝑆𝑆.𝐷𝐷𝐺𝐺𝐸𝐸(𝐸𝐸𝑡𝑡, 𝑠𝑠𝑠𝑠) : To decrypt 𝐸𝐸𝑡𝑡 = (𝐸𝐸0, 𝐸𝐸1, … , 𝐸𝐸𝛿𝛿) , compute 𝑚𝑚� = 𝐹𝐹(𝐸𝐸𝑡𝑡, 𝑠𝑠)∑ 𝐸𝐸𝑖𝑖𝑠𝑠𝑖𝑖𝛿𝛿

𝑖𝑖=0 . 
Output the message as 𝑚𝑚�  𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡. 
This scheme can support homomor- phic addition and multiplication, its meaning is 
shown in formulas 1 and 2. 

𝑚𝑚 + 𝑚𝑚′ = 𝑆𝑆𝑆𝑆.𝐷𝐷𝐺𝐺𝐸𝐸 ��𝑆𝑆𝑆𝑆.𝐸𝐸𝑛𝑛𝐸𝐸(𝑚𝑚)⨁𝑆𝑆𝑆𝑆.𝐸𝐸𝑛𝑛𝐸𝐸(𝑚𝑚′)�, 𝑠𝑠𝑠𝑠�                         (1) 
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𝑚𝑚 × 𝑚𝑚′ = 𝑆𝑆𝑆𝑆.𝐷𝐷𝐺𝐺𝐸𝐸 ��𝑆𝑆𝑆𝑆.𝐸𝐸𝑛𝑛𝐸𝐸(𝑚𝑚)⨂𝑆𝑆𝑆𝑆.𝐸𝐸𝑛𝑛𝐸𝐸(𝑚𝑚′)�, 𝑠𝑠𝑠𝑠�                         (2) 

In SH.E, ⨁ denotes addition of vectors in the plaintext domain and ⨁ is named 
addition operation in ciphertext domain. In particular, if there is a vector with less 
elements, the missing positions will be filled with zeros. And ⨂ denotes convolution in 
the plaintext domain and ⨂ is named multiplication in ciphertext domain. 
Here is a simple example to introduce those homomorphic operations. In the introduction 
to the decryption process, in order to simplify the formula, all the variables multiplied by 
𝑡𝑡 are recorded as 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 
For c𝑡𝑡 = 𝑆𝑆𝑆𝑆.𝐸𝐸𝑛𝑛𝐸𝐸(𝑚𝑚,𝑝𝑝𝑠𝑠)and 𝐸𝐸𝑡𝑡′ = 𝑆𝑆𝑆𝑆.𝐸𝐸𝑛𝑛𝐸𝐸(𝑚𝑚′,𝑝𝑝𝑠𝑠), taking an additional operation will 
get a new ciphertext  𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎′ = (𝐸𝐸𝑎𝑎0, 𝐸𝐸𝑎𝑎1) = (𝐸𝐸0 + 𝐸𝐸0′ , 𝐸𝐸1 + 𝐸𝐸1′). 
To obtain the message, the following operation is needed. 
 𝐹𝐹(𝐸𝐸𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎′ , 𝑠𝑠) = ∑ 𝐸𝐸𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖1

𝑖𝑖=0  
             = ∑ (𝐸𝐸𝑖𝑖 + 𝐸𝐸𝑖𝑖′)1

𝑖𝑖=0 𝑠𝑠𝑖𝑖 
          = 𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑚𝑚 + 𝑚𝑚′                                           (3) 
The message 𝑚𝑚 + 𝑚𝑚′ will be obtained by modular operation after that. 
Taking multiplicative operation will get a new ciphertext 𝐸𝐸𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

′ = (𝐸𝐸𝑏𝑏0, 𝐸𝐸𝑏𝑏1, 𝐸𝐸𝑏𝑏2). To 
determine 𝐸𝐸𝑏𝑏𝑖𝑖  an unknown variable 𝑠𝑠  needs to be introduced. Considering the 
expression as follows 
�∑ 𝐸𝐸𝑖𝑖𝑠𝑠𝑖𝑖1

𝑖𝑖=0 ��∑ 𝐸𝐸𝑗𝑗′𝑠𝑠𝑖𝑖1
𝑗𝑗=0 � = 𝐸𝐸0𝐸𝐸0′𝑠𝑠0 + (𝐸𝐸0𝐸𝐸1′ + 𝐸𝐸0′ 𝐸𝐸1)𝑠𝑠1 + 𝐸𝐸1𝐸𝐸1′𝑠𝑠2                  (4) 

So, the output ciphertext is 𝐸𝐸𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
′ = (𝐸𝐸𝑏𝑏0, 𝐸𝐸𝑏𝑏1, 𝐸𝐸𝑏𝑏2) = (𝐸𝐸0𝐸𝐸0′ , (𝐸𝐸0𝐸𝐸1′ + 𝐸𝐸0′ 𝐸𝐸1), 𝐸𝐸1𝐸𝐸1′). 

  𝐹𝐹(𝐸𝐸𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
′ , 𝑠𝑠) = ∑ 𝐸𝐸𝑏𝑏𝑖𝑖𝑠𝑠𝑖𝑖2

𝑖𝑖=0   
           = 𝐸𝐸0𝐸𝐸0′ 𝑠𝑠0 + (𝐸𝐸0𝐸𝐸1′ + 𝐸𝐸0′ 𝐸𝐸1)𝑠𝑠1 + 𝐸𝐸1𝐸𝐸1′𝑠𝑠2  
          = t𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑚𝑚 ∙ 𝑚𝑚′                                            (5) 
Similarly, we can get the ciphertext by multiple additional or multiplicative operations. 
Brakerski et al. [Brakerski and Vaikuntanathan (2011)] has given a detailed introduction 
about SHE in his paper. 

3.2 Genetic algorithm 
Genetic algorithm is a kind of evolutionary algorithm. It treats a feasible solution as an 
individual. Each individual is represented by a gene chain, and each gene is the value of 
the solution on the corresponding dimension. By simulating the genetic process of natural 
organisms, new individuals are generated through gene crossover or mutation. Then 
eliminate some bad individuals according to the principle of survival of the fittest, and 
the rest in the population will become better and better. To solve a M-dimensional 
problem, GA has the following main operations: 
1) Initialization: initialize a population 𝑃𝑃 of 𝑁𝑁 individuals, each individual has a gene 
chain with M-length, 𝑡𝑡 represents the number of generation. 
2) Selection: Select random individuals with a certain generation gap 𝐺𝐺. Generate 𝐺𝐺 · 𝑁𝑁 
new individuals by gene recombination and variation. 
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3) Crossover: Point crossover or arithmetic crossover is done for two individuals. The 
two operations are shown in Fig. 1.  

1 11 00 1…A

11 0 00 0…B

111 00 0…A′

1 10 00 1…B′

 
(a) 

 
 (b) 

Figure 1: Recombination. (a) One-point crossover (b) Arithmetic crossover 

4) Mutation: Individuals will mutate with a small probability. mutation is a random 
change of a gene value, for binary code that is 0 turns to 1 or 1 turns to 0. 
5) Evaluation: A fitness function is used to evaluate an individual is a good one or not. 
For some optimization problems, the fitness function could be the objective function. 
6) Update: According to the fitness, 𝑁𝑁 · 𝐺𝐺 new and 𝑁𝑁 old individuals are sorted. 𝑁𝑁 
better individuals will be retained and form new population 𝑃𝑃. 
With the operations listed above, the data is continually optimized. And these operations 
show that GA has the following advantages: 
1) Search using the evaluation function to inspire the process, fast and random search 
capabilities that are independent of the problem. 
2) With the potential parallelism, multiple populations could evolve at the same time. 
3) It is extensible and easy to combine with other algorithms. 
4) Using the probability mechanism to iterate.  

Algorithm 1: Genetic algorithm 
Begin 

          𝑝𝑝 = 𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝐺𝐺(𝑁𝑁,𝑀𝑀); 
Repeat 
𝑝𝑝𝑝𝑝𝑎𝑎𝑒𝑒𝑒𝑒𝑛𝑛𝑡𝑡 = 𝑠𝑠𝐺𝐺𝑖𝑖𝐺𝐺𝐸𝐸𝑡𝑡(𝑝𝑝); 

    𝑝𝑝𝑠𝑠𝑒𝑒𝑛𝑛1 = 𝐸𝐸𝑐𝑐𝑚𝑚𝑠𝑠𝑠𝑠�𝑝𝑝𝑝𝑝𝑎𝑎𝑒𝑒𝑒𝑒𝑛𝑛𝑡𝑡�; 
   𝑝𝑝𝑠𝑠𝑒𝑒𝑛𝑛2 = mutate(𝑝𝑝𝑠𝑠𝑒𝑒𝑛𝑛1); 
   𝑓𝑓 = evaluate(𝑝𝑝,𝑝𝑝𝑠𝑠𝑒𝑒𝑛𝑛2); 

   𝑝𝑝 = 𝑢𝑢𝑝𝑝𝑚𝑚𝑎𝑎𝑡𝑡𝐺𝐺(𝑝𝑝,𝑝𝑝𝑠𝑠𝑒𝑒𝑛𝑛2,𝑓𝑓); 
until terminated=true 
output the best individual in 𝑝𝑝; 

end 

18 1021 2035 9…A

247 15 2712 12…B

321713 1918 10…A′

10 2417 1627 11…B′
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Due to the characteristics of genetic algorithm, it could be used to solve various 
optimization problems. And the storage and computing capability of cloud server can 
further strengthen the role of genetic algorithm. The explicit steps of genetic algorithm 
are depicted in Algorithm 1. 

4 The proposed scheme 
4.1 Overview of the scheme 
The structure of the outsourcing genetic algorithm consists of three parts: the algorithm 
provider, the algorithm user and the cloud servers. The general structure is shown in Fig. 2. 
First of all the algorithm user informs the algorithm provider of the public key. The 
algorithm provider uses the public key to encrypt the parameters and make corresponding 
changes to the algorithm. After that, the genetic algorithm will be uploaded to the cloud 
calculators and wait to be used. 
The algorithm user encrypts the initial data and fitness function, and sends the encrypted 
data and function to the cloud calculator.  

 
Figure 2: The system model 

The cloud server consists of calculator, comparator and re-encryption sever. The 
calculator receives the encrypted algorithm from algorithm user, and it will complete the 
process of selection, crossover, mutation, and calculating the fitness of the individuals. 
After one evolution, all the fitness values are sent to the re-encryption server. The re-
encryption server re-encrypts the fitness values with re-encrypt key. The comparator will 
decrypt the re-encrypted data with the key it keeps and returns the sort result to the 
calculators to make up the new populations. Through the evolution of generations, the 
calculator will get an optimal solution in the population and return to the algorithm user. 
After getting the encrypted optimal result from the calculator, the algorithm user will 
decrypt it with his private key. 

 

Re-encryption 
server 

Calculator 

Algorithm 
user 

Encrypted 
data 

Encrypted 
result 

Comparator 
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4.2 Incomplete re-encryption 
Before introducing the details of privacy-preserving genetic algorithm outsourcing 
scheme, we will first introduce a new conception incomplete re-encryption. Incomplete 
re-encryption is used for solving the problem of privacy-preserving comparison between 
two encrypted data. We proposed it by the inspired of re-encryption. 
Re-encryption is a method to share information between two users Liu et al. [Liu, Wang 
and Wu (2014)]. Alice encrypted her massage 𝑚𝑚 with her public key 𝑝𝑝𝑠𝑠𝐴𝐴, and send this 
encrypted massage 𝐸𝐸 = 𝐸𝐸(𝑚𝑚, 𝑝𝑝𝑠𝑠𝐴𝐴) to the cloud server. The cloud server re-encrypted 
the massage with re-encryption key 𝑐𝑐𝑠𝑠 = (𝑠𝑠𝑠𝑠𝐴𝐴,𝑝𝑝𝑠𝑠𝐵𝐵) which is consisted of Alice’s 
private key 𝑠𝑠𝑠𝑠𝐴𝐴  and Bob’s public key 𝑝𝑝𝑠𝑠𝐵𝐵 . So Bob can decrypt the re-encrypted 
massage with his own private key 𝑠𝑠𝑠𝑠𝐵𝐵. The general process of re-encryption is as 
follows: 
𝐸𝐸′ = 𝐸𝐸(𝐸𝐸, 𝑐𝑐𝑠𝑠) 
    = 𝐸𝐸(𝐷𝐷(𝐸𝐸(𝑚𝑚,𝑝𝑝𝑠𝑠𝐴𝐴), 𝑠𝑠𝑠𝑠𝐴𝐴),𝑝𝑝𝑠𝑠𝐵𝐵) 
   = 𝐸𝐸(𝑚𝑚,𝑝𝑝𝑠𝑠𝐵𝐵)                                                       (6)

                           
The plaintexts obtained by Alice and Bob in the re-encryption scheme should be same. 
However, in the incomplete re-encryption scheme introduced in this paper, Bob can only 
get the same sorting as Alice, but the decrypted results are different. So we named it as 
incomplete re-encryption. With the sorting, Bob could find the best solution, and the 
original data will not be leaked to Bob. 
The details of incomplete re-encryption are introduced as follows: 
1. Alice encrypts her massage m with her public key 𝑝𝑝𝑠𝑠, and sends her encrypted 
massage 𝐸𝐸 = 𝐸𝐸(𝑚𝑚,𝑝𝑝𝑠𝑠) to the re-encryption server. 
2. Then Alice samples ring elements 𝑥𝑥,𝑦𝑦, 𝑖𝑖 ← 𝜒𝜒 and sends the re-encryption key  𝑐𝑐𝑠𝑠 =
𝑥𝑥 + 𝑡𝑡𝑖𝑖 to the re-encryption server and the decryption key 𝑚𝑚𝑠𝑠 = (𝑥𝑥𝑠𝑠 + 𝑡𝑡𝑦𝑦, 𝑡𝑡 ) to Bob 
respectively. So the re-encryption server could re-encrypt the ciphertext 𝐸𝐸 as formula (7) 
𝑅𝑅𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑖𝑖 ∙ (𝑥𝑥 + 𝑡𝑡𝑖𝑖)𝛿𝛿−𝑖𝑖−1                                                  (7)                                                                          
3. The encrypted massage is 𝐶𝐶 = (𝐸𝐸0, 𝐸𝐸1, … , 𝐸𝐸𝛿𝛿). The re-encryption server will send the 
re-encrypted massage which is 𝑅𝑅𝐶𝐶 = (𝑅𝑅𝐸𝐸0,𝑅𝑅𝐸𝐸1, … ,𝑅𝑅𝐸𝐸𝛿𝛿) to Bob. Bob could decrypt it 
with the decryption key 𝑚𝑚𝑠𝑠 as formula (8). 
F(𝑅𝑅𝐶𝐶, 𝑥𝑥𝑠𝑠 + 𝑡𝑡𝑦𝑦) = ∑ 𝑅𝑅𝐸𝐸𝑖𝑖 ∙ (𝑥𝑥𝑠𝑠 + 𝑡𝑡𝑦𝑦)𝑖𝑖𝛿𝛿

𝑖𝑖=0   
             = ∑ 𝐸𝐸𝑖𝑖 ∙ 𝑠𝑠𝑖𝑖 ∙ 𝑥𝑥𝛿𝛿−1 + 𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝛿𝛿

𝑖𝑖=0   
            = 𝑥𝑥𝛿𝛿−1 ∙ 𝑚𝑚𝑓𝑓𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 + 𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                   (8) 
4. Bob can get the by modular operation. 
If Alice pass multiple massage to Bob by incomplete re-encryption, Bob can get the 
magnitude relationship of them without getting the private key of Alice or the raw massages. 

4.3 Privacy-preserving operators in calculator 
The cloud calculator needs to accomplish the missions of selection, crossover, mutation 
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and evaluation. The detailed process will be introduced in this section. 
Selection: Selection in genetic algorithm is random. So it is also easy to realize in 
encrypted genetic algorithm. 
Crossover: There are many ways to cross two individuals, but they belong to only two 
categories: point crossover and arithmetic crossover. Point crossover such as one-point 
crossover shown in Fig.1(a). The breakpoint between 𝑥𝑥 bit and 𝑥𝑥 + 1 bit means that the 
first 𝑥𝑥 bits of the newly generated individual A’ are obtained from individual A, and the 
rest are obtained from individual B. For multiple points crossover, the bits of A’ are 
obtained from A and B alternately. It is easy to complete the point crossover in the 
ciphertext domain by using the same operation in the plaintext domain. The arithmetic 
crossover could not be used in binary code. A’ is usually obtained by calculating A and B 
with finite addition and multiplication.  
Mutation: The purpose of mutation is to maintain population diversity and prevent 
population from falling into the local optimal solution. It is a suitable operation of genetic 
mutation that modify the ciphertext randomly with small probability. 
Evaluation: Fitness is the only evaluation standard to evaluate the solution. It is obtained 
by calculating the object function or fitness function. Due to the limitation of the 
homomorphic encryption algorithm, the function can only support simple mathematical 
operations at present. 

4.4 Privacy-preserving operators in re-encryption server 
The re-encryption server re-encrypts the fitness values into ciphertexts that the 
comparator can decrypt. The decrypted results are not the same as the fitness values, but 
the magnitude relationship is not changed.  
Re-encryption server will send the re-encrypted data which is 𝑅𝑅𝐶𝐶 = (𝑅𝑅𝐸𝐸0,𝑅𝑅𝐸𝐸1, … ,𝑅𝑅𝐸𝐸𝛿𝛿) 
to the comparator. 
The comparator will decrypt the re-encrypted fitness values with decryption key, and it 
will get the 𝑥𝑥𝛿𝛿−1 ∙ 𝑚𝑚𝑓𝑓𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 by modular operation. For all the solutions, the fitness 
values turned the same times, so the magnitude relationship is unchanged. The 
comparator will return the sorting to the calculator. The calculator will update the 
population, and evolution will go on. 

4.5 The complete process description 
Based on the introduction, the complete process will be described in Alg. 2. The Enc 
means encrypting the parameters and modifying the normal additional or multiplicative 
operations to the operations which can fit the encryption algorithm. 

5 Security analysis 
The cloud servers are honest-but-curious. If collusion problem between servers is not 
considered, the security of the data depends on the security of the encryption algorithm. 
However, the security of 𝑆𝑆𝑆𝑆.𝐸𝐸 is analyzed in Hu et al. [Hu, Wang, Wang et al. (2016)]. 
We only analyze the four situations in which servers collaborate with each other. 
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Algorithm 2: Encrypted genetic algorithm 
At user: 
1) (pk,sk)=KeyGenerate; 
2) Send the public key pk to the provider, the re-encryption key rk to the re-encryption 

server and the decryption key dk to the cloud comparator re- spectively; 
3) 𝐸𝐸.𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎1 = SH. Enc(𝑚𝑚𝑐𝑐𝑖𝑖𝑔𝑔𝑖𝑖𝑛𝑛𝑎𝑎𝑖𝑖 𝑚𝑚𝑎𝑎𝑡𝑡𝑎𝑎,𝑝𝑝𝑠𝑠); 
4) 𝐸𝐸.𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠𝑓𝑓𝑢𝑢𝑛𝑛𝐸𝐸𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 = Enc(𝑓𝑓𝑖𝑖𝑡𝑡,𝑝𝑝𝑠𝑠); 
5) Upload 𝐸𝐸.𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎1 and 𝐸𝐸.𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠𝑓𝑓𝑢𝑢𝑛𝑛𝐸𝐸𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛 to the cloud calculators; 
At provider: 
1) 𝐸𝐸.𝐺𝐺𝐺𝐺 = Enc(𝐺𝐺𝐺𝐺,𝑝𝑝𝑠𝑠); 
2) Upload E.GA to the cloud calculators; 
At cloud server: 
1) Repeat 

Calculator: 
  [𝐸𝐸.𝑀𝑀𝑖𝑖𝑚𝑚𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡 ,𝐸𝐸.𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠] = E. GA(𝐸𝐸.𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡 ,𝐸𝐸.𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠𝑓𝑓𝑢𝑢𝑛𝑛𝐸𝐸𝑡𝑡𝑖𝑖𝑚𝑚𝑛𝑛); 

Send the E.Fitness to re-encryption server; 
Re-encryption server: 

Re-encryped the 𝐸𝐸.𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠 with 𝑐𝑐𝑠𝑠 to get 𝑅𝑅𝐸𝐸.𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠 
Send the E.Fitness to re-encryption server; 

Comparator: 
𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠 = SH. Dec(𝐸𝐸.𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠); 
[𝑆𝑆𝑚𝑚𝑐𝑐𝑡𝑡𝑖𝑖𝑛𝑛𝑔𝑔] = sort(𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠); 
Send the Sorting to calculator; 

Calculator: 
𝐸𝐸.𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡+1 = Update(𝐸𝐸.𝑀𝑀𝑖𝑖𝑚𝑚𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡 ,𝑆𝑆𝑚𝑚𝑐𝑐𝑡𝑡𝑖𝑖𝑛𝑛𝑔𝑔); 
𝑡𝑡 = 𝑡𝑡 + 1 

until terminated=true 
end 

2) Output the final results 𝐸𝐸.𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡 and E.Fitness to user; 
At user: 
1) [𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎,𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠] = 𝑆𝑆𝑆𝑆.𝐷𝐷𝐺𝐺𝐸𝐸�(𝐸𝐸.𝐷𝐷𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡 ,𝐸𝐸.𝐹𝐹𝑖𝑖𝑡𝑡𝑛𝑛𝐺𝐺𝑠𝑠𝑠𝑠), 𝑠𝑠𝑠𝑠�; 

Get the best solution by sorting the Fitness. 

Situation A: Calculator colludes with re-encryption server 
The re-encryption key 𝑥𝑥 is a random number that independent of any information which 
can be obtained by the calculator. So there is no help that calculator colludes with re-
encryption server.  
Situation B: Comparator colludes with re-encryption server 
The comparator owns the decryption key 𝑚𝑚𝑠𝑠 = (𝑥𝑥𝑠𝑠 + 𝑡𝑡𝑦𝑦, 𝑡𝑡), and the re-encryption server 
owns 𝑐𝑐𝑠𝑠 = 𝑥𝑥 + 𝑡𝑡𝑖𝑖. There are four variables in two equations. In general, there are 
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innumerable solutions to this problem. So if comparator colludes with re-encryption 
server, the private key s and x still safe. 
Situation C: Calculator colludes with comparator 
The calculator could send the encrypted original data without re-encryption to the 
comparator. The comparator decrypts the data with the decryption key dk. The decryption 
result as follows: 
𝑚𝑚� = 𝐹𝐹(𝐸𝐸𝑡𝑡, 𝑥𝑥𝑠𝑠 + 𝑡𝑡𝑦𝑦)  
    = ∑ 𝐸𝐸𝑖𝑖(𝑥𝑥𝑠𝑠)𝑖𝑖𝛿𝛿

𝑖𝑖=0 + 𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
    = 𝐸𝐸0 + 𝐸𝐸1𝑥𝑥𝑠𝑠 + 𝐸𝐸2𝑥𝑥2𝑠𝑠2 +⋯+ 𝐸𝐸𝛿𝛿𝑥𝑥𝛿𝛿𝑠𝑠𝛿𝛿 + 𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑚𝑚                         (9) 
Obviously, m ≠ 𝑚𝑚�  𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡, it is hard to recover m from 𝑚𝑚� . 
Situation D: All the parties of the cloud servers colludes with each other 
As described in situation B, s and x are unavailable. All the parties of the cloud servers 
collude with each other. So the comparator could get the re-encrypted original data, and 
try to decrypt it. The decryption result as follows: 
𝑚𝑚� = 𝐹𝐹(𝑅𝑅𝐶𝐶, 𝑥𝑥𝑠𝑠 + 𝑡𝑡𝑦𝑦) 
     = ∑ 𝑅𝑅𝐸𝐸𝑖𝑖(𝑥𝑥𝑠𝑠)𝑖𝑖𝛿𝛿

𝑖𝑖=0 + 𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
     = ∑ 𝐸𝐸𝑖𝑖𝑠𝑠𝑖𝑖𝛿𝛿

𝑖𝑖=0 𝑥𝑥𝛿𝛿 + 𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   
     = 𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑥𝑥𝛿𝛿𝑚𝑚                                                    (10) 

The cloud servers could only get 𝑥𝑥𝛿𝛿𝑚𝑚 by 𝑚𝑚�  𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡. 

6 Experiment results 
The purpose of the privacy-preserving genetic algorithm outsourcing proposed is to 
reduce the cost of the algorithm users. At the same time, it hopes the cloud server could 
return a correct global optimal solution which is not worse than the optimization result in 
the plaintext domain. Two indicators are summarized to verify the performance of the 
algorithm. The two indicators are the difference of the optimal values and speed increase 
rate between using privacy-preserving genetic algorithm and standard genetic algorithm. 
However, the types of arithmetic operations that can be supported by the current 
homomorphic encryption algorithm are limited, and only integers can be correctly encrypted 
and decrypted. Although we can multiply the float-point numbers by 10𝑘𝑘 to amplify them, 
many decimals have to be abandoned which leads to the result being an approximation. 
The communication latency between the user and the cloud servers is ignored since the 
other operations in this scheme cost much more time, the latency could take few effect to 
the scheme. De Jong function is chosen to evaluate the performance of the scheme. And 
the experiment results are shown in Tab. 1. 
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Table 1: Performance Results. Here difference value means the difference between the 
optimal value of original GA and encrypted GA. The toriginal, tcloud, and tuser denotes the 
user-side original problem solving time, cloud-side encrypted problem solving time, and 
user-side computation time, respectively. The asymmetric speedup captures the user 
efficiency gain via outsourcing 

Dimension Difference 
Value 

Original 
Problem Encrypted Problem Asymmetric 

Speedup 
toriginal(sec) tcloud(sec) tuser(sec) toriginal /tuser 

50 0 67.5607 318.3374 1.0072 67.0777 
100 0 138.0556 734.0666 2.0081 68.7494 
150 0 221.7535 1268.0280 3.0934 71.6860 
200 0 381.1831 2278.9867 4.0301 94.5840 

As shown in the Tab. 1, encrypted GA could get the same solution as the original GA. 
The operation in encrypted domain does not have a negative effect on the optimization 
results. The purpose of algorithm user outsources the calculation process to the cloud 
server is to reduce the computational cost himself. In spite of tcloud is much larger than 
toriginal, the time spent by the user is greatly reduced. Because the genetic algorithm needs 
to process the data repeatedly, the greater the problem dimension is, the longer the 
calculation time of once evolutional generation costs. And the greater the dimension is, 
the more the evolutional generation is needed, which leads to much more cost. With the 
rise of the problem dimension, the value of asymmetric speedup is also rising. That is 
because the user only needs to encrypt the original data and decrypt the final results, 
which is less affected by the growth of the dimension than the genetic algorithm. 
It is expected that outsourcing encrypted genetic algorithm to the cloud servers can bring 
more benefits for the user with the rise of the dimension. More experiments need to be 
done to verify this view, and it is what the author is doing. 

7 Conclusion 
With the help of cloud servers, user’s workload is greatly reduced. And genetic algorithm 
can also be out- sourced to the cloud server. Although the arithmetic operations that can 
be supported by the recent encryption algorithm, it is hopeful to outsource more 
optimization to the cloud servers with the deepening of research on encryption algorithms. 

Acknowledgement: This work is supported by the NSFC (61672294, 61601236, 
U1536206, 61502242, 61572258, U1405254, 61373133, 61373132, 61232016), 
BK20150925, Six peak talent project of Jiangsu Province (R2016L13), NRF-
2016R1D1A1B03933294, CICAEET, and PAPD fund. 

References 
Balamurugan, S.;Visalakshi, P.; Prabhakaran, V. M.; Sankaranarayanan, S. (2014): 
Strategies for solving the NP-Hard workflow scheduling problems in cloud computing 
environments. Australian Journal of Basic & Applied Sciences, vol. 16, no. 8, pp. 345-355. 



 
 
     
60                                            JCS, vol.2, no.1, pp.49-61, 2020                                                      

Berlanga, F. J.; Rivera, A. J.; Jesus, M. J.; Herrera, F. (2010): GP-COACH: 
Genetic programming- based learning of compact and accurate fuzzy rule-based 
classification systems for High-dimensional problems. Information Sciences, vol. 8, no. 
180, pp. 1183-1200. 
Brakerski, Z.; Vaikuntanathan, V. (2011): Fully homomorphic encryption from ring-
LWE and security for key dependent messages. Advances in Cryptology-CRYPTO 2011, 
pp. 505-524. 
Cao, N.; Wang, C.; Li, M.; Ren, K.; Lou, W. J. (2011): Privacy-preserving multi-
keyword ranked search over encrypted cloud data. INFOCOM, 2011 Proceedings IEEE. 
pp. 829-837.  
Coyle, D.; Nguyen, D. (2019): Cloud computing, Cross-Border data flows and new 
challenges for measurement in economics. National Institute Economic Review, vol. 1, no. 
249, pp. R30-R38. 
Eldurssi, A. M.; O’Connell R. M. (2015): A fast nondominated sorting guided genetic 
algorithm for multi-objective power distribution system reconfiguration problem. IEEE 
Transactions on Power Systems, vol. 2, no. 30, pp. 593-601. 
Foster, J. D.; Berry, A. M.; Boland, N.; Waterer, H. (2014): Comparison of mixed-
integer programming and genetic algorithm methods for distributed generation planning. 
IEEE Transactions on Power Systems, vol. 2, no. 29, pp. 833-843. 
Fu, Y.; Lai, K. K.; Liang, L. (2014): A robust optimisation approach to the problem of 
supplier selection and allocation in outsourcing. International Journal of Systems Science, 
vol. 4, no. 47, pp. 1-6. 
Fu, Z. J.; Ren, K.; Shu, J. G.; Sun, X. M.; Huang, F. X. (2016a): Enabling 
personalized search over encrypted outsourced data with efficiency improvement. IEEE 
Transactions on Parallel and Distributed Systems, vol. 9, no. 27, pp. 2546-2559. 
Fu, Z. J.; Wu, X. L.; Guan, C. W.; Sun, X. M.; Ren, K. (2016b): Toward efficient 
multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. 
IEEE Transactions on Information Forensics and Security, vol. 12, no. 11, pp. 2706-2716. 
Gennaro, R.; Gentry, C.; Parno, B. (2010): Non-interactive verifiable computing: 
outsourcing computation to untrusted workers. Lecture Notes in Computer Science, vol. 3, 
no. 6223, pp. 465-482. 
Gentry, C. (2009): Fully homomorphic encryption using ideal lattices. ACM Symposium 
on Theory of Computing, STOC 2009, pp. 169-178. 
Yu, G.; Wang, L. (2018): Advantages and paths of developing cloud computing industry 
in heilongjiang province. IETI Transactions on Social Sciences and Humanities, pp. 37-42. 
Habibi, F., Motameni, H., Ramezani, F. (2008): The new approach for solving task 
scheduling in cloud computing environment using combination of genetic algorithm and 
tabu search. Networks, pp. 60-67. 
Hu, S. S.; Wang, Q., Wang, J. J., Qin, Z., Ren, K. (2016): Securing SIFT: privacy-
preserving outsourcing computation of feature extractions over encrypted image data. 
IEEE Transactions on Image Processing, vol. 7, no. 25, pp. 3411-3425. 



 
 
 
Privacy-Preserving Genetic Algorithm Outsourcing in Cloud Computing                         61 

Huang, S. C.; Jiau, M. K.; Lin, C. H. (2015): A genetic-algorithm-based approach to 
solve Carpool service problems in cloud computing. IEEE Transactions on Intelligent 
Transportation Systems, vol. 1, no. 16, pp. 352-364. 
Jiang, L.; Xu, C.; Wang, X.; Luo, B.; Wang, H. (2015): Secure outsourcing SIFT: 
efficient and privacy-preserving image feature extraction in the encrypted domain. IEEE 
Transactions on Dependable & Secure Computing, vol. 8, no. 14, pp. 1-15. 
Jiau, M. K.; Huang, S. C. (2015): Services-oriented computing using the compact 
genetic algorithm for solving the carpool services problem. IEEE Transactions on 
Intelligent Transportation Systems, vol. 5, no. 16, pp. 2711-2722. 
Li, J.; Sun, Q.; Zhou, M. C.; Yu, X.; Dai, X. (2014): Colored traveling salesman 
problems and solutions. IEEE Transactions on Cybernetics, vol. 3, no. 47, pp. 9575-9580. 
Li, Q.; Zhang, T.; Yu, Y. (2011): Using cloud computing to process intensive floating 
car data for urban traffic surveillance. International Journal of Geographical Information 
Science, vol. 8, no. 25, pp. 1303-1322. 
Liu, Q.; Wang, G. J.; Wu, J. (2014): Time-based proxy re-encryption scheme for secure 
data sharing in a cloud environment. Information Sciences, vol. 3, no. 258, pp. 355-370. 
Xia, Z. H., Wang, X. H., Sun, X. M., Wang, Q. (2015): A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data. IEEE Transactions on 
Parallel and Distributed Systems, vol. 2, no. 27, pp. 340-352. 
Xue, Y.; Jiang, J. M.; Zhao, B. P., Ma, T. H. (2017): A self-adaptive articial bee colony 
algorithm based on global best for global optimization. Soft Computing, pp. 1-18. 
Yao, A. C. (1982): Protocols for secure computation. Foundations of Computer Science 
Annual Symposium on, pp.160-164. 
Zhan, Z. H.; Liu, X. F.; Gong, Y. J.; Zhang, J. (2015): Cloud computing resource 
scheduling and a survey of its evolutionary approaches. Acm Computing Surveys, vol. 4, 
no. 47, pp. 63. 
 


	Privacy-Preserving Genetic Algorithm Outsourcing in Cloud Computing
	Leqi Jiang0F , 2 and Zhangjie Fu1, 2, *

	4 The proposed scheme
	5 Security analysis
	6 Experiment results
	7 Conclusion
	References

