
Journal of Cyber Security JCS, vol.2, no.1, pp.9-23, 2020

JCS. doi:10.32604/jcs.2020.06313 www.techscience.com/journal/JCS

Searchable Encryption with Access Control on Keywords in
Multi-User Setting

Lei Li1, Chungen Xu1, *, Xiaoling Yu1, Bennian Dou1 and Cong Zuo2

Abstract: Searchable encryption technology makes it convenient to search encrypted
data with keywords for people. A data owner shared his data with other users on the
cloud server. For security, it is necessary for him to build a fine-grained and flexible
access control mechanism. The main idea of this paper is to let the owner classify his data
and then authorizes others according to categories. The cloud server maintains a
permission matrix, which will be used to verify whether a trapdoor is valid or not. In this
way we can achieve access control and narrow the search range at the same time. We
prove that our scheme can achieve index and trapdoor indistinguishability under chosen
keywords attack security in the random oracles.

Keywords: Searchable encryption, access control, cloud computing, permission
assignment.

1 Introduction
Cloud service brings great convenience to people due to its powerful computing power
and rich storage resources. Nowadays more and more people are used to storing their
files on the cloud server to save limited local storage. However, the cloud server cannot
be fully trusted. In order to prevent personal data from leaking, users need to encrypt
their data before uploading to the server. Soon people find it difficult to search over
ciphertext. It seems that one solution is to let the cloud server decrypt all ciphertext and
do the search work. It is equivalent to exposing all plaintext to the administrator of the
server. Another solution is to download all data, decrypt them and search one by one,
which needs a huge local storage space. Obviously, neither of them is feasible. Thus
searchable encryption technology emerges as the times requires. Searchable encryption
enables people to directly search over ciphertext with keywords, leaking little information
[Li, Zhao, Jiang et al. (2017); Xiong and Shi (2018); Liu, Peng and Wang (2018)].
In the multi-user environment, for security [Xia, Xiong, Vasilakos et al. (2017)], people
should have different access rights to data in the cloud server [Xia, Lu, Qiu et al. (2019)].
We take the electronic medical system as an instance. To protect a patient’s privacy, we

1 School of Science, Nanjing University of Science and Technology, Nanjing, 210094, China.
2 Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia.
* Corresponding Author: Chungen Xu. Email: xuchung@njust.edu.cn

10 JCS, vol.2, no.1, pp.9-23, 2020

prescribe that physicians can only retrieve medical records about internal medicine and
ophthalmologists can only retrieve medical records about ophthalmology. One should not
be accessible to his unauthorized data. Thus we proposed a searchable encryption. The
purpose is to improve search efficiency and protect privacy at the same time. Actually, in
some traditional searchable encryption schemes, due to the indistinguishability of
trapdoor, the server is not able to deduce any information about the keyword. So it cannot
determine whether a user has access to the keyword he wants to search for, unless
attaching extra information to the indexes. However, in this way, once people change, it
needs to reconstruct almost all indexes.
In our scheme, to set access control for one’s data, he should first classify his data into
categories. For each category, he extracts a keyword as a subject heading. When a user
initiates a search request to the cloud server, his trapdoor includes not only the keyword
but also a subject heading. After receiving a trapdoor, the cloud server checks whether it
is a valid request. In other words, the server needs to know if this user has access to the
data where his trapdoor refers to. If the judgement result is “Yes”, then the server will
directly search within that subject. Otherwise, the server rejects this request.
In general, the contributions of this paper are listed as follows:
1. Flexible access control: Administrators can flexibly modify the access rights of other

users by maintaining a permission matrix. When the user staff changes, there is no
need to reconstruct indexes and change the keys.

2. Decentration: In our scheme, every user keeps the private key by himself, we do not
need a third party to do the key management.

3. High efficiency: To determine the validity of a search query, the server does not
need to match it with those indexes one by one. Instead, only a small amount of
operations can the server to accept or refuse it.

The remaining part of this paper is arranged as follows. In the second section, we
introduce some related contents of access control based on multi-user setting in
searchable encryption schemes. In the third section, we introduce some preparatory work
of this scheme. The fourth section will introduce our searchable encryption scheme in
detail. And finally, we provide the security analysis of our scheme.

2 Related work
In 2000, Song et al. [Song, Wagner and Perrig (2000)] introduced the routing problem of
untrusted server and proposed the scheme SWP, which has low efficiency but can be
viewed as a primitive searchable encryption scheme. To solve this problem, in 2004,
Boneh et al. [Boneh, Crescenzo and Ostrovsky (2004)] firstly introduced the public key
cryptosystem into searchable encryption. In 2011, Curtmola et al. [Curtmola, Garay,
Kamara et al. (2006)] proposed a searchable encryption scheme based on multi-user
setting for the first time, which is much more practical than the single-user mode.
Some schemes have improved the searchable encryption scheme based on multi-user
setting [Raza, Rashid and Awan (2017); Goyal, Pandey, Sahai et al. (2006); Tang (2014);
Yang (2013); Li, Yu, Cao et al. (2011) etc.] everyone classifies his or her documents and
then sets access control for each level of the data. Finally, all the users generate a

Searchable Encryption with Access Control on Keywords 11

permission matrix together and only those who have been granted are able to pass the
authentication of the server. In their scheme, each user can be granted autonomously and
select his search scope independently. Also their scheme weakens the role of a third party
and provides a scheme for efficient key distribution.
In Bao et al. [Bao, Robert and Ding (2008)], an administrator is responsible for managing
and distributing keys for all users. In the key generation algorithm, he also generates an
auxiliary key, which is used for checking the validity of a search query. In this way, the
administrator can achieve access control dynamically.
Wang et al. [Wang, Mu, Chen et al. (2016)] implemented an efficient searchable
encryption scheme for sharing data among users in a decentralized group. Each member's
public key is needed when generating an index and any user is able to generate a trapdoor
by using his or her own secret key. Moreover, their scheme can adapt to the dynamic
change of the group by adjusting the user’s search authorities in time.
Wang et al. [Wang, Wang and Pieprzyk (2008)] put forward the concept of threshold
access control based on Shamir Secret Sharing ideas [Rong (2015); Tartary and Wang
(2006)]. In a group of n users, only more than t persons can collaborate to generate a
valid trapdoor. Later, Zirtol et al. [Zirtol, Noroozi and Eslami (2016)] changed the
scheme by supporting general access structure. Instead of the threshold limit, only the
group that meets the pre-defined condition can collaborate to search the desired data.
Many other schemes set access control based on identity [Boneh, Boyen and Goh (2005);
Ma, Dui and Yang (2016); Boneh and Franklin (2003); Yang (2011)] added the
authorization information into each index. After receiving a trapdoor, the server starts to
match it with indexes one by one. Note that at this moment, the server not only needs to
determine whether an index matches the trapdoor, but also needs it to make sure whether
this user is granted to search the file. The server would return the corresponding files if
and only if both conditions are met. Although their scheme can achieve fine-grained
access control, the complex indexes bring too much computation. Once the group
changes, they need to rebuild all indexes.

3 Preliminaries
In this section we will introduce some preliminary knowledge related to our scheme.

3.1 Bilinear mapping
Definition 3.1. Let 1 , 2 and T be three cyclic groups of a large prime order q. A
bilinear mapping is e: 1 2 T× →   with the following properties:

1. Bilinearity. For any 1u∈ , 2v∈ and *, qa b Z∈ , the equation (,) (,)a b abe u v e u v=
is hold in T ;

2. Non-degeneracy. There is 1u∈ , 2v∈ such that (,) 1
T

e u v ≠  , where 1
T is an

identity element of T ;

3. Computability. There is an efficient algorithm such that for any 1u∈ and 2v∈ ,

12 JCS, vol.2, no.1, pp.9-23, 2020

computing (,)e u v is available.

3.2 Difficulty hypothesis
Definition 3.2 Let x be a primitive root for a finite field ()nGF p and z is a non-zero
element in ()nGF p . The discrete logarithm problem (DLP) is to find an exponent α
such that ()nx z mod pα ≡ , here α is called the discrete logarithm of z to the base x.
Definition 3.3 (Bilinear Diffie-Hellman Variant assumption [Lu (2017)]) There is a
negligible function negl such that for any PPT adversary  and for every sufficiently
large security parameter k, the following equation is hold:

1 1 2 2 1 2 1 1
1 /

2
/ 1

2| [(, , , , (,)) 1] [(, , , ,) 1] | ()a c b abc a c ba aPr g g g g e g g Pr Adv g g g g R negl k= − = = (1)

Definition 3.4 (External Diffie-Hellman Variant assumption [Lu (2017)]) There
exists a negligible function negl such that for any PPT adversary  and for every
sufficiently large security parameter k, the following equation is hold:

/ 1/ 1/
1 1 1 2 2 2 1 1 2 2 2

/| [(, , , , ,) 1] [(, , , , ,) 1] | ()a b ab c a ad a b d ac aPr g g g g g g Pr Adv g g R g g g negl k= − = = (2)

4 Model of scheme
4.1 Notation
The following table shows some notations used in this paper:

Table 1: Notation in the scheme

Notation Significance

iu the i th− user

/SK PK the secret and public key pairs of the data owner
/i iSK PK the secret and public key pairs of user iu

wC the index of keyword w

(,)iT w t trapdoor for keyword w and its subject heading t of user iu

()iT w the new trapdoor computed by the server based on (,)iT w t of user iu

jNum the number of keywords in subject heading jt

4.2 Outline of scheme
Our scheme consists of the following seven polynomial time algorithms: Setup, KeyGen,
IndexGen, Grant, TrapGen, Test, Search.
Setup (1k): It takes the security parameter k as input and outputs the public parameter param.
KeyGen (param): The data owner runs this algorithm with param to generate his public
key PK and secret key SK, every user iu also generates his or her key pair ,i iPK SK , and

Searchable Encryption with Access Control on Keywords 13

so does the cloud server.
IndexGen (w, SK, param): This algorithm is run by the data owner. He takes his private
key SK as input to encrypt each keyword w and generates its encrypted index wC .

Grant (SK, iPK): This algorithm is also run by the data owner. He takes his private key
SK and every user’s public key iPK as input to generate a matrix M for access control.

TrapGen (w, t, iSK): The user iu takes his private key iSK , a keyword w and its
corresponding subject heading t as input, it outputs a trapdoor (,)iT w t for searching.

Test ((,)iT w t , M): This algorithm is run by the cloud server. After receiving a trapdoor,
the server tests it with the permission matrix M. If the server determines a trapdoor is
valid, then it will be used for the following steps. Otherwise, the server rejects the follow-
up operations and prompts “Unauthorized Access!”.
Search (wC , wT): Once the server accepts a trapdoor, it will perform the subsequent
matching work to find those files relevant to the keyword.

4.3 Security model
4.3.1 Index indistinguishability under chosen keyword attack
This requirement is aimed to protect all indexes stored on the cloud server. Neither an
internal nor external adversary is able to deduce any information about any keyword even
if he gets the index. In order to prove this, we firstly define a challenger  and a PPT
adversary  , then we define a game between them.
— Setup. The challenger  initializes the setup algorithm to generate the public
parameters param and sends them to  .

—Challenge. The adversary selects two keywords *
0w , *

1w and sends them to  , 
tosses a coin randomly to get a bit b and provides the encrypted index *

bw
C to  .

—Adaptive ask.  can ask adaptively. Every time  provides the corresponding index

kwC and trapdoor (,)kT w t to  .

—Guess.  outputs a bit b’, if b=b’, he wins.
Our scheme achieves index indistinguishability under chosen keyword attack (IND-CKA)
security if, for all sufficiently large k and for all PPT adversaries there exists a negligible
function negl such that:

1[() |] ()
2

Pr k b b negl k= ≤ +’ (3)

4.3.2 Trapdoor indistinguishability under chosen keyword attack
This requirement is aimed to protect the trapdoor generated by a user. Even an adversary
eavesdrops a trapdoor, he is not able to deduce any information about the keyword and
the subject it contains. To prove it, we also define a game between the challenger  and
the adversary  .

14 JCS, vol.2, no.1, pp.9-23, 2020

—Setup. The challenger  initializes the system to generate the public parameters param
and sends them to  .

—Challenge. The adversary selects *
0w , *

1w , *
0t , *

1 {0,1}lt ← and sends them to  , 
tosses a coin twice randomly to get two bits 1 2, {0,1}b b ∈ and provides the trapdoor

1 2

* *(,)b bT w t to  .

—Adaptive ask.  can ask  adaptively. Every time  provides the corresponding
index

kwC and trapdoor (,)k jT w t to  .

—Guess.  outputs bits 1 2,b b′ ′ , if 1 1 2 2,b b b b′ ′= = , he wins.

Our scheme satisfies trapdoor indistinguishability under chosen keyword attack if for all
sufficiently large k and for all PPT adversaries  , there is a negligible function negl
such that:

1 1 2 2
1[() | ,] ()
4

Pr k b b b b negl k′ ′= = ≤ + (4)

5 Construction
Setup (1k): The data owner takes the security paramter k as input to initialize the setup
algorithm, it outputs public parameters *

1 2 1 2 1 2 3(, , ,Z , , , , , ,)T q g g e H H H   . 1 2,  and

T are three cyclic groups of some prime order q, 1g is a generator of 1 and 2g is a
generator of 2 . 1 2: Te × →   is an injective bilinear mapping. 1 2 3, ,H H H are three
collision resistant functions: *

1 1:{0,1}H → ; * *
2 :{0,1} qH Z→ ; *

3 : T q TH Z× →  .

KeyGen (param): The cloud server generates a key pair
1

1(,)g µµ , *
qZµ∈ . The data

owner selects *, qZα β ∈ randomly and sets his secret key as 1 2(,) (,)SK SK SK α β= =

and the public key is
1

1 2
2 2(,) (,)PK PK PK g g βα= = . Every user iu also gets his or her

own secret key i iSK x= and announces the public key
1

2
ix

iPK g= .

IndexGen (w, SK, param): For each keyword iw , the owner randomly selects *
i qs Z∈

and generates the index
1 2

1

3 1 2(,) (, (((),) ,))
i i iw w w i i iC C C s H e H w g sβ α= = .

Grant (SK, iPK): For setting access control for different kinds of files, the data owner
utilizes his secret key and all users’ public keys to generate a permission matrix nmM ,
here n is the number of users and m is the number of subject headings:

Searchable Encryption with Access Control on Keywords 15

11 12 1

21 22 2

1 2

m

m
nm

n n nm

M

σ σ σ
σ σ σ

σ σ σ

 
 
 =
 
 
 





   



 (5)

We define the element 2
i ijx r

ij g
β

ασ = . If user iu is granted to search data about subject jt ,

then 2 ()ij jr H t= , otherwise *
ij R qr Z← . For each subject heading (1,2, ,)jt j m=  , the

data owner computes
1

1 2((),) ,(1,2, ,)jl je H w g l Numβ α =  and save them in the
corresponding set jψ .

TrapGen (, ,k j iw t SK): User iu utilizes his secret key to generate a trapdoor

2 ()
1 1 1(,) (, ())i j

d
x H td

i k j kT w t g g H wµ −= about the keyword kw and its subject heading jt . d is
the random number. Then he sends the trapdoor to the cloud server.
Test (, (,)nm i k jM T w t): After receiving a trapdoor, the server firstly runs the test algorithm
in order to determine its validity. It goes through j and computes ((,),)i k j ije T w t σ ,
(1,2, ,j m= …) then it checks whether it belongs to jψ respectively. If there is no j such
that ((,),)i k j ij je T w t σ ψ∈ , the server determines its invalidity and thus halts.

Search (, ()
iw i kC T w): Once accepted a trapdoor, the server views the result
1

1 2((),)ke H w g β α in test algorithm as the new trapdoor and matches it with those indexes.
It computes 3 ((),)i k iH T w s and makes sure the equation

23 ((),)
ii k i wH T w s C= holds such

that the server returns the files.

6 Correctness analysis
6.1 Correctness in test algorithm
If user iu is granted to be accessible to data about subject jt , his privilege for searching

data about jt is 2 ()
2 2

i ij i jx r x H t
ij g g

β β
α ασ = = , so when the server comes to j, it computes:

2 2

1
() ()

1 2 1 2((,),) (() ,) ((),)i j i jx H t x H t
i k j ij k ke T w t e H w g e H w g

β
α β ασ = = (6)

As long as the keyword kw belongs to subject jt indeed, the value above must belong to

jψ , which means user iu passes the authentication.

We require that the intersection of any two classes be empty, so we know that for any
, , m nm n ψ ψ∩ =∅ , which indicates there is no way to search the same keyword with

16 JCS, vol.2, no.1, pp.9-23, 2020

other subjects and only by being granted can a user to search data he wants.

6.2 Correctness in test algorithm
Once the server accepts a query in last algorithm, it is going to search with the new

trapdoor
1

1 2((),)ke H w g β α . If an index contains kw , we have:

1 2

1

3 3 1 2(, ()) (, ((),))
k kw i k k k wH C T w H s e H w g Cβ α= = (7)

7 Security analysis
7.1 Index indistinguishability under chosen keyword attack
Index stored in the cloud service should not leak any information about the corresponding
keywords. Even an adversary is given the most powerful ability, he still can’t distinguish
any two encrypted indexes with non-negligible probability.
Proof. In order to prove that our scheme can achieve IND-CKA security, we take use of
several hybrid games, which starts from the one defined in the security model (4.3.1) to
the last. It’s easy to see that the adversary wins the last game with probability 1/2. Our
proofs are based on the random oracle model and 1H is a programmable random oracle.
Game 0 is defined as follows:
Game 0:
—Setup. The challenger 0 initializes the system to generate public parameters param.
Without loss of generality, adversary 0 can select some other users ju who can search

data about subject 1t . The challenger computes 1
1 2 1 2 1(())j jx r

j jg r H t
β

ασ = = and sends them
as well as param to 0 .

—Challenge. The adversary 0 selects * *
0 1, {0,1}lw w ← in subject 1t and sends them to

the challenger 0 . 0 randomly tosses a coin to get a bit b and makes *
bw a keyword in

subject 1t and provides this encrypted index
1

*
3 1 2[, (, ((),))]br H r e H w g β α to 0 .

—Adaptive ask. 0 can ask 0 adaptively. The k th− query is like:

(1). “Index of keyword kw in subject 1t ”: The challenger 0 returns the result
1

3 1 2[, (, ((),))]k k kr H r e H w g β α .

(2). “Trapdoor for keyword kw and subject 1t of user ju ”: The challenger 0 returns

2 1()
1 1 2 1 1 1(,) (,) (, ())

k

jk

d
x H td

j k kT w t T T g g H wµ −= = .

—Guess. 0 outputs b′ , if b b′= , he wins.

Searchable Encryption with Access Control on Keywords 17

Game 1:
The only difference between Game 0 and Game 1 is that in Game 1, we delete those users
without privileges to search data about subject 1t . Actually, if it is secure in Game 1, then
it must be secure in Game 0. Otherwise, if there exists an adversary 0 who wins Game 0
with non-negligible probability, we can construct another adversary 1 to win Game 1
with non-negligible probability as well. Actually, for those users who have access to data

about subject 1t , returns 2 1()
1 1 1(, ())j

d
x H td

kg g H wµ − to them directly, while for the others ,

1 selects random value R and return 1 1 1(, ())
d

d R
kg g H wµ − . The two values are actually

computational indistinguishable due to the DLP assumption. Thus adversary 1 simulates

0 ’s inputs correctly.

Game 2:

The difference between Games 1 and 2 is that we replace
1

1 2((),))ke H w g β α in Game 2
with random value R. The first step during the adaptive ask now is like “Index of
keyword kw and jt ”: if *

k bw w= , challenger returns 3[, (,)]k kr H r R . Otherwise challenger

returns 3[, (,)]k kr H r Rθ .Hereθ satisfies * * * *
1 1 1 1 1 1 1 1() / () () / ()b b b bg H w H w g H w H wθ θ

− −= = .We
prove the indistinguishability between the two games.
If there is a PPT adversary 0 who can distinguish the two games with non-negligible
probability, then we can construct another PPT adversary 1 to break BDHV assumption.

The inputs 0 receives are “
1

1 1 2 2, , , ,a c bag g g g T ”. Here T is either a random value R or

1 2(,)abce g g . In order to distinguish T, 0 takes what he receives as the result when 1
interacts with the random oracle for *

bw . 1 could ask those values before declaration
during the challenge step. So 0 will guess which queries to 1H are for challenge values.
When 1 provides his challenge keywords *

0w and *
1w to 0 , 0 firstly checks whether

it has been asked before. If not, 0 outputs a random value and halts.

0 generates param and sends them to 1 , then he selects *, qZδ γ ∈ and let 2 1()H t γ= .
For every query w of 1 to 1H , 0 does:

If this query is about keyword *
bw , 0 returns 1

cg ;

If this query is about keyword *
1 bw − , 0 returns 1

cg δ ;

Otherwise, chooses *
qZλ∈ , let oracle[w]=λ and returns 1gλ .

0 receives *
0w and *

1w from 1 , he firstly checks if they have appeared before. If not,

0 outputs a random value and halts. Otherwise 0 provides[* *
3, (,)r H r T] to 1 . For

18 JCS, vol.2, no.1, pp.9-23, 2020

every query of 1 during the adaptive ask step:

For “Index of kw ”: if *
k bw w= , return[3, (,)k kr H r T]. Otherwise, return [3, (,)k kr H r T θ].

For “Trapdoor for kw of ju ”: select random numbers ,k jr r and return 1
j k jx r rg .

Actually, we see that:
* *

2 2 1 1 1 1 1, 1 / , (), ()a c c
b bg g b g H w g H wβ δα −↔ ↔ ↔ ↔ (8)

So, if 1 2(,)abcT e g g= , then we know that
1

*
1 2 1 2(,) ((),)c a b

bT e g g e H w g β α= = , else T=R as

in Game 2.
Therefore, we claim that the two games are computationally indistinguishable.
In Game 2, all the information about keys is useless to adversary, which means what he
receives has nothing to do with the bit b at all. He wins the game just with the probability
1/2. So in Game 0 we have:

0

1()[] ()
2

Pr k b b negl k′= ≤ + (9)

7.2 Trapdoor indistinguishability under chosen keyword attack
This requirement is aimed to protect the trapdoor generated by a user. An adversary
should learn nothing about the keyword and the subject heading from the trapdoor he
eavesdropped.
Proof. We also utilize a sequence of hybrid games to complete our proof as before.
Game 0:
—Setup. The challenger 0 initializes the system to generate the public parameters
param. Without loss of generality, we assume that adversary 0 can take control of user

1u , who has privileges to search data about all the subject headings. The challenger

computes his privileges 1 1
2 1 2((), 1,2, ,)jx r

j jg r H t j m
β

α = =  and sends them as well as
param to 0 .

—Challenge. Adversary 0 firstly selects two subject headings * *
0 1,t t , two searching

keywords *
0w , *

1w and sends them together to challenger 0 . 0 tosses a coin twice to get

two random bits 1 2, {0,1}b b ← , and then he returns
*

1 2 1

2 1 2

()* * *
1 1 1(,) (, ())b

d
x H td

b b bT w t g g H wµ −=
as the trapdoor that 0 is going to search.

—Adaptive ask. 0 can ask 0 adaptively. The k th− query is like:

(1). “Index of keyword kw in subject kt ”: The challenger 0 returns
1

3 1 2[, (, ((),))]k k kr H r e H w g β α .

Searchable Encryption with Access Control on Keywords 19

(2). “Trapdoor for keyword kw in subject kt of user 1u ”: The challenger 0 returns

1 2 ()
1 1 1 1(,) (, ()).

k

k k

d
d x H t

k k kT w t g g H wµ −=

Note that here the adversary has a restriction of:
* * * *
0 1 0 1{ , }, { , }k kt t t w w w∉ ∉

—Guess. 0 outputs two bits 1b′ and 2b′ , he wins if and only if 1 1b b′= and 2 2b b′= .

Game 1:
The difference between Games 0 and 1 is that Game 1 deletes the first step (encrypted
index asking) during the adaptive ask. Actually, the encrypted index does not leak any
information helpful to the adversary.
Game 2:
The difference between Games 1 and 2 is that we replace

*
1 2 1

2 1 2

()* * *
1 1 1(,) (, ())b

d
x H td

b b bT w t g g H wµ −= with
2 1

* *
1 1(,) (,)
d

d
b bT w t g g Rµ −= , here R is a random

value.
We prove that Game 1 and Game 2 are computational indistinguishable.
If there is a PPT adversary 0 who can distinguish the two games with non-negligible
probability, then there is another PPT adversary 1 to break EDHV assumption.

The inputs 1 receives are “
1

/
1 1 1 2 2 2, , , , , ,a b d c a d ag g g g g g T ”. T is either 1

abg or a random value
R. In order to distinguish T, 1 takes what he received as the result when 0 interacts
with the random oracle for

2

*
bw and

1

*
bt . However, 0 could ask these values before

declaration during the challenge step. So 1 will guess whether 0 will ask for
1

*
bw or

2

*
bw to the random oracle 1H .

When 0 provides * * * *
0 1 0 1, , ,w w t t to 1 during the challenge step, 1 checks whether they

have been queried before. If not, 1 outputs a random value and halts. Otherwise, he
provides T to 0 .

During the adaptive step, for “Trapdoor for keyword kw and its subject kt ”, randomly

selects 1kR ∈ and returns 1 1(,) (,)
k

k

d
d

k k kT w t g g Rµ −= .

Similarly, we can see that:

1

2

* /
1 1 1 2 2 2 2, (), ,xb c a d

ba x g H w g g g g
β
α β↔ ↔ ↔ ↔ (10)

So, if 1
abT g= , we know that

*2 * 1 21 1

2

() ()*
1()b b

H t x H t
bT H w= as in Game 1, Otherwise T=R as in

Game 2.

20 JCS, vol.2, no.1, pp.9-23, 2020

Finally, when 0 successfully distinguishes Game 2 from Game 1, 1 is able to break
the EDHV assumption.
In Game 2, all the information about keys are useless, so the adversary can win the game
just with the probability 1/4.

8 Comparison
We compare our scheme with some others and show the details in the following table.
Here P denotes a pairing operation, E denotes an exponential operation and H denotes a
hash operation. From the table, we can see that our work can achieve a balance between
computation and storage cost. Also, with JPBC library in Java language, we have carried
out our experiments on computer (Intel (R) Core (TM) i5-3210 M CPU 2.5 GHz).

Table 2: Computational complexity comparisons

 Qiang Tang Zhen Li Bao Feng Xiaofen Wang Ours
IndexGen 2(P+H+E) P+H+E P+H+2E P+(2+ k)H P+H+E
TrapGen H+E H+E H+E P+4H 2H+E
Search 2P P+H+E P+H 3P+H P+H

Figure 1: Comparison of running time for generating indexes

Searchable Encryption with Access Control on Keywords 21

Figure 2: Comparison of running time for generating trapdoors

9 Conclusion
In this paper, we proposed a searchable encryption scheme which supports fine-grained
access control. By maintaining a permission matrix, a user can manage the access rights
about his data flexibly. There still remains a lot of problems to be solved in the multi-user
setting, dynamic security being one of them. We are going to focus our research on it.

Acknowledgement: This work is partially supported by the Fundamental Research
Funds for the Central Universities (No. 30918012204). The authors also gratefully
acknowledge the helpful comments and suggestions of the reviewer, which have
improved the presentation.

References
Bao, F.; Robert, H. D.; Ding, X. H. (2008): Private query on encrypted data in multi-
user settings. In Information Security Practice and Experience, 4th International
Conference, ISPEC 2008, Sydney, Australia, Proceedings, pp. 71-85.
Boneh, D.; Crescenzo, G. D.; Ostrovsky, R. (2004): Public key encryption with
keyword search. Advances in Cryptology-EUROCRYPT 2004, International Conference
on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland,
Proceedings, pp. 506-522.
Boneh, D.; Boyen, X.; Goh, E. J. (2005): Hierarchical identity based encryption with
constant size ciphertext. Advances in Cryptology-EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, Proceedings, pp. 440-456.
Boneh, D.; Franklin, M. K. (2003): Identity-based encryption from the weil pairing.
SIAM Journal on Scientific Computing, vol. 32, no. 3, pp. 586-615.
Curtmola, R.; Garay, J; Kamara, S.; Ostrovsky, R. (2006): Searchable symmetric
encryption: improved definitions and efficient construction. Computer Security, vol. 19,
no. 5, pp. 895-943.

22 JCS, vol.2, no.1, pp.9-23, 2020

Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. (2006): Attribute-based encryption for
fine-grained access control of encrypted data. ACM Conference on Computer and
Communications Security, pp. 89-98.
Hong, C. (2011): Achieving efficient dynamic cryptographic access control in cloud
storage. Journal on Communications, vol. 32, no. 7, pp. 125-132.
Li, M.; Yu, S. C.; Cao, N.; Lou, W. J. (2011): Authorized private keyword search over
encrypted data in cloud computing. International Conference on Distributed Computing
Systems, Minneapolis, Minnesota, USA, pp. 383-392.
Li, Z.; Zhao, M. H.; Jiang, H.; Xu, Q. L. (2017): Multi-user searchable encryption with
a designated server. Annales des Telecommunications, vol. 72, no. 9-10, pp. 617-629.
Liu, Y. L.; Peng, H.; Wang, J. (2018): Verifiable diversity ranking search over
encrypted outsourced data. Computers, Materials & Continua, vol. 55, no. 1, pp. 37-57.
Lu, Y. (2017): Efficient designated server identity-based encryption with conjunctive
keyword search. Annals of Telecommunications, vol. 72, no. 5-6, pp. 359-370.
Ma, B. Y.; Dui, G. S.; Yang, S. Y. (2018): ACSB: Anti-collision selective-based
broadcast protocol in CR-ADHOCS. Computers, Materials and Continua, vol. 56, no. 1,
pp. 35-46.
Ma, S. (2016): Identity-based encryption with outsourced equality test in cloud
computing. Journal of Information Science, vol. 328, pp. 389-402.
Raza, N.; Rashid, I.; Awan, F. A. (2017): Security and management framework for an
organization operating in cloud environment. Annales des Telecommunications, vol. 72,
no. 5-6, pp. 325-333.
Rong, H. (2015): Key distribution and recovery algorithm based on shamir secret sharing.
Journal of Communication, vol. 3, pp. 60-69.
Song, X. D.; Wagner, D.; Perrig, A. (2000): Practical techniques for searches on
encrypted data. 2000 IEEE Symposium on Security and Privacy, Berkeley, California,
USA, pp. 44-55.
Tang, Q. (2014): Nothing is for free: Security in searching shared and encrypted data.
IEEE Trans. Information Forensics and Security, vol. 9, no. 11, pp. 1943-1952.
Tartary, C.; Wang, H. (2006): Dynamic threshold and cheater resistance for shamir
secret sharing scheme. Information Security and Cryptology, Second SKLOIS Conference,
Inscrypt 2006, Beijing, China, Proceedings, pp. 103-117.
Wang, P. S.; Wang, H. X.; Pieprzyk, J. (2008): Threshold privacy preserving keyword
searches. In SOFSEM 2008: Theory and Practice of Computer Science, 34th Conference
on Current Trends in Theory and Practice of Computer Science, Novy Smokovec,
Slovakia, Proceedings, pp. 646-658.
Wang, X. F.; Mu, Y.; Chen, R. M.; Zhang, X. S. (2016): Secure channel free id-based
searchable encryption for peer-to-peer group. Journal of Computer Science and
Technology, vol. 31, no. 5, pp. 1012-1027.
Xia, Z. H.; Lu, L. H.; Qiu, T.; Shim, H. J.; Chen, X. Y. et al. (2019): A privacy-
preserving image retrieval based on AC-coefficients and color histograms in cloud
environment. Computers Materials & Continua, vol. 58, no. 1, pp. 27-43.

Searchable Encryption with Access Control on Keywords 23

Xia, Z. H.; Xiong, N. N.; Vasilakos, A. V.; Sun, X. M. (2017): EPCBIR: an efficient
and privacy-preserving content-based image retrieval scheme in cloud computing.
Information Sciences, vol. 387, pp. 195-204.
Xiong, L. Z.; Shi, Y. Q. (2018): On the privacy-preserving outsourcing scheme of
reversible data hiding over encrypted image data in cloud computing. Computers,
Materials and Continua, vol. 55, no. 3, pp. 523-539.
Yang, H. B. L. (2013): Searchable encryption scheme with fine-grained access control.
Journal of Communication, vol. 34, no. Z1, pp. 92-100.
Yang, Y. (2011): Towards multi-user private keyword search for cloud computing. IEEE
International Conference on Cloud Computing, CLOUD 2011, pp. 758-759.
Zirtol, K. A.; Noroozi, M; Eslami, Z. (2016): Multi-user searchable encryption scheme
with general access structure. Journal of Informatics and Computer Engineering, vol. 2,
no. 3, pp. 121-126.

	Searchable Encryption with Access Control on Keywords in Multi-User Setting
	Lei Li0F , Chungen Xu1, *, Xiaoling Yu1, Bennian Dou1 and Cong Zuo1F

	8 Comparison
	9 Conclusion
	References

