

Computers, Materials & Continua CMC, vol.64, no.2, pp.941-959, 2020

CMC. doi:10.32604/cmc.2020.09802 www.techscience.com/journal/cmc

A Network Traffic Classification Model Based on Metric Learning

Mo Chen1 , Xiaojuan Wang1, *, Mingshu He1, Lei Jin1, Khalid Javeed2 and
Xiaojun Wang3

Abstract: Attacks on websites and network servers are among the most critical threats in
network security. Network behavior identification is one of the most effective ways to
identify malicious network intrusions. Analyzing abnormal network traffic patterns and
traffic classification based on labeled network traffic data are among the most effective
approaches for network behavior identification. Traditional methods for network traffic
classification utilize algorithms such as Naive Bayes, Decision Tree and XGBoost.
However, network traffic classification, which is required for network behavior
identification, generally suffers from the problem of low accuracy even with the recently
proposed deep learning models. To improve network traffic classification accuracy thus
improving network intrusion detection rate, this paper proposes a new network traffic
classification model, called ArcMargin, which incorporates metric learning into a
convolutional neural network (CNN) to make the CNN model more discriminative.
ArcMargin maps network traffic samples from the same category more closely while
samples from different categories are mapped as far apart as possible. The metric learning
regularization feature is called additive angular margin loss, and it is embedded in the
object function of traditional CNN models. The proposed ArcMargin model is validated
with three datasets and is compared with several other related algorithms. According to a
set of classification indicators, the ArcMargin model is proofed to have better
performances in both network traffic classification tasks and open-set tasks. Moreover, in
open-set tasks, the ArcMargin model can cluster unknown data classes that do not exist in
the previous training dataset.

Keywords: Metric learning, ArcMargin, network traffic classification, CNNs.

1 Introduction
Increased use of the Internet has led to the generation of much more log data related to
network traffic [Lins, Damasceno, Silva et al. (2012)]. However, the security of computer
systems is compromised when attackers are able to gather essential information from

1 Beijing University of Posts and Telecommunications, Beijing, 100876, China.
2 Department of Computer Engineering, Bahria University, Islamabad, Pakistan.
3 School of Electronic Engineering, Dublin City University, Dublin, Ireland.
* Corresponding Author: Xiaojuan Wang. Email: wj2718@163.com.
Received: 19 January 2020; Accepted: 11 April 2020.

942 CMC, vol.64, no.2, pp.941-959, 2020

website databases. The ability to browse network traffic data can provide a record of
human behavior. Therefore, analyzing network traffic is a way to detect malicious
intrusion behaviors [Lin, Zhang, Lou et al. (2016)]. In addition to network traffic,
wireless device traffic data and Internet of Things (IoT) traffic data often need to be
further analyzed and detected in order to increase network security situational awareness
and anomaly detection [Zhang, Yi, Wang et al. (2018)]. Besides, some application system
was also proposed, such as intrusion detection and anticipation system for IEEE 802.15.4
devices [Tariq (2019)]. We studied a network traffic classification model based on
convolutional neural network (CNN) with a metric learning method [Yang and Jin
(2006)] for the purposes of improving network traffic classification accuracy and the
detection of abnormal network traffic patterns.
Some traditional machine learning methods have been used to solve the classification
assignment of network traffic [Salakhutdinov (2015)]. Based on the Decision Tree (DT)
learning method, Alhawi et al. [Alhawi, Baldwin and Dehghantanha (2018)] proposed a
machine learning evaluation method for consistent detection of ransomware in network
traffic on Windows computers. Focusing on intrusion detection, Di [Di (2018)] proposed
a novel framework based on a Support Vector Machine (SVM) model called LA-SVM
which is designed to remove redundant features automatically. Because of the inability to
analyze encrypted network traffic, most previous traffic classification methods are unable
to adapt to modern traffic environments, such as the method based on Deep Packet
Inspection (DPI) [Kumar, Dharmapurikar, Fang et al. (2006)] and port identification-
based methods. Gul proposed a traffic classification method that can analyze normal
traffic and encrypted traffic based on DT and K-Nearest Neighbor (KNN) algorithms by
analyzing network flow [Gul, Yoan, Aapo et al. (2018)].
Feature extraction is an important part in the process of training a model, but it requires
sufficient business knowledge and experience. Methods based on deep learning (DL) can
collect features automatically in the training process, thereby facilitating the process of
acquiring typical features and important information. [Wang, Ye, Chen et al. (2018)].
Methods based on metric learning have been widely applied in computer vision
classification domain [Cheng, Yang, Yao et al. (2018)]. Such methods map image
datasets from the same category as close as possible and map datasets from different
categories as far as possible. However, metric learning has not been applied to optimizing
the network traffic classification model yet. In this paper, we seek to integrate ArcMargin
into a CNN and build a more effective model for network traffic classification.
In addition, the characteristics of network traffic often lead to the situation that real test
set contains an unknown data class that the classification model has difficulty identifying.
We call this the open-set problem. However, in the current classification model, it is
difficult to detect such an unknown class in the task. To solve this problem and combine
it with the proposed model, we put forth a cluster method based on the deep feature
output from the ArcMargin model. The results indicate that our open-set model improves
the classification result.
The contributions of this paper can be summarized as follows:
1) Proposing a network traffic classification model with additive angular margin loss

embedded on CNNs (ArcMargin), which classifies the traffic data in the cosine space.

A Network Traffic Classification Model Based on Metric Learning 943

2) Using ArcMargin to train a feature layer, from which we can extract the embedded
vectors to solve the open-set problem. Specifically, we make the CNN model more
discriminative, which means decreasing the within-class distance and increasing the
between-class distance.

3) Performing a comparative study through experiments that proves the effectiveness of
our general classification model and open-set classification model. The experiment
results show that our model further improves the classification results in three traffic
network datasets in accuracy, F1-score and recall rate.

The remainder of this paper is arranged as follows. Section 2 presents related work. In
Section 3, we explain the framework and process of classification experiments. In Section
4, we introduce ArcMargin and then discuss the general classification model and the
proposed open-set classification model. In Section 5, we analyze results from the
traditional models and CNN model embedded with metric learning. Section 6
summarizes the paper and outlines directions for future research.

2 Related work
Network traffic records a large amount of access information belonging to Internet users,
which plays an important role in the field of network security. Extracting features from
these records is almost always the first step in classifying network traffic in anomaly
detection [Wang, Zhu, Zeng et al. (2017)].
DPI-based, port-based, behavioral-based, and statistical based methods are commonly
used traffic classification methods [Finsterbusch, Richter, Rocha et al. (2014)]. These are
traditional machine learning methods, which require a large number of features to
classify the traffic. Schultz et al. [Schultz, Eskin, Zadok et al. (2002)] were the first to
embed the concept of data mining into malware detection, which employs three static
features: strings, Portable Executable (PE) and byte sequences. Gul et al. [Gul, Yoan,
Aapo et al. (2018)] proposed a method Using KNN [Peterson (2009)] and the DT
[Safavian and Landgrebe (1991)].
The limitation of traditional machine learning methods lies in the fact that user
performance depends on the feature engineering resulting from manual analysis and
private information. In addition, to construct human-engineered features, traditional
machine learning approaches require extensive computational resources and substantial
storage and are also highly labor-intensive. Representation learning is a relatively recent
method that can learn features from raw data automatically, thus reducing the time spent
on constructing human-engineered features. There have been several studies on traffic
classification based on representation learning. Gao et al. [Gao, Gao, Gao et al. (2014)]
proposed a malware traffic detection method based on deep belief networks. Javaid et al.
[Javaid, Niyaz, Sun et al. (2016)] proposed a malware traffic identification model based
on a sparse autoencoder. Nejad et al. [Nejad and Shiri (2019)] proposed a new enhanced
learning approach to automatic image classification based on salp swarm algorithm.
Zhang et al. [Zhang, Qin, Yin et al. (2016)] resolved binary executables into opcodes
sequences and then transformed them into images, which used the CNN model to
determine whether a binary executable is secure or not. Zeng et al. [Zeng, Gu, Wei et al.
(2019)] proposed a network traffic classification method using CNN, Long Short-Term

944 CMC, vol.64, no.2, pp.941-959, 2020

Memory (LSTM) and Stacked Auto-Encoder (SAE).
Many classification algorithms rely on the distance metric of data. In order to handle the
features from different datasets, it is necessary to build various measurement functions,
which consume a great deal of both time and energy. The major contribution of metric
learning is to discover a proper similarity measurement between pairs of data such as
images that will not change original data distance and will retain the necessary distance
structure. Today, metric learning is always used in facial verification. Metric learning
methods such as the Siamese network and Joint Bayesian are used along with deep facial
representation [Chopra, Hadsell, LeCun et al. (2005)] applied the Siamese network in
collecting features from two inputs with the same two sub-networks and regarded the
distance as dissimilar between each other. Huang et al. [Huang, Lee and Learned-Miller
(2012)] utilized Information Theoretic Metric Learning (ITML) on the features learned
from convolutional deep belief networks.

3 Network traffic classification framework and learning model
The proposed model is a CNN with metric learning under ArcMargin. To verify the
experimental results and to improve the classification accuracy achieved by metric
learning, we built a data classification and validation framework as shown in Fig. 1. At
the same time the open-set classification results were improved by embedding cluster
method in CNN with the ArcMargin model. The framework consists of the following
four processes.

Figure 1: Network traffic classification framework

1) Traditional machine learning methods used on the datasets include KNN, logistic
regression (LR) [Kleinbaum and Klein (2002)], random forest (RF) [Breiman
(2001)], DT and XGBoost [Chen and Guestrin (2016)]. We converted network

A Network Traffic Classification Model Based on Metric Learning 945

traffic packets (PCAP) into hex values and then built some necessary features.
2) CNNs were used on three traffic datasets without acquiring any features. The hex

values were sent to CNN directly.
3) The ArcMargin model can be regarded as a structure in which metric learning

regularization is embedded in the objective function of a traditional CNN.
4) The cluster method is used in the classification model which improves open-set

classification results.
After comparing different classification methods in general classification tasks and open-
set classification tasks, some meaningful conclusions about network traffic data emerged,
such as their distribution, different features and etc. Simultaneously, the results using
different algorithms manifest that the metric learning improves the classification accuracy
and also performs well with open-set tasks.

4 Methods
4.1 Traffic network model based on metric learning (ArcMargin)
4.1.1 Introduction of CNNs and ArcMargin
Before embedding metric learning (ArcMargin) in CNN models, we used CNNs only to
solve the classification assignment as contrast group. Our model can be more easily
understood if some basic concepts of CNNs and ArcMargin are first explained.
A. CNNs
CNNs have demonstrated impressive performance in many applications, such as sensing
image analysis and abnormal performance detection [Chaib, Liu, Gu et al. (2017), Cheng,
Zhou and Han (2016); Cheng, Li, Yao et al. (2017); Nogueira, Penatti and dos Santos
(2017)]. As shown in Fig. 2, a typical CNN network consists of several network layers:
convolutional layers, pooling layers, and fully connected (FC) layers.

Figure 2: CNN structure

The convolutional layer is the most important layer in feature extraction. Its main purpose
is to extract features automatically during training. The convolution layer in the front of
the network structure extracts simple features, and the deeper convolution layer extracts
the complex features that are computed from simple ones. Each unit in the convolution
layer is connected to a local patch in the feature map of the previous layer by a set of

946 CMC, vol.64, no.2, pp.941-959, 2020

convolution kernels. This set of kernels is represented by the brown cube in Fig. 2. Then,
the results output from the local weighted sum is mapped by a non-linear operation such
as the rectified linear unit (ReLU) [Hara, Saito and Shouno (2015)]. All units in the
feature maps share the same convolution kernel, while different convolution kernels can
represent different features.
The pooling layer reduces the dimension of the feature representation and ensures the
invariance of small translations or rotations. It is of great significance to image and object
detection, as well as network traffic classification. The pooling layer can be created by
computing some local nonlinear operation over feature maps. The max-pooling operation
in the pooling layer computes the maximum of local units in feature map.
The role of the FC layer is to better summarize the message transmitted by previous
layers which include lower-level features, in order to make the final decision. It is always
used as the last few layers in the model.
B. ArcMargin
Softmax is the most widely used classification loss function:

𝐿𝐿1 = − 1
𝑁𝑁
∑ log𝑁𝑁
𝑖𝑖=1

𝑒𝑒𝑊𝑊𝑣𝑣𝑖𝑖
𝑇𝑇 𝑥𝑥𝑖𝑖+𝑏𝑏𝑣𝑣𝑖𝑖

� 𝑒𝑒𝑊𝑊𝑗𝑗
𝑇𝑇𝑥𝑥𝑖𝑖+𝑏𝑏𝑗𝑗

𝑛𝑛

𝑗𝑗=1

 (1)

where xi denotes the deep feature of the i-th sample, which is belongs to the yi-th class.
We set the embedding feature to 128 here. N denotes the batch size and n denotes the
number of classes, bj denotes the bias term, W is the weight and Wj is the j-th column of W.
However, there is still room for improvement in feature expression when using the Softmax
loss function. If there are large intraclass appearance variations in training samples, there
will still be a performance gap in the data identification, which cause the model cannot
indicate the diversity among interclass samples and higher similarities among intraclass
samples. Deng et al. [Deng, Guo, Xue et al. (2018); Sengupta, Chen, Castillo et al. (2016)].
Consequently, we set the bias bj=0 and convert the logit as Wj

T xi=||Wj|| ||xi cos θj||, where
θj is the angle of Wj and the xi. denotes a feature. According to Liu et al. [Liu, Wen, Yu et
al. (2017); Wang, Xiang, Cheng et al. (2017)], the individual weight ||Wj =1|| can be fixed
by l2 normalization and the embedding feature ||x2|| can be fixed by l2 normalization and
is then re-scaled to s. Thus, the embedding features learning from the model will be
distributed on a hypersphere whose radius is s.

𝐿𝐿2 = − 1
𝑁𝑁
∑ log𝑁𝑁
𝑖𝑖=1

𝑒𝑒𝑠𝑠cos𝜃𝜃𝑣𝑣𝑖𝑖

𝑒𝑒𝑠𝑠cos𝜃𝜃𝑣𝑣𝑖𝑖+� 𝑒𝑒𝑠𝑠cos𝜃𝜃𝑗𝑗
𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑦𝑦𝑖𝑖

 (2)

A Network Traffic Classification Model Based on Metric Learning 947

Figure 3: Illustration of the distance between six categories of sample sets under
ArcMargin and softmax loss functions

As Fig. 3 shows, on the hypersphere, the embedded features are distributed regularly. An
additive angular margin penalty m is added between xi and Wyj , which has the ability to
enhance the intraclass compactness and interclass discrepancy. The additive angular
margin penalty can be computed as the geodesic distance margin penalty gathering from
the normalized hypersphere (ArcMargin) [Deng, Guo, Xue et al. (2018)].
In this paper, some network traffic from six different identities is used to train the feature-
embedding model with the Softmax as well as ArcMargin loss. The results are displayed
in Fig. 3.

4.1.2 ArcMargin classification model
Fig. 4 depicts the metric learning-based model using ArcMargin. The figure shows that
after obtaining the raw input data, we send them into the CNN models. To date, CNNs
have been mainly widely used in the computer vision field due to their superior ability to
learn the spatial properties of an image pixel by pixel. In this paper, because the format of
raw network traffic is a sequential format which is different from that of an image, a 1-D
CNN is used in the structure rather than a 2-D CNN, which is widely used in the image.
As shown above, the model consists of two convolutional layers, two max pooling layers,
two local response normalization (LRN) layers and a densely connected layer with a final
optional unit consisting of a Softmax classifier and metric learning part. These two
different final output layers are used for a set of comparative experiments.

948 CMC, vol.64, no.2, pp.941-959, 2020

Figure 4: Experimental procedure illustration of CNN model with metric learning

In public processing layers, we first used 32 convolution kernels with the size of [25, 1]
and step size of 1 to extract the first feature on the input data with the size of [1, 1, 784].
The results output from the convolutional layer is delivered to an activation function.
ReLU is used here (described in Section 4). Then, the max pooling layer processes the
results previously output.
After that, an LRN layer is embedded to punish abnormal responses at the end of the first
convolutional layer, with the aim of obtaining better generalized results. The results will
subsequently cross the second convolutional layer the difference of which is that there are
64 neurons. Finally, the data across a densely connected layer and a fully connected layer
with dropout. After the data goes through the above two convolutional layers, the output
label is obtained by the Softmax classifier or a metric learning module.

4.2 Open-set classification model
Open-set assignment is a common problem in the task of data classification and occurs
when the test dataset contains new classes of data that do not appear in the training
samples. To solve this problem, the following two methods have been adopted.

Figure 5: Structure of open set classification model based on deep features

A Network Traffic Classification Model Based on Metric Learning 949

A. Identify categories by setting thresholds
The model we proposed above is based on CNNs. In view of its structure, we attempted
to output the probability of each category from the classification result. In our
experiments, we used two methods to achieve the classification results: Softmax and
Arcmargin. The probability was gained with both methods. After this step, we set a
threshold for each category on the basis of the data distribution in each method. Clearly,
the comparison of thresholds and the probability of sample data determine whether a
sample belongs to the open-set category. In this method, the selection of threshold
determines whether the data can be proposed divided. Data distribution and model effects
also play a significant role. To overcome the disadvantages of this method, we proposed
another model: a deep feature-based cluster model.
B. Deep features-based cluster model on open-set classification
Fig. 5 shows the open-set identification process. We acquired deep feature layer based on
the CNN model as described above and used it as cluster base sets. This model can be
explained in five steps as follows:
Step 1: The first step can be regarded as a training process. We use training data without
open-set samples to train this model under CNNs. To build the cluster base sets, we
acquire a deep feature layer from the output of the convolution layer in the completed
training model.
Step 2: In this step, a few open-set samples (obtained through expert knowledge or
business knowledge) are used to obtain deep feature layer from the model trained in Step
1. Until now, the cluster base sets are well constructed.
Step 3: Cluster and data center selection: In this step, cluster base sets will be used to
select data centers in each category. In this paper, we apply the K-means++algorithm [Yu
and Jian (2012)] and similarity analysis to obtain several center samples in each category.
Step 4: This step can be regarded as open-set sample identification. Test datasets are fed
into the model previously trained model and their deep features are generated. Then, we
calculate the similarities between test samples and center samples built in Step 3 in each
category and obtain the average similarity result. According to the average similarity result
and the set threshold, we can determine whether a sample belongs to open-set category.
Step 5: After Step 4, we keep samples that do not belong to open-set category in test
dataset. And then we feed these samples into the classification model trained in Step 1
and obtain classification results. Finally, the results outputted in Steps 4 and 5 make up
the final classification results.

950 CMC, vol.64, no.2, pp.941-959, 2020

Table 1: Data distribution of dataset ISCX-VPN-NONVPN-2016

Traffic Content Number Percentage
Email
Chat

Streaming File
Transfer
VoIP

P2P

POP3, SMPT and IMAP
ICQ, Skype, AIM, Hangouts and
Facebook
YouTube and Vimeo
SFTP, FTPS and Skype using Filezilla
Facebook, Skype and Hangouts voice
calls (1h duration)
Transmission (BitTorrent) and uTorrent

26844
33978

26682
30000
30000

32130

14.94%
18.92%

14.85%
16.70%
16.70%

17.89%

5 Experiments and comparison of results
5.1 Data description
We used three different types of public datasets in the experiment which included both
normal traffic and attack traffic. The attack traffic is divided into several categories.
These datasets are described as follows:
Dataset 1 (ISCX-VPN-NONVPN-2016): The first dataset is ISCX-VPN-NONVPN
network traffic. This dataset is meant to be a representative dataset of real-world network
traffic in ISCX. The owners of dataset define a set of tasks to collect network information
and assure the diversity and quantity of dataset at the same time. Tab. 1 presents the
complete list of different types of traffic and applications included in the dataset. For
each traffic type, the data captures a regular session and a session over VPN. There are 14
traffic categories in the dataset, such as VPN-P2P, VOIP, P2P and VPN-VOIP. The
detailed distribution of the traffic is shown in Tab. 1.
Dataset 2 (CIC-IDS-2017): Open-sourced by Canadian Institute for Cybersecurity in
2017. CICIDS2017 is a dataset for intrusion detection and intrusion prevention.
Sharafaldin et al. [Sharafaldin, Lashkari and Ghorbani (2018)] designed a real attack
application scene to extract traffic data from both the attack network and the victim
network. It extracts normal traffic and different kinds of attack traffic in a week and
produces real-world PCAP file data as output. On Monday, there is only normal traffic.
From Tuesday to Friday, several attacks occur and the collectors extract all information
generated in this period. This paper extracts eleven types of attack flows from the
CICIDS2017 and uses them as the training and test samples to build the classification
model. The traffic information can be extracted in two ways: by directly extracting the
flow raw data and by extracting the statistical features. The distribution of flows is
indicated in Tab. 2.
Dataset 3 (CIC-IDS-2012): With the evolution of network behavior patterns and
intrusions, network behavior is becoming more diversified. This dataset generates
dynamic, rather than static network performance data. ISCX proposed a systematic
approach to generate the required datasets. Various multi-stage attack scenarios were
applied to complete this task. These anomalous portions fall into four categories: DDoS,
Brute_Force_SSH, Infiltrating_Transfer and HTTPDoS. The intrusion detection dataset,

A Network Traffic Classification Model Based on Metric Learning 951

UNB ISCX 2012, offers features such as data labels, realistic network traffic, total
interaction captures and complete capture. The distribution of the traffic is shown in Tab. 3.

Table 2: Data distribution of dataset CIC-IDS-2017

Flow Types Number Percentage

botnet
ddos
ftp Transfer
goldeneye
heartbleed
hulk
portscan
slowhttptest
slowloris
sql_injection
ssh

66049
110639
83019
18897
26585
166451
68523
27994
34983
56469
61668

9.16%
15.34%
11.51%
2.62%
3.69%
23.08%
9.50%
3.88%
4.85%
7.83%
8.55%

Table 3: Data distribution of dataset CIC-IDS-2012

Flow Types Number Percentage
Brute_Force_SSH
DDos
HTTPDos Transfer
Infiltrating_Transfer
Normal

14056
45019
6533
19156
100000

7.61%
24.37%
3.54%
10.37%
54.12%

5.2 Data processing

Figure 6: Data processing flow

Before feeding data into the classification model, traffic packets need to be converted into the
vectors with the same length of 784. As Fig. 6 shows, we convert raw traffic data into CNN
input data. This is a three-step process of traffic split, traffic clean and traffic trimming.
Traffic Split: This step splits a continuous raw traffic into multiple discrete traffic units
that refer to each flow’s information, including protocol, source IP, source port,
destination IP and destination port.
Traffic Clean: This is the step to remove the interferential information in traffic

952 CMC, vol.64, no.2, pp.941-959, 2020

packages. First, we randomize MAC addresses in the data link layer and the IP addresses
in the IP layer. Next, we refine the data to eliminate duplicate and empty files, since they
do nothing other than interfere with the learning ability of the network.
Traffic Trimming: The purpose of this step is to trim all files into a uniform length.
Since all layers contain some traffic feature information, for this paper, we extract
information from all layers, which means that we trim file data and layer data. If the file
is larger than 784 bytes, it will be trimmed to 784 bytes. If the file is smaller than 784
bytes, we add 0x00s at the end of the file to make it 784 bytes.

5.3 Classification results
5.3.1 Results output from ArcMargin model
To evaluate the experiment’s results, we collected four parameters: Recall, Precision,
Macro-f1 and Weighted-f1. They are explained as follows:

Recall = 1
𝑁𝑁
� 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

𝑁𝑁

𝑖𝑖=1
 (3)

Precision = 1
𝑁𝑁
� 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

𝑁𝑁

𝑖𝑖=1
 (4)

Macro− 𝑓𝑓1 = 1
𝑁𝑁
� 2∗ Precision ∗Recall

Precision+Recall

𝑁𝑁

𝑖𝑖=1
 (5)

Weighted− 𝑓𝑓1 = � 𝑤𝑤2∗Precision∗Recall
Precision+Recall

𝑁𝑁

𝑖𝑖=1
 (6)

 True positive (TP) refers to the number of correctly identified positive samples.
 True negative (TF) refers to the number of correctly identified negative samples.
 False positive (FP) refers to the number of wrongly identified positive samples.
 False negative (FN) refers to the number of wrongly identified negative samples.
N is the number of categories of data and w is the weight of each sample quantity to the
total data quantity.

Table 4: Experimental results of dataset ISCX-VPN-NONVPN-2016

Model name Recall Precision Macro-f1 Weighted-f1
CNN
KNN
LR
RF
DT
XGBoost
CNN+metric learning

0.9548
0.6864
0.2684
0.8526
0.8458
0.8
0.9857

0.9558
0.6719
0.2025
0.8521
0.8404
0.8493
0.9853

0.954
0.6715
0.228
0.8491
0.8416
0.8046
0.9853

0.9543
0.6812
0.2399
0.8557
0.8488
0.8132
0.9856

Tab. 4 shows the comparison with the traditional machine learning methods. It can be
seen that the four indicators of CNN network perform better, the f1-score of which can
reach around 95%. When we add metric learning on the basis of CNN network, we find
that the four indicators are increased by about 3%, inferring that the addition of metric

A Network Traffic Classification Model Based on Metric Learning 953

learning has a positive influence on the model.
In order to verify the generality of the proposed metric learning model, we conduct the
same test on two other datasets. As Tabs. 5 and 6 show, the results are not much different
from the previous ones, which prove that adding metric learning can help to better
classify network traffic.

Table 5: Experimental results of dataset CIC-IDS-2017
model name recall precision macro-f1 weighted-f1
CNN
KNN
LR
RF
DT
XGBoost
CNN+metric learning

0.9661
0.5995
0.1113
0.9393
0.9504
0.9065
0.9933

0.9693
0.6031
0.0275
0.9398
0.9498
0.9111
0.9934

0.9659
0.5969
0.0378
0.9393
0.9496
0.9039
0.9933

0.9659
0.597
0.041
0.9401
0.9504
0.9067
0.9933

Table 6: Experimental results of dataset CIC-IDS-2012
model name recall precision macro-f1 weighted-f1
CNN
KNN
LR
RF
DT
XGBoost
CNN+metric learning

0.9896
0.9582
0.6089
0.9775
0.9504
0.9749
0.9971

0.9896
0.9593
0.7483
0.9762
0.9498
0.9781
0.9971

0.9896
0.9586
0.5419
0.9768
0.9496
0.9764
0.9971

0.9896
0.9593
0.4697
0.9766
0.9504
0.9759
0.9971

Figure 7: Confusion matrices of classification results using different algorithms

5.3.2 Comparison of experiments and results
To compare and validate the results of the proposed classification model, we designed
several comparative experiments with traditional machine learning methods. We also

954 CMC, vol.64, no.2, pp.941-959, 2020

used a CNN model without ArcMargin to accomplish the classification task. (Aside from
not having the final ArcMargin layer the other processing layers are the same as those of
the ArcMargin model, so this will not be explained here.) This paper is mainly concerned
with five algorithms: KNN, LR, DT, RF and Xgboost).
In the traditional machine learning process, it is important to send the right feature into
the model for building a good classifier. However, it is usually time- and resource-
consuming to extract complete and effective features from network traffic data.
Consequently, we tried to find some universal features based on a novel method to
acquire the most effective features in different malicious traffic types.
In this paper, the network traffic is regarded as single direction flow, one which can be
described as from attacking host to the attacked host. Tab. 7 describes several details of
traffic features. ByteDis (called byte dis in Tab. 7) is a 256-dimension vector, and the
value of each dimension can be regarded as the number of corresponding bytes in each
flow. For instance, ByteDis 0×63 (99) is equal to 25, which signifies that 0×63 (99)
appears 25 times in all flow samples. In addition, the total number of dimensions in the
traffic feature is 643. Subsequently, we feed feature vectors into the machine learning
models mentioned above.
After processing the data, we fed the data into several traditional machine learning
algorithms. Fig. 7 displays the confusion matrices of all the algorithms based on Dataset
2 described above. A confusion matrix is a method for summarizing the prediction results
of the classification model, revealing the prediction and real label distribution among all
the classes. If all the data were classified accurately, the matrix would be shaped as a
diagonal. Therefore, the more elements, the worse the results. As shown in Fig. 6, DT is
the best performing algorithm, and LR is the worst performer. Fig. 8 displays the
comparison of the f1-score in the classification results between different algorithms on
Dataset 2. The results are also presented in Tab. 7.

Figure 8: Comparison of the classification effect of different algorithms

5.4 Open-set classification results
As shown in Tabs. 4-6, indicators of recall, precision, macro-f1 and weighted-f1 are all
over 0.98, which can be regarded as a good performance for the model. However, when
open-set samples are added into test data, a model that can only distinguish existing
categories will not work. As a result, we used the open-set classification model described
in Section 4.1.1. First, we identified categories by setting thresholds, so as to solve open-
set problem by using the probabilities output from Softmax and ArcMargin in the CNN
model. The results of classifying Dataset 1 are listed in rows 1 and 2 in Tabs. 8 and 9.

A Network Traffic Classification Model Based on Metric Learning 955

Table 7: Details of the feature repository
Feature name Description
sp
dp
inbyte_cnt
outbyte_cnt
inpkt_cnt
outpkt_cnt
pkt_length
pkt_time
byte_dis
byte_persec
max_pkt
min_pkt
mean_pkt
std_pkt
max_bd
min_bd
entropy_bd
std_bd
duration

Source port
Destination port
Inbound bytes
Outbound bytes
Inbound packets
Outbound packets
Long sequence packets in the first hundred packets in a flow
First hundred packets of arrival sequence in a flow
Number of per byte in a flow
Number of bytes per second
Number of the maximum packet
Number of the minimum packet
Average length of the packets
Variance of the length of the packets
Max value in in byte_dis
Minimum value in the byte_dis
Entropy of byte distribution
Variance of byte distribution
Duration of a flow

As can be seen from the tables, the threshold setting method used in the model that
performed well in previous classification task does not operate as well in the open-set
task. The results in Tab. 9 show that the precision, recall and f1-score of the open-set
category are only 0.10 in the CNN model and 0.30 in the ArcMargin model. From this, it
can be concluded that there are no obvious performance differences between the Softmax
and ArcMargin probability outputs in each category.
Next, we added the cluster model into open-set classification task. As can be seen in row 3 of
both Tabs. 8 and 9, on average, precision, recall and f1-score all improved significantly in
both open-set categories as well as in all other categories. To support this crucial result, we
output the feature similarities of each sample class with open-set class in Fig. 9, where the
transverse axis gives the similarities between each sample and center samples in every
category, and the size of the colored circle gives the number of samples in the similarity
interval. Fig. 9 shows that most open-set samples have similarities with open-set centers close
to 1, but most other classes are below 0.8, indicating that we could use the cluster method to
distinguish the open-set class from others. These results also proved our hypothesis.

Table 8: Experimental results of all categories in open-set experiments
Model name Recall Precision Macro-f1 Weighted-f1

CNN
CNN+metric learning
CNN+metric+cluster

0.7097
0.7246
0.8482

0.7045
0.7374
0.8567

0.7008
0.7317
0.8523

0.6955
0.7219
0.8619

Table 9: Experimental results of open-set category in open-set experiments
Model name Recall Precision f1-score

CNN
CNN+metric learning
CNN+metric+cluster

0.0077
0.3158
0.7580

0.0160
0.3043
0.6402

0.0105
0.3040
0.6308

956 CMC, vol.64, no.2, pp.941-959, 2020

Figure 9: Similarities in open-set of each class

6 Conclusions
In this paper, we propose a new method to identify malicious and other abnormal behaviors
in network traffic. With the purpose of improving the classification results, we built a CNN
model with metric learning (ArcMargin) embedded. As the results show, our model
performed well in different indicators. To further verify the effectiveness of this model, we
designed a classification verification framework that applies several machine learning
algorithms and the original CNN model on different datasets. The experiments demonstrate
that embedding metric learning into CNNs improves the performance of the traffic
classification model. We also dealt with the open-set classification problem and achieved
improved results by adding a deep feature cluster method into the above metric model.
In the future, we hope to design a better network traffic classification model based on
metric learning and make it applicable to a wider range of network traffic data and train it
on other networks including RNN and LSTM. At the application level, we also intend to
test our model on real traffic data and in actual production. Finally, we will continue to
improve the open-set classification results using different methods, in order to increase
the possibility of applying this model into actual and real-time network traffic.

Funding Statement: This work was supported by the National Natural Science
Foundation of China (61871046).

A Network Traffic Classification Model Based on Metric Learning 957

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Alhawi, O. M. K.; Baldwin, J.; Dehghantanha, A. (2018): Leveraging machine
learning techniques for windows ransomware network traffic detection. Cyber Threat
Intelligence, vol. 70, no. 1, pp. 93-106.
Breiman, L. (2001): Random forests. Machine Learning, vol. 45, no. 1, pp. 5-32.
Chaib, S.; Liu, H.; Gu, Y.; Yao, H. (2017): Deep feature fusion for VHR remote
sensing scene classification. IEEE Transactions on Geoscience and Remote Sensing, vol.
55, no. 8, pp. 4775-4784.
Chen, T.; Guestrin, C. (2016): Xgboost: a scalable tree boosting system. Proceedings of
the ACM SigKDD International Conference on Knowledge Discovery and Data Mining,
pp. 785-794.
Cheng, G.; Li, Z.; Yao, X.; Guo, L.; Wei, Z. (2017): Remote sensing image scene
classification using bag of convolutional features. IEEE Geoscience and Remote Sensing
Letters, vol. 14, no. 10, pp. 1735-1739.
Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. (2018): When deep learning meets
metric learning: remote sensing image scene classification via learning discriminative
CNNs. IEEE Transactions on Geoscience Remote Sensing, vol. 56, no. 5, pp. 2811-2821.
Cheng, G.; Zhou, P.; Han, J. (2016): Learning rotation-invariant convolutional neural
networks for object detection in VHR optical remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing, vol. 54, no. 12, pp. 7405-7415.
Chopra, S.; Hadsell, R.; LeCun, Y. (2005): Learning a similarity metric
discriminatively, with application to face verification. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 539-546.
Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. (2018): Arcface: additive angular margin loss
for deep face recognition. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4690-4699.
Di, C. (2018): Learning automata based SVM for intrusion detection. Proceedings of the
International Conference in Communications, pp. 2067-2074.
Finsterbusch, M.; Richter, C.; Rocha, E.; Muller, J. A.; Hanssgen, K. (2014): A
survey of payload-based traffic classification approaches. IEEE Communications Surveys
Tutorials, vol. 16, no. 2, pp. 1135-1156.
Gao, N.; Gao, L.; Gao, Q.; Wang, H. (2014): An intrusion detection model based on
deep belief networks. Proceedings of the International Conference on Advanced Cloud
and Big Data, pp. 247-252.
Gul, A. B.; Yoan, M.; Aapo, K.; Ian, O.; Silke, H. et al. (2018): Anomaly-based
intrusion detection using extreme learning machine and aggregation of network traffic
statistics in probability space. Cognitive Computation, vol. 10, no. 5, pp. 848-863.
Hara, K.; Saito, D.; Shouno, H. (2015): Analysis of function of rectified linear unit used
in deep learning. Proceedings of the International Joint Conference on Neural Networks,

958 CMC, vol.64, no.2, pp.941-959, 2020

pp. 1-8.
Huang, G. B.; Lee, H.; Learned-Miller, E. (2012): Learning hierarchical representations
for face verification with convolutional deep belief networks. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2518-2525.
Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. (2016): A deep learning approach for
network intrusion detection system. Proceedings of the EAI International Conference on
Bio-inspired Information and Communications Technologies, pp. 21-26.
Kleinbaum, D. G.; Klein, M. (2002): Logistic regression (a self-Learning text).
Technometrics, vol. 45, no. 1, pp. 109.
Kumar, S.; Dharmapurikar, S.; Fang, Y.; Crowley, P.; Turner, J. (2006): Algorithms
to accelerate multiple regular expressions matching for deep packet inspection. ACM
SIGCOMM Computer Communication Review, vol. 36, no. 4, pp. 339-350.
Lin, Q.; Zhang, H.; Lou, J. G.; Yu, Z.; Chen, X. (2016): Log clustering-based problem
identification for online service systems. Proceedings of the IEEE/ACM International
Conference on Software Engineering Companion, pp. 102-111.
Lins, F.; Damasceno, J.; Silva, B.; Medeiros, R.; Souza, A. et al. (2012): Towards an
approach to design and enforce security in web service composition. International
Journal of Web Engineering Technology, vol. 7, no. 4, pp. 323-357.
Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B. et al. (2017): Sphereface: deep hypersphere
embedding for face recognition. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 212-220.
Nejad, M. B.; Shiri, M. E. (2019): A new enhanced learning approach to automatic
image classification based on Salp Swarm Algorithm. Computer Systems Science and
Engineering, vol. 34, no. 2, pp. 91-100.
Nogueira, K.; Penatti, O. A.; dos Santos, J. A. (2017): Towards better exploiting
convolutional neural networks for remote sensing scene classification. Pattern
Recognition, vol. 61, no. 1, pp. 539-556.
Peterson, L. E. (2009): K-nearest neighbor. Scholarpedia, vol. 4, no. 2, pp. 1883.
Safavian, S. R.; Landgrebe, D. (1991): A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 660-674.
Salakhutdinov, R. (2015): Learning deep generative models. Annual Review of Statistics
and Its Application, vol. 2, no. 1, pp. 361-385.
Schultz, M. G.; Eskin, E.; Zadok, F.; Stolfo, S. J. (2002): Data mining methods for
detection of new malicious executables. Proceedings of the IEEE Symposium on Security
and Privacy, pp. 38-49.
Sengupta, S.; Chen, J. C.; Castillo, C.; Patel, V. M.; Chellappa, R. et al. (2016):
Frontal to profile face verification in the wild. Proceedings of the IEEE Winter
Conference on Applications of Computer Vision, pp. 1-9.
Sharafaldin, I.; Lashkari, A. H.; Ghorbani, A. A. (2018): Toward generating a new
Intrusion detection dataset and intrusion traffic characterization. Proceedings of
International Conference on Information Systems Security and Privacy.

A Network Traffic Classification Model Based on Metric Learning 959

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. et al. (2014): Going deeper with
convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-9.
Tariq Usman. (2019): Intrusion detection and anticipation system (IDAS) for IEEE
802.15.4 devices. Intelligent Automation and Soft Computing, vol. 25, no. 2, pp. 231-242.
Wang, F.; Xiang, X.; Cheng, J.; Yuille, A. L. (2017): Normface: 2 hypersphere
embedding for face verification. Proceedings of the ACM International Conference on
Multimedia, pp. 1041-1049.
Wang, P.; Ye, F.; Chen, X.; Qian, Y. (2018): Datanet: deep learning based encrypted
network traffic classification in sdn home gateway. IEEE Access, vol. 6, pp. 55380-
55391.
Wang, W.; Zhu, M.; Zeng, X. W.; Ye, X. Z.; Sheng, Y. Q. (2017): Malware traffic
classification using convolutional neural network for representation learning.
Proceedings of the International Conference on Information Networking, pp. 712-717.
Yang, L.; Jin, R. (2006): Distance Metric Learning: A Comprehensive Survey. Michigan
State University, vol. 2, no. 2, pp. 4.
Yu, X.; Jian, Y. (2012): Partitive clustering (kÃÂÂmeans family). Wiley Interdisciplinary
Reviews Data Mining Knowledge Discovery, vol. 2, no. 3, pp. 209-225.
Zeng, Y.; Gu, H.; Wei, W.; Guo, Y. (2019): Deep-full-range: a deep learning-based
network encrypted traffic classification and intrusion detection framework. IEEE Access,
vol. 7, pp. 45182-45190.
Zhang, H.; Yi, Y.; Wang, J.; Cao, N.; Duan, Q. (2018): Network security situation
awareness framework based on threat intelligence. Computers, Materials and Continua,
vol. 56, no. 3, pp. 381-399.
Zhang, J.; Qin, Z.; Yin, H.; Ou, L.; Hu, Y. (2016): IRMD: malware variant detection
using opcode image recognition. Proceedings of the IEEE International Conference on
Parallel and Distributed Systems, 1175-1180.

	A Network Traffic Classification Model Based on Metric Learning
	Mo Chen0F , Xiaojuan Wang1, *, Mingshu He1, Lei Jin1, Khalid Javeed2 and
	Xiaojun Wang3

