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Abstract: Attacks on websites and network servers are among the most critical threats in 
network security. Network behavior identification is one of the most effective ways to 
identify malicious network intrusions. Analyzing abnormal network traffic patterns and 
traffic classification based on labeled network traffic data are among the most effective 
approaches for network behavior identification. Traditional methods for network traffic 
classification utilize algorithms such as Naive Bayes, Decision Tree and XGBoost. 
However, network traffic classification, which is required for network behavior 
identification, generally suffers from the problem of low accuracy even with the recently 
proposed deep learning models. To improve network traffic classification accuracy thus 
improving network intrusion detection rate, this paper proposes a new network traffic 
classification model, called ArcMargin, which incorporates metric learning into a 
convolutional neural network (CNN) to make the CNN model more discriminative. 
ArcMargin maps network traffic samples from the same category more closely while 
samples from different categories are mapped as far apart as possible. The metric learning 
regularization feature is called additive angular margin loss, and it is embedded in the 
object function of traditional CNN models. The proposed ArcMargin model is validated 
with three datasets and is compared with several other related algorithms. According to a 
set of classification indicators, the ArcMargin model is proofed to have better 
performances in both network traffic classification tasks and open-set tasks. Moreover, in 
open-set tasks, the ArcMargin model can cluster unknown data classes that do not exist in 
the previous training dataset. 
 
Keywords: Metric learning, ArcMargin, network traffic classification, CNNs. 

1 Introduction 
Increased use of the Internet has led to the generation of much more log data related to 
network traffic [Lins, Damasceno, Silva et al. (2012)]. However, the security of computer 
systems is compromised when attackers are able to gather essential information from 
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website databases. The ability to browse network traffic data can provide a record of 
human behavior. Therefore, analyzing network traffic is a way to detect malicious 
intrusion behaviors [Lin, Zhang, Lou et al. (2016)]. In addition to network traffic, 
wireless device traffic data and Internet of Things (IoT) traffic data often need to be 
further analyzed and detected in order to increase network security situational awareness 
and anomaly detection [Zhang, Yi, Wang et al. (2018)]. Besides, some application system 
was also proposed, such as intrusion detection and anticipation system for IEEE 802.15.4 
devices [Tariq (2019)]. We studied a network traffic classification model based on 
convolutional neural network (CNN) with a metric learning method [Yang and Jin 
(2006)] for the purposes of improving network traffic classification accuracy and the 
detection of abnormal network traffic patterns. 
Some traditional machine learning methods have been used to solve the classification 
assignment of network traffic [Salakhutdinov (2015)]. Based on the Decision Tree (DT) 
learning method, Alhawi et al. [Alhawi, Baldwin and Dehghantanha (2018)] proposed a 
machine learning evaluation method for consistent detection of ransomware in network 
traffic on Windows computers. Focusing on intrusion detection, Di [Di (2018)] proposed 
a novel framework based on a Support Vector Machine (SVM) model called LA-SVM 
which is designed to remove redundant features automatically. Because of the inability to 
analyze encrypted network traffic, most previous traffic classification methods are unable 
to adapt to modern traffic environments, such as the method based on Deep Packet 
Inspection (DPI) [Kumar, Dharmapurikar, Fang et al. (2006)] and port identification-
based methods. Gul proposed a traffic classification method that can analyze normal 
traffic and encrypted traffic based on DT and K-Nearest Neighbor (KNN) algorithms by 
analyzing network flow [Gul, Yoan, Aapo et al. (2018)].  
Feature extraction is an important part in the process of training a model, but it requires 
sufficient business knowledge and experience. Methods based on deep learning (DL) can 
collect features automatically in the training process, thereby facilitating the process of 
acquiring typical features and important information. [Wang, Ye, Chen et al. (2018)]. 
Methods based on metric learning have been widely applied in computer vision 
classification domain [Cheng, Yang, Yao et al. (2018)]. Such methods map image 
datasets from the same category as close as possible and map datasets from different 
categories as far as possible. However, metric learning has not been applied to optimizing 
the network traffic classification model yet. In this paper, we seek to integrate ArcMargin 
into a CNN and build a more effective model for network traffic classification.  
In addition, the characteristics of network traffic often lead to the situation that real test 
set contains an unknown data class that the classification model has difficulty identifying. 
We call this the open-set problem. However, in the current classification model, it is 
difficult to detect such an unknown class in the task. To solve this problem and combine 
it with the proposed model, we put forth a cluster method based on the deep feature 
output from the ArcMargin model. The results indicate that our open-set model improves 
the classification result. 
The contributions of this paper can be summarized as follows: 
1) Proposing a network traffic classification model with additive angular margin loss 

embedded on CNNs (ArcMargin), which classifies the traffic data in the cosine space. 
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2) Using ArcMargin to train a feature layer, from which we can extract the embedded 
vectors to solve the open-set problem. Specifically, we make the CNN model more 
discriminative, which means decreasing the within-class distance and increasing the 
between-class distance. 

3) Performing a comparative study through experiments that proves the effectiveness of 
our general classification model and open-set classification model. The experiment 
results show that our model further improves the classification results in three traffic 
network datasets in accuracy, F1-score and recall rate. 

The remainder of this paper is arranged as follows. Section 2 presents related work. In 
Section 3, we explain the framework and process of classification experiments. In Section 
4, we introduce ArcMargin and then discuss the general classification model and the 
proposed open-set classification model. In Section 5, we analyze results from the 
traditional models and CNN model embedded with metric learning. Section 6 
summarizes the paper and outlines directions for future research. 

2 Related work 
Network traffic records a large amount of access information belonging to Internet users, 
which plays an important role in the field of network security. Extracting features from 
these records is almost always the first step in classifying network traffic in anomaly 
detection [Wang, Zhu, Zeng et al. (2017)].  
DPI-based, port-based, behavioral-based, and statistical based methods are commonly 
used traffic classification methods [Finsterbusch, Richter, Rocha et al. (2014)]. These are 
traditional machine learning methods, which require a large number of features to 
classify the traffic. Schultz et al. [Schultz, Eskin, Zadok et al. (2002)] were the first to 
embed the concept of data mining into malware detection, which employs three static 
features: strings, Portable Executable (PE) and byte sequences. Gul et al. [Gul, Yoan, 
Aapo et al. (2018)] proposed a method Using KNN [Peterson (2009)] and the DT 
[Safavian and Landgrebe (1991)].  
The limitation of traditional machine learning methods lies in the fact that user 
performance depends on the feature engineering resulting from manual analysis and 
private information. In addition, to construct human-engineered features, traditional 
machine learning approaches require extensive computational resources and substantial 
storage and are also highly labor-intensive.  Representation learning is a relatively recent 
method that can learn features from raw data automatically, thus reducing the time spent 
on constructing human-engineered features. There have been several studies on traffic 
classification based on representation learning. Gao et al. [Gao, Gao, Gao et al. (2014)] 
proposed a malware traffic detection method based on deep belief networks. Javaid et al. 
[Javaid, Niyaz, Sun et al. (2016)] proposed a malware traffic identification model based 
on a sparse autoencoder. Nejad et al. [Nejad and Shiri (2019)] proposed a new enhanced 
learning approach to automatic image classification based on salp swarm algorithm. 
Zhang et al. [Zhang, Qin, Yin et al. (2016)] resolved binary executables into opcodes 
sequences and then transformed them into images, which used the CNN model to 
determine whether a binary executable is secure or not. Zeng et al. [Zeng, Gu, Wei et al. 
(2019)] proposed a network traffic classification method using CNN, Long Short-Term 
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Memory (LSTM) and Stacked Auto-Encoder (SAE). 
Many classification algorithms rely on the distance metric of data. In order to handle the 
features from different datasets, it is necessary to build various measurement functions, 
which consume a great deal of both time and energy. The major contribution of metric 
learning is to discover a proper similarity measurement between pairs of data such as 
images that will not change original data distance and will retain the necessary distance 
structure. Today, metric learning is always used in facial verification. Metric learning 
methods such as the Siamese network and Joint Bayesian are used along with deep facial 
representation [Chopra, Hadsell, LeCun et al. (2005)] applied the Siamese network in 
collecting features from two inputs with the same two sub-networks and regarded the 
distance as dissimilar between each other. Huang et al. [Huang, Lee and Learned-Miller 
(2012)] utilized Information Theoretic Metric Learning (ITML) on the features learned 
from convolutional deep belief networks. 

3 Network traffic classification framework and learning model 
The proposed model is a CNN with metric learning under ArcMargin. To verify the 
experimental results and to improve the classification accuracy achieved by metric 
learning, we built a data classification and validation framework as shown in Fig. 1. At 
the same time the open-set classification results were improved by embedding cluster 
method in CNN with the ArcMargin model. The framework consists of the following 
four processes. 

 

Figure 1: Network traffic classification framework 

1) Traditional machine learning methods used on the datasets include KNN, logistic 
regression (LR) [Kleinbaum and Klein (2002)], random forest (RF) [Breiman 
(2001)], DT and XGBoost [Chen and Guestrin (2016)]. We converted network 
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traffic packets (PCAP) into hex values and then built some necessary features. 
2) CNNs were used on three traffic datasets without acquiring any features. The hex 

values were sent to CNN directly. 
3) The ArcMargin model can be regarded as a structure in which metric learning 

regularization is embedded in the objective function of a traditional CNN. 
4) The cluster method is used in the classification model which improves open-set 

classification results. 
After comparing different classification methods in general classification tasks and open-
set classification tasks, some meaningful conclusions about network traffic data emerged, 
such as their distribution, different features and etc. Simultaneously, the results using 
different algorithms manifest that the metric learning improves the classification accuracy 
and also performs well with open-set tasks. 

4 Methods 
4.1 Traffic network model based on metric learning (ArcMargin)  
4.1.1 Introduction of CNNs and ArcMargin 
Before embedding metric learning (ArcMargin) in CNN models, we used CNNs only to 
solve the classification assignment as contrast group. Our model can be more easily 
understood if some basic concepts of CNNs and ArcMargin are first explained. 
A. CNNs 
CNNs have demonstrated impressive performance in many applications, such as sensing 
image analysis and abnormal performance detection [Chaib, Liu, Gu et al. (2017), Cheng, 
Zhou and Han (2016); Cheng, Li, Yao et al. (2017); Nogueira, Penatti and dos Santos 
(2017)]. As shown in Fig. 2, a typical CNN network consists of several network layers: 
convolutional layers, pooling layers, and fully connected (FC) layers. 

 
Figure 2: CNN structure 

The convolutional layer is the most important layer in feature extraction. Its main purpose 
is to extract features automatically during training. The convolution layer in the front of 
the network structure extracts simple features, and the deeper convolution layer extracts 
the complex features that are computed from simple ones. Each unit in the convolution 
layer is connected to a local patch in the feature map of the previous layer by a set of 
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convolution kernels. This set of kernels is represented by the brown cube in Fig. 2. Then, 
the results output from the local weighted sum is mapped by a non-linear operation such 
as the rectified linear unit (ReLU) [Hara, Saito and Shouno (2015)]. All units in the 
feature maps share the same convolution kernel, while different convolution kernels can 
represent different features. 
The pooling layer reduces the dimension of the feature representation and ensures the 
invariance of small translations or rotations. It is of great significance to image and object 
detection, as well as network traffic classification. The pooling layer can be created by 
computing some local nonlinear operation over feature maps. The max-pooling operation 
in the pooling layer computes the maximum of local units in feature map. 
The role of the FC layer is to better summarize the message transmitted by previous 
layers which include lower-level features, in order to make the final decision. It is always 
used as the last few layers in the model. 
B. ArcMargin 
Softmax is the most widely used classification loss function: 

𝐿𝐿1 = − 1
𝑁𝑁
∑ log𝑁𝑁
𝑖𝑖=1

𝑒𝑒𝑊𝑊𝑣𝑣𝑖𝑖
𝑇𝑇 𝑥𝑥𝑖𝑖+𝑏𝑏𝑣𝑣𝑖𝑖

� 𝑒𝑒𝑊𝑊𝑗𝑗
𝑇𝑇𝑥𝑥𝑖𝑖+𝑏𝑏𝑗𝑗

𝑛𝑛

𝑗𝑗=1

                                          (1) 

where xi denotes the deep feature of the i-th sample, which is belongs to the yi-th class. 
We set the embedding feature to 128 here. N denotes the batch size and n denotes the 
number of classes, bj denotes the bias term, W is the weight and Wj   is the j-th column of W. 
However, there is still room for improvement in feature expression when using the Softmax 
loss function. If there are large intraclass appearance variations in training samples, there 
will still be a performance gap in the data identification, which cause the model cannot 
indicate the diversity among interclass samples and higher similarities among intraclass 
samples. Deng et al. [Deng, Guo, Xue et al. (2018); Sengupta, Chen, Castillo et al. (2016)]. 
Consequently, we set the bias bj=0 and convert the logit as Wj

T xi=||Wj|| ||xi cos θj||, where 
θj is the angle of Wj and the xi. denotes a feature. According to Liu et al. [Liu, Wen, Yu et 
al. (2017); Wang, Xiang, Cheng et al. (2017)], the individual weight ||Wj =1|| can be fixed 
by l2 normalization and the embedding feature ||x2|| can be fixed by l2 normalization and 
is then re-scaled to s. Thus, the embedding features learning from the model will be 
distributed on a hypersphere whose radius is s. 

𝐿𝐿2 = − 1
𝑁𝑁
∑ log𝑁𝑁
𝑖𝑖=1

𝑒𝑒𝑠𝑠cos𝜃𝜃𝑣𝑣𝑖𝑖

𝑒𝑒𝑠𝑠cos𝜃𝜃𝑣𝑣𝑖𝑖+� 𝑒𝑒𝑠𝑠cos𝜃𝜃𝑗𝑗
𝑛𝑛

𝑗𝑗=1,𝑗𝑗≠𝑦𝑦𝑖𝑖

                                              (2) 
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Figure 3: Illustration of the distance between six categories of sample sets under 
ArcMargin and softmax loss functions 

As Fig. 3 shows, on the hypersphere, the embedded features are distributed regularly. An 
additive angular margin penalty m is added between xi and Wyj , which has the ability to 
enhance the intraclass compactness and interclass discrepancy. The additive angular 
margin penalty can be computed as the geodesic distance margin penalty gathering from 
the normalized hypersphere (ArcMargin) [Deng, Guo, Xue et al. (2018)]. 
In this paper, some network traffic from six different identities is used to train the feature-
embedding model with the Softmax as well as ArcMargin loss. The results are displayed 
in Fig. 3. 

4.1.2 ArcMargin classification model 
Fig. 4 depicts the metric learning-based model using ArcMargin. The figure shows that 
after obtaining the raw input data, we send them into the CNN models. To date, CNNs 
have been mainly widely used in the computer vision field due to their superior ability to 
learn the spatial properties of an image pixel by pixel. In this paper, because the format of 
raw network traffic is a sequential format which is different from that of an image, a 1-D 
CNN is used in the structure rather than a 2-D CNN, which is widely used in the image. 
As shown above, the model consists of two convolutional layers, two max pooling layers, 
two local response normalization (LRN) layers and a densely connected layer with a final 
optional unit consisting of a Softmax classifier and metric learning part. These two 
different final output layers are used for a set of comparative experiments. 
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Figure 4: Experimental procedure illustration of CNN model with metric learning 

In public processing layers, we first used 32 convolution kernels with the size of [25, 1] 
and step size of 1 to extract the first feature on the input data with the size of [1, 1, 784]. 
The results output from the convolutional layer is delivered to an activation function. 
ReLU is used here (described in Section 4). Then, the max pooling layer processes the 
results previously output. 
After that, an LRN layer is embedded to punish abnormal responses at the end of the first 
convolutional layer, with the aim of obtaining better generalized results. The results will 
subsequently cross the second convolutional layer the difference of which is that there are 
64 neurons. Finally, the data across a densely connected layer and a fully connected layer 
with dropout. After the data goes through the above two convolutional layers, the output 
label is obtained by the Softmax classifier or a metric learning module. 

4.2 Open-set classification model 
Open-set assignment is a common problem in the task of data classification and occurs 
when the test dataset contains new classes of data that do not appear in the training 
samples. To solve this problem, the following two methods have been adopted. 

 

Figure 5: Structure of open set classification model based on deep features 
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A. Identify categories by setting thresholds 
The model we proposed above is based on CNNs. In view of its structure, we attempted 
to output the probability of each category from the classification result. In our 
experiments, we used two methods to achieve the classification results: Softmax and 
Arcmargin. The probability was gained with both methods. After this step, we set a 
threshold for each category on the basis of the data distribution in each method. Clearly, 
the comparison of thresholds and the probability of sample data determine whether a 
sample belongs to the open-set category. In this method, the selection of threshold 
determines whether the data can be proposed divided. Data distribution and model effects 
also play a significant role. To overcome the disadvantages of this method, we proposed 
another model: a deep feature-based cluster model. 
B. Deep features-based cluster model on open-set classification 
Fig. 5 shows the open-set identification process. We acquired deep feature layer based on 
the CNN model as described above and used it as cluster base sets. This model can be 
explained in five steps as follows: 
Step 1: The first step can be regarded as a training process. We use training data without 
open-set samples to train this model under CNNs. To build the cluster base sets, we 
acquire a deep feature layer from the output of the convolution layer in the completed 
training model.  
Step 2: In this step, a few open-set samples (obtained through expert knowledge or 
business knowledge) are used to obtain deep feature layer from the model trained in Step 
1. Until now, the cluster base sets are well constructed.  
Step 3: Cluster and data center selection: In this step, cluster base sets will be used to 
select data centers in each category. In this paper, we apply the K-means++algorithm [Yu 
and Jian (2012)] and similarity analysis to obtain several center samples in each category.  
Step 4: This step can be regarded as open-set sample identification. Test datasets are fed 
into the model previously trained model and their deep features are generated. Then, we 
calculate the similarities between test samples and center samples built in Step 3 in each 
category and obtain the average similarity result. According to the average similarity result 
and the set threshold, we can determine whether a sample belongs to open-set category.  
Step 5: After Step 4, we keep samples that do not belong to open-set category in test 
dataset. And then we feed these samples into the classification model trained in Step 1 
and obtain classification results. Finally, the results outputted in Steps 4 and 5 make up 
the final classification results. 
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Table 1: Data distribution of dataset ISCX-VPN-NONVPN-2016 

Traffic Content Number Percentage 
Email 
Chat 
 
Streaming File 
Transfer 
VoIP 
 
P2P 

POP3, SMPT and IMAP 
ICQ, Skype, AIM, Hangouts and 
Facebook 
YouTube and Vimeo 
SFTP, FTPS and Skype using Filezilla 
Facebook, Skype and Hangouts voice 
calls (1h duration) 
Transmission (BitTorrent) and uTorrent 

26844 
33978 
 
26682 
30000 
30000 
 
32130 

14.94% 
18.92% 
 
14.85% 
16.70% 
16.70% 
 
17.89% 

5 Experiments and comparison of results 
5.1 Data description 
We used three different types of public datasets in the experiment which included both 
normal traffic and attack traffic. The attack traffic is divided into several categories. 
These datasets are described as follows: 
Dataset 1 (ISCX-VPN-NONVPN-2016): The first dataset is ISCX-VPN-NONVPN 
network traffic. This dataset is meant to be a representative dataset of real-world network 
traffic in ISCX. The owners of dataset define a set of tasks to collect network information 
and assure the diversity and quantity of dataset at the same time. Tab. 1 presents the 
complete list of different types of traffic and applications included in the dataset. For 
each traffic type, the data captures a regular session and a session over VPN. There are 14 
traffic categories in the dataset, such as VPN-P2P, VOIP, P2P and VPN-VOIP. The 
detailed distribution of the traffic is shown in Tab. 1. 
Dataset 2 (CIC-IDS-2017): Open-sourced by Canadian Institute for Cybersecurity in 
2017. CICIDS2017 is a dataset for intrusion detection and intrusion prevention. 
Sharafaldin et al. [Sharafaldin, Lashkari and Ghorbani (2018)] designed a real attack 
application scene to extract traffic data from both the attack network and the victim 
network. It extracts normal traffic and different kinds of attack traffic in a week and 
produces real-world PCAP file data as output. On Monday, there is only normal traffic. 
From Tuesday to Friday, several attacks occur and the collectors extract all information 
generated in this period. This paper extracts eleven types of attack flows from the 
CICIDS2017 and uses them as the training and test samples to build the classification 
model. The traffic information can be extracted in two ways: by directly extracting the 
flow raw data and by extracting the statistical features. The distribution of flows is 
indicated in Tab. 2. 
Dataset 3 (CIC-IDS-2012): With the evolution of network behavior patterns and 
intrusions, network behavior is becoming more diversified. This dataset generates 
dynamic, rather than static network performance data. ISCX proposed a systematic 
approach to generate the required datasets. Various multi-stage attack scenarios were 
applied to complete this task. These anomalous portions fall into four categories: DDoS, 
Brute_Force_SSH, Infiltrating_Transfer and HTTPDoS. The intrusion detection dataset, 
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UNB ISCX 2012, offers features such as data labels, realistic network traffic, total 
interaction captures and complete capture. The distribution of the traffic is shown in Tab. 3. 

Table 2: Data distribution of dataset CIC-IDS-2017 

Flow Types Number Percentage 

botnet  
ddos  
ftp Transfer  
goldeneye  
heartbleed  
hulk  
portscan  
slowhttptest  
slowloris  
sql_injection  
ssh 

66049  
110639  
83019  
18897  
26585  
166451  
68523  
27994  
34983  
56469  
61668 

9.16% 
15.34% 
11.51% 
2.62% 
3.69% 
23.08% 
9.50% 
3.88% 
4.85% 
7.83% 
8.55% 

Table 3: Data distribution of dataset CIC-IDS-2012 

Flow Types Number Percentage 
Brute_Force_SSH  
DDos  
HTTPDos Transfer  
Infiltrating_Transfer  
Normal 

14056  
45019  
6533  
19156  
100000 

7.61% 
24.37% 
3.54% 
10.37% 
54.12% 

5.2 Data processing 

 

Figure 6: Data processing flow 

Before feeding data into the classification model, traffic packets need to be converted into the 
vectors with the same length of 784. As Fig. 6 shows, we convert raw traffic data into CNN 
input data. This is a three-step process of traffic split, traffic clean and traffic trimming. 
Traffic Split: This step splits a continuous raw traffic into multiple discrete traffic units 
that refer to each flow’s information, including protocol, source IP, source port, 
destination IP and destination port. 
Traffic Clean: This is the step to remove the interferential information in traffic 
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packages. First, we randomize MAC addresses in the data link layer and the IP addresses 
in the IP layer. Next, we refine the data to eliminate duplicate and empty files, since they 
do nothing other than interfere with the learning ability of the network. 
Traffic Trimming: The purpose of this step is to trim all files into a uniform length. 
Since all layers contain some traffic feature information, for this paper, we extract 
information from all layers, which means that we trim file data and layer data. If the file 
is larger than 784 bytes, it will be trimmed to 784 bytes. If the file is smaller than 784 
bytes, we add 0x00s at the end of the file to make it 784 bytes. 

5.3 Classification results 
5.3.1 Results output from ArcMargin model 
To evaluate the experiment’s results, we collected four parameters: Recall, Precision, 
Macro-f1 and Weighted-f1. They are explained as follows: 

Recall = 1
𝑁𝑁
� 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

𝑁𝑁

𝑖𝑖=1
                                                    (3) 

Precision = 1
𝑁𝑁
� 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

𝑁𝑁

𝑖𝑖=1
                                                     (4) 

Macro− 𝑓𝑓1 = 1
𝑁𝑁
� 2∗ Precision ∗Recall

Precision+Recall

𝑁𝑁

𝑖𝑖=1
                                                          (5) 

Weighted− 𝑓𝑓1 = � 𝑤𝑤2∗Precision∗Recall
Precision+Recall

𝑁𝑁

𝑖𝑖=1
                                             (6) 

 True positive (TP) refers to the number of correctly identified positive samples. 
 True negative (TF) refers to the number of correctly identified negative samples. 
 False positive (FP) refers to the number of wrongly identified positive samples. 
 False negative (FN) refers to the number of wrongly identified negative samples. 
N is the number of categories of data and w is the weight of each sample quantity to the 
total data quantity. 

Table 4: Experimental results of dataset ISCX-VPN-NONVPN-2016 

Model name Recall Precision Macro-f1 Weighted-f1 
CNN  
KNN  
LR  
RF  
DT  
XGBoost  
CNN+metric learning 

0.9548  
0.6864  
0.2684  
0.8526  
0.8458  
0.8  
0.9857 

0.9558  
0.6719  
0.2025  
0.8521  
0.8404  
0.8493  
0.9853 

0.954  
0.6715  
0.228  
0.8491  
0.8416  
0.8046  
0.9853 

0.9543 
0.6812 
0.2399 
0.8557 
0.8488 
0.8132 
0.9856 

 
Tab. 4 shows the comparison with the traditional machine learning methods. It can be 
seen that the four indicators of CNN network perform better, the f1-score of which can 
reach around 95%. When we add metric learning on the basis of CNN network, we find 
that the four indicators are increased by about 3%, inferring that the addition of metric 
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learning has a positive influence on the model. 
In order to verify the generality of the proposed metric learning model, we conduct the 
same test on two other datasets. As Tabs. 5 and 6 show, the results are not much different 
from the previous ones, which prove that adding metric learning can help to better 
classify network traffic. 

Table 5: Experimental results of dataset CIC-IDS-2017 
model name recall precision macro-f1 weighted-f1 
CNN  
KNN  
LR  
RF  
DT  
XGBoost  
CNN+metric learning 

0.9661  
0.5995  
0.1113  
0.9393  
0.9504  
0.9065  
0.9933 

0.9693  
0.6031  
0.0275  
0.9398  
0.9498  
0.9111  
0.9934 

0.9659  
0.5969  
0.0378  
0.9393  
0.9496  
0.9039  
0.9933 

0.9659 
0.597 
0.041 
0.9401 
0.9504 
0.9067 
0.9933 

Table 6: Experimental results of dataset CIC-IDS-2012 
model name recall precision macro-f1 weighted-f1 
CNN  
KNN  
LR  
RF  
DT  
XGBoost  
CNN+metric learning 

0.9896  
0.9582  
0.6089  
0.9775  
0.9504  
0.9749  
0.9971 

0.9896  
0.9593  
0.7483  
0.9762  
0.9498  
0.9781  
0.9971 

0.9896  
0.9586  
0.5419  
0.9768  
0.9496  
0.9764  
0.9971 

0.9896 
0.9593 
0.4697 
0.9766 
0.9504 
0.9759 
0.9971 

 

 

Figure 7: Confusion matrices of classification results using different algorithms 

5.3.2 Comparison of experiments and results 
To compare and validate the results of the proposed classification model, we designed 
several comparative experiments with traditional machine learning methods. We also 
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used a CNN model without ArcMargin to accomplish the classification task. (Aside from 
not having the final ArcMargin layer the other processing layers are the same as those of 
the ArcMargin model, so this will not be explained here.) This paper is mainly concerned 
with five algorithms: KNN, LR, DT, RF and Xgboost). 
In the traditional machine learning process, it is important to send the right feature into 
the model for building a good classifier. However, it is usually time- and resource-
consuming to extract complete and effective features from network traffic data. 
Consequently, we tried to find some universal features based on a novel method to 
acquire the most effective features in different malicious traffic types. 
In this paper, the network traffic is regarded as single direction flow, one which can be 
described as from attacking host to the attacked host. Tab. 7 describes several details of 
traffic features. ByteDis (called byte dis in Tab. 7) is a 256-dimension vector, and the 
value of each dimension can be regarded as the number of corresponding bytes in each 
flow. For instance, ByteDis 0×63 (99) is equal to 25, which signifies that 0×63 (99) 
appears 25 times in all flow samples. In addition, the total number of dimensions in the 
traffic feature is 643. Subsequently, we feed feature vectors into the machine learning 
models mentioned above. 
After processing the data, we fed the data into several traditional machine learning 
algorithms. Fig. 7 displays the confusion matrices of all the algorithms based on Dataset 
2 described above. A confusion matrix is a method for summarizing the prediction results 
of the classification model, revealing the prediction and real label distribution among all 
the classes. If all the data were classified accurately, the matrix would be shaped as a 
diagonal. Therefore, the more elements, the worse the results. As shown in Fig. 6, DT is 
the best performing algorithm, and LR is the worst performer. Fig. 8 displays the 
comparison of the f1-score in the classification results between different algorithms on 
Dataset 2. The results are also presented in Tab. 7. 

 

Figure 8: Comparison of the classification effect of different algorithms 

5.4 Open-set classification results 
As shown in Tabs. 4-6, indicators of recall, precision, macro-f1 and weighted-f1 are all 
over 0.98, which can be regarded as a good performance for the model. However, when 
open-set samples are added into test data, a model that can only distinguish existing 
categories will not work. As a result, we used the open-set classification model described 
in Section 4.1.1. First, we identified categories by setting thresholds, so as to solve open-
set problem by using the probabilities output from Softmax and ArcMargin in the CNN 
model. The results of classifying Dataset 1 are listed in rows 1 and 2 in Tabs. 8 and 9. 
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Table 7: Details of the feature repository 
Feature name Description 
sp  
dp  
inbyte_cnt  
outbyte_cnt  
inpkt_cnt  
outpkt_cnt  
pkt_length  
pkt_time  
byte_dis  
byte_persec  
max_pkt  
min_pkt  
mean_pkt  
std_pkt  
max_bd  
min_bd  
entropy_bd  
std_bd  
duration 

Source port 
Destination port 
Inbound bytes 
Outbound bytes 
Inbound packets 
Outbound packets 
Long sequence packets in the first hundred packets in a flow 
First hundred packets of arrival sequence in a flow 
Number of per byte in a flow 
Number of bytes per second 
Number of the maximum packet 
Number of the minimum packet 
Average length of the packets 
Variance of the length of the packets 
Max value in in byte_dis 
Minimum value in the byte_dis 
Entropy of byte distribution 
Variance of byte distribution 
Duration of a flow 

As can be seen from the tables, the threshold setting method used in the model that 
performed well in previous classification task does not operate as well in the open-set 
task. The results in Tab. 9 show that the precision, recall and f1-score of the open-set 
category are only 0.10 in the CNN model and 0.30 in the ArcMargin model. From this, it 
can be concluded that there are no obvious performance differences between the Softmax 
and ArcMargin probability outputs in each category.  
Next, we added the cluster model into open-set classification task. As can be seen in row 3 of 
both Tabs. 8 and 9, on average, precision, recall and f1-score all improved significantly in 
both open-set categories as well as in all other categories. To support this crucial result, we 
output the feature similarities of each sample class with open-set class in Fig. 9, where the 
transverse axis gives the similarities between each sample and center samples in every 
category, and the size of the colored circle gives the number of samples in the similarity 
interval. Fig. 9 shows that most open-set samples have similarities with open-set centers close 
to 1, but most other classes are below 0.8, indicating that we could use the cluster method to 
distinguish the open-set class from others. These results also proved our hypothesis. 

Table 8: Experimental results of all categories in open-set experiments 
Model name Recall Precision Macro-f1 Weighted-f1 

CNN  
CNN+metric learning  
CNN+metric+cluster 

0.7097  
0.7246  
0.8482 

0.7045  
0.7374  
0.8567 

0.7008  
0.7317  
0.8523 

0.6955 
0.7219 
0.8619 

Table 9: Experimental results of open-set category in open-set experiments 
Model name Recall Precision f1-score 

CNN  
CNN+metric learning  
CNN+metric+cluster 

0.0077  
0.3158  
0.7580 

0.0160  
0.3043  
0.6402 

0.0105 
0.3040 
0.6308 
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Figure 9: Similarities in open-set of each class 

6 Conclusions  
In this paper, we propose a new method to identify malicious and other abnormal behaviors 
in network traffic. With the purpose of improving the classification results, we built a CNN 
model with metric learning (ArcMargin) embedded. As the results show, our model 
performed well in different indicators. To further verify the effectiveness of this model, we 
designed a classification verification framework that applies several machine learning 
algorithms and the original CNN model on different datasets. The experiments demonstrate 
that embedding metric learning into CNNs improves the performance of the traffic 
classification model. We also dealt with the open-set classification problem and achieved 
improved results by adding a deep feature cluster method into the above metric model. 
In the future, we hope to design a better network traffic classification model based on 
metric learning and make it applicable to a wider range of network traffic data and train it 
on other networks including RNN and LSTM. At the application level, we also intend to 
test our model on real traffic data and in actual production. Finally, we will continue to 
improve the open-set classification results using different methods, in order to increase 
the possibility of applying this model into actual and real-time network traffic. 
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