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Abstract: In this paper, the non-stationary incompressible fluid flows governed by the 
Navier-Stokes equations are studied in a bounded domain. This study focuses on the time-
fractional Navier-Stokes equations in the optimal control subject, where the control is 
distributed within the domain and the time-fractional derivative is proposed as Riemann-
Liouville sort. In addition, the control object is to minimize the quadratic cost functional. 
By using the Lax-Milgram lemma with the assistance of the fixed-point theorem, we 
demonstrate the existence and uniqueness of the weak solution to this system. Moreover, 
for a quadratic cost functional subject to the time-fractional Navier-Stokes equations, we 
prove the existence and uniqueness of optimal control. Also, via the variational inequality 
upon introducing the adjoint linearized system, some inequalities and identities are given 
to guarantee the first-order necessary optimality conditions. A direct consequence of the 
results obtained here is that when 𝛼𝛼 → 1, the obtained results are valid for the classical 
optimal control of systems governed by the Navier-Stokes equations. 
 
Keywords: Optimal control, lax-milgram lemma, fixed point theorem, navier-stokes 
equations. 

1 Introduction 
This discussion provides the necessary conditions of the optimal control for the time-
fractional Navier-Stokes equations in a bounded domain 𝛺𝛺 ⊂ ℝ𝑛𝑛 with 𝑛𝑛 ≤ 4 and smooth 
boundary 𝜕𝜕𝛺𝛺. For a fixed 𝑇𝑇 > 0, we set 𝑄𝑄 = 𝛺𝛺 × (0,𝑇𝑇) and 𝛴𝛴 = 𝜕𝜕𝛺𝛺 × (0, 𝑇𝑇). The time-
fractional Navier-Stokes equations can be described by the system of equations: 

⎩
⎨

⎧
𝐷𝐷+𝛼𝛼𝑦𝑦 − 𝜇𝜇𝜇𝜇𝑦𝑦 + (𝑦𝑦.𝛻𝛻)𝑦𝑦 + 𝛻𝛻𝛻𝛻 = 𝑓𝑓     in  𝑄𝑄,
𝛻𝛻 ⋅ 𝑦𝑦 = 0                                                in  𝑄𝑄,
𝑦𝑦 = 0                                                      on 𝛴𝛴,
𝐼𝐼+1−𝛼𝛼𝑦𝑦(⋅ ,0) = 0                                    in  𝛺𝛺,

 (1) 

where 𝐷𝐷+𝛼𝛼  and 𝐼𝐼+1−𝛼𝛼  denote respectively, the Riemann-Liouville time-fractional order 
derivative and integral, 𝑦𝑦 is the velocity of the fluid, 𝛻𝛻 represents the pressure, 𝑓𝑓 stands the 
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given external body forces and 𝜇𝜇 is a constant. 
The idea of fractional calculus deals with derivatives and integrals of any orders. Fractional 
calculus has gained importance, mainly due to its demonstrated applications in many areas 
of physics, economics, and engineering. The fractional calculus has been occurring in many 
physical problems such as damping law, perfusion processes and a motion of a large thin 
plate in the Newtonian fluid. For more specifics on the scientific applications of fractional 
calculus, see Kilbas et al. [Kilbas, Srivastava and Trujillo (2006); Ghany and Hyder (2013); 
Mophou (2011); Zhou (2014); Xie, Jin and Luo (2014); Soliman and Hyder (2020)]. Many 
engineers and mathematicians have concentrated their efforts on the fulfillment of the 
Navier-Stokes equations and wave equations see Ghany et al. [Ghany, Hyder and Zakarya 
(2017); Hyder and Zakarya (2016); Vu-Huu, Le-Thanh, Nguyen-Xuan et al. (2018, 2019, 
2019, 2020); Hyder and Barakat (2020)]. Let us introduce a brief review of some results of 
optimal control for Navier-Stokes equations. The optimal control of classical Navier-
Stokes equations has been studied by many authors see Galdi et al. [Galdi (2011); 
Chowdhury and Ramaswamy (2013); Kien, Lee and Son (2016)].  
The optimal control of phenomena governed by fractional models is more precise than the 
optimal control for models, which has an integer-order derivative. Thus, many researchers 
are attracted to them see Biswas et al. [Biswas and Sen (2014); El-Nabulsi and Torres (2007); 
Frederico and Torres (2008); Hyder and El-Badawy (2019); Mophou (2011)].  
The main novelty of this paper is the consideration of time-fractional Navier-Stokes equations 
in the subject of optimal control where the time-fractional derivative is proposed as Riemann-
Liouville sort. The fractional optimal control of the Navier-Stokes models has already been 
examined in Zhou et al. [Zhou and Peng (2016)], this work deals with the optimal control of 
Navier-Stokes equations with Caputo time-fractional derivative. In that work, the existence 
and uniqueness of the weak solution are proved via the Galerkin approximations method, and 
hence, the optimality condition is obtained and leads to approximately optimal control. While 
in our paper, the existence and uniqueness of the weak solution are proved by a general 
analytical method and from this result the optimality condition is obtained. Thereby, we can 
find more and more accurate optimal control.  
This methodology used in this paper based on Lax-Milgram lemma, fixed-point theorem, and 
fractional calculus. The merit of this methodology, atop other alternative methods, appears in 
the fact that it is an analytical method to obtain the optimality conditions, and hence, we can 
more accurately evaluate optimal control, whereas most of the alternative methods are 
approximated methods, like the Galerkin approximations method and finite element methods . 
Please see Djilali et al. [Djilali and Rougirel (2018); Zhou and Peng (2016)].  
This article is arranged as follows. Section 2 introduces some functional spaces to represent 
the time-fractional Navier-Stokes equations. In Section 3, we formulate the parabolic initial-
boundary value problem and the existence of variational form to the initial-boundary value 
problem is derived. In Section 4, the issue of optimal control with satisfying the existence 
and uniqueness of that control is created. Moreover, identities and inequalities that describe 
the optimal control are obtained. Section 5, is devoted to summary and discussion. Section 6, 
has been specified to open problems for fractional Navier-Stokes equations. 
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2 Fractional calculus and auxiliary results  
The weak solution of the Navier-Stokes equation is based totally on the variational 
formulation and hence, the use of Sobolev spaces is necessary for the mathematical 
treatment of the variational formulation of this model. This part is divided into two subparts. 
In subpart 2.1, we present a brief overview of fractional calculus, and in subpart 2.2, we 
identify the spaces of our problem with its embedding properties.  

2.1 Overview on fractional calculus 
Definition 2.1. Kilbas et al. [Kilbas, Srivastavam and Trujillo (2006); Mophou (2011); 
Zhou (2014)] Let 𝑓𝑓:ℝ+ → ℝ be a continuous function and 𝑡𝑡 ∈ [0,𝑇𝑇] ⊂ ℝ+ . The term 
𝐼𝐼+𝛼𝛼𝑓𝑓(𝑡𝑡) is called the fractional left Riemann-Liouville integral of 𝑓𝑓(𝑡𝑡) of order 𝛼𝛼 > 0 and 
has the form: 

𝐼𝐼+𝛼𝛼𝑓𝑓(𝑡𝑡) =
1

Γ(𝛼𝛼)
� (𝑡𝑡 − 𝜉𝜉)𝛼𝛼−1𝑓𝑓(𝜉𝜉) 𝑑𝑑𝜉𝜉
𝑡𝑡

0
, 𝑡𝑡 > 0. (2) 

Definition 2.2. Kilbas et al. [Kilbas, Srivastavam and Trujillo (2006); Mophou (2011); 
Zhou (2014)] Let 𝑓𝑓:ℝ+ → ℝ be a continuous function and 𝑡𝑡 ∈ [0,𝑇𝑇] ⊂ ℝ+. The fractional 
left and right Riemann-Liouville derivatives of  𝑓𝑓(𝑡𝑡) of order 𝛼𝛼 ∈ (0,1) have the forms: 

𝐷𝐷+𝛼𝛼𝑓𝑓(𝑡𝑡) =
1

Γ(1 − 𝛼𝛼)
𝑑𝑑
𝑑𝑑𝑡𝑡
�

𝑓𝑓(𝜉𝜉)
(𝑡𝑡 − 𝜉𝜉)𝛼𝛼 𝑑𝑑𝜉𝜉

𝑡𝑡

0
,     𝑡𝑡 > 0, (3) 

 

𝐷𝐷−𝛼𝛼𝑓𝑓(𝑡𝑡) =
1

Γ(1 − 𝛼𝛼)
𝑑𝑑
𝑑𝑑𝑡𝑡
�

𝑓𝑓(𝜉𝜉)
(𝜉𝜉 − 𝑡𝑡)𝛼𝛼

𝑑𝑑𝜉𝜉
𝑇𝑇

𝑡𝑡
,     𝑡𝑡 > 0. (4) 

Definition 2.3. Kilbas et al. [Kilbas, Srivastavam and Trujillo (2006); Mophou (2011); 
Zhou (2014)] Let 𝑓𝑓:ℝ+ → ℝ be a continuous function and  𝑡𝑡 ∈ [0,𝑇𝑇] ⊂ ℝ+ . The 
expressions 𝐷𝐷+

𝑐𝑐,𝛼𝛼𝑓𝑓(𝑡𝑡) and  𝐷𝐷−𝑐𝑐,𝛼𝛼𝑓𝑓(𝑡𝑡)  are called the fractional left and right Caputo 
derivatives of 𝑓𝑓(𝑡𝑡) of order 𝛼𝛼 ∈ (0,1) respectively, which have the forms: 

𝐷𝐷+
𝑐𝑐,𝛼𝛼𝑓𝑓(𝑡𝑡) =

1
Γ(1 − 𝛼𝛼)

�
𝑓𝑓′(𝜉𝜉)

(𝑡𝑡 − 𝜉𝜉)𝛼𝛼 𝑑𝑑𝜉𝜉
𝑡𝑡

0
,     𝑡𝑡 > 0, (5) 

𝐷𝐷−𝑐𝑐,𝛼𝛼𝑓𝑓(𝑡𝑡) =
1

Γ(1 − 𝛼𝛼)
�

𝑓𝑓′(𝜉𝜉)
(𝜉𝜉 − 𝑡𝑡)𝛼𝛼

𝑑𝑑𝜉𝜉
𝑇𝑇

𝑡𝑡
,     𝑡𝑡 > 0.   (6) 

For a Hilbert space 𝑉𝑉, the linear map 𝐷𝐷(0,𝑇𝑇) → 𝑉𝑉 and 𝜑𝜑 ↦ −∫ 𝑓𝑓(𝑡𝑡)𝐷𝐷−𝛼𝛼
𝑇𝑇
0 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑡𝑡 forms a 

distribution with order 1 (at most). The collection of distributions with values in 𝑉𝑉  is 
denoted by 𝐷𝐷∗(0,𝑇𝑇;𝑉𝑉). This permits us to formulate the following notation. 
Definition 2.4. Djilali et al. [Djilali and Rougirel (2018)] Let 𝛼𝛼 ∈ (0,1)  and 𝑓𝑓 ∈
𝐿𝐿2(0,𝑇𝑇;𝑉𝑉). Then the weak derivative of order 𝛼𝛼 of 𝑓𝑓 is the vector-valued distribution, 
denoted by 𝐷𝐷+𝛼𝛼𝑓𝑓, and defined for all 𝜑𝜑 ∈ 𝐷𝐷(0,𝑇𝑇) by 

〈𝐷𝐷+𝛼𝛼𝑓𝑓,𝜑𝜑〉𝐷𝐷∗(0,𝑇𝑇;𝑉𝑉),𝐷𝐷(0,𝑇𝑇) = −� 𝑓𝑓(𝑡𝑡)𝐷𝐷−𝛼𝛼
𝑇𝑇

0
𝜑𝜑(𝑡𝑡)𝑑𝑑𝑡𝑡. (7) 



 
 
 
862                                                                                CMC, vol.64, no.2, pp.859-870, 2020 

Proposition 2.1. Djilali et al. [Djilali and Rougirel (2018)] Let 𝛼𝛼 ∈ (0,1), 𝑉𝑉 be a real Banach 
space and 𝑓𝑓 ∈ 𝐿𝐿2(0,𝑇𝑇;𝑉𝑉∗). We assume that 𝑓𝑓 admits a derivative of order 𝛼𝛼 in 𝐿𝐿2(0,𝑇𝑇;𝑉𝑉∗). 
Then, each 𝜑𝜑 in 𝑉𝑉, 〈𝑓𝑓,𝜑𝜑〉𝑉𝑉∗,𝑉𝑉 provides a derivative of order 𝛼𝛼 in 𝐿𝐿2(0,𝑇𝑇) and 
〈𝐷𝐷+𝛼𝛼𝑓𝑓,𝜑𝜑〉𝑉𝑉∗,𝑉𝑉 = 𝐷𝐷+𝛼𝛼�〈𝑓𝑓,𝜑𝜑〉𝑉𝑉∗,𝑉𝑉�. (8) 

2.2 Function spaces and auxiliary results 
We denote by 𝒟𝒟(Ω) the space of infinitely differentiable functions with compact support 
in  𝛺𝛺, and 𝒟𝒟∗(Ω) is its dual. We consider the space of divergence free functions defined 
by 𝐶𝐶0,𝑑𝑑𝑑𝑑𝑑𝑑

∞ (𝛺𝛺) = {𝑣𝑣 ∈ 𝒟𝒟(𝛺𝛺);𝛻𝛻. 𝑣𝑣 = 0}. We introduce the spaces 𝑉𝑉 = {𝑣𝑣 ∈ 𝐻𝐻01(𝛺𝛺);𝛻𝛻. 𝑣𝑣 =
0} and  𝐻𝐻 = {𝑣𝑣 ∈ 𝐿𝐿2(Ω);𝛻𝛻. 𝑣𝑣 = 0, 𝑣𝑣.𝑛𝑛|𝜕𝜕𝜕𝜕 = 0}, 𝑛𝑛 is the unit outer normal to the fluid 
boundary 𝜕𝜕𝛺𝛺.  Where, 𝑉𝑉 is the complete closure of 𝐶𝐶0,𝑑𝑑𝑑𝑑𝑑𝑑

∞ (Ω) for the 𝐻𝐻01(Ω)-norm, while  
𝐻𝐻 is the complete closure of 𝐶𝐶0,𝑑𝑑𝑑𝑑𝑑𝑑

∞ (Ω) for the 𝐿𝐿2-norm, the dual of 𝑉𝑉 is denoted by 𝑉𝑉∗. We 
denote by (∙,∙) and |∙| the inner product and the norm in 𝐻𝐻 respectively, while we denote 
by ‖∙‖ the norm in 𝑉𝑉, and the duality pairing between 𝑉𝑉 and 𝑉𝑉∗ is denoted by 〈∙,∙〉. As then, 
𝑉𝑉 and 𝐻𝐻 are Hilbert spaces, 𝑉𝑉 is a dense subset of 𝐻𝐻 and 𝑉𝑉 ⊂ 𝐻𝐻 ⊂ 𝑉𝑉∗. Also, 
𝐿𝐿2(0,𝑇𝑇;𝑉𝑉) ⊂ 𝐿𝐿2(0,𝑇𝑇;𝐻𝐻) ⊂ 𝐿𝐿2(0,𝑇𝑇;𝑉𝑉∗). (9) 
Then, we can construct the function space for our problem, which is given by: 
𝑊𝑊𝛼𝛼(0,𝑇𝑇;𝑉𝑉,𝑉𝑉∗) = {𝑦𝑦: 𝑦𝑦 ∈ 𝐿𝐿2(0,𝑇𝑇;𝑉𝑉),𝐷𝐷+𝛼𝛼𝑦𝑦(𝑥𝑥, 𝑡𝑡) ∈ 𝐿𝐿2(0,𝑇𝑇;𝑉𝑉∗)}, (10) 
where 𝐷𝐷+𝛼𝛼𝑦𝑦(𝑥𝑥, 𝑡𝑡) is understood in the distribution sense.  
Also, 𝑊𝑊𝛼𝛼(0,𝑇𝑇;𝑉𝑉,𝑉𝑉∗)  is Hilbert space with the norm equipped by: 

‖𝑦𝑦‖𝑊𝑊𝛼𝛼 ≔ �‖𝑦𝑦‖𝐿𝐿2(0,𝑇𝑇;𝑉𝑉)
2 + ‖𝐷𝐷+𝛼𝛼𝑦𝑦‖𝐿𝐿2(0,𝑇𝑇;𝑉𝑉∗)

2 �
1
2. (11) 

If 𝛼𝛼 → 1, 𝑊𝑊1(0,𝑇𝑇;𝑉𝑉,𝑉𝑉∗) is the standard Sobolev space used for solving some partial 
differential equations (PDEs) [Tröltzsch (2010)]. 
Lemma 2.1 Mophou [Mophou (2011)] (Fractional integration by parts) Let 𝛼𝛼 ∈ (0,1), 
then for any 𝜙𝜙 ∈ 𝒞𝒞∞(𝑄𝑄�), we have 

�
𝑇𝑇

0
�
Ω

(𝐷𝐷+𝛼𝛼𝑦𝑦(𝑥𝑥, 𝑡𝑡) − Δ𝑦𝑦(𝑥𝑥, 𝑡𝑡))𝜙𝜙(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥𝑑𝑑t

= �
Ω
𝜙𝜙(𝑥𝑥,𝑇𝑇)𝐼𝐼+1−𝛼𝛼𝑦𝑦(𝑥𝑥,𝑇𝑇)𝑑𝑑𝑥𝑥 − �

Ω
𝜙𝜙(𝑥𝑥, 0)𝐼𝐼+1−𝛼𝛼𝑦𝑦(𝑥𝑥, 0)𝑑𝑑𝑥𝑥

− �
𝑇𝑇

0
�
Γ

∂𝑦𝑦
∂𝜈𝜈

𝜙𝜙𝑑𝑑𝜙𝜙𝑑𝑑𝑡𝑡 + �
𝑇𝑇

0
�
Γ
𝑦𝑦
∂𝜙𝜙
∂𝜈𝜈

𝑑𝑑𝜙𝜙𝑑𝑑𝑡𝑡

+ �
𝑇𝑇

0
�
Ω
𝑦𝑦(𝑥𝑥, 𝑡𝑡)(−𝐷𝐷−𝑐𝑐,𝛼𝛼𝜙𝜙(𝑥𝑥, 𝑡𝑡) − Δ𝜙𝜙(𝑥𝑥, 𝑡𝑡))𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡. 

(12) 
From Lemma 2.1, we conclude the following result.  
Lemma 2.2 Let 𝛼𝛼 ∈ (0,1). Then for any 𝜙𝜙 ∈ 𝐶𝐶0,𝑑𝑑𝑑𝑑𝑑𝑑

∞ (𝑄𝑄�), such that 𝜙𝜙(𝑥𝑥,𝑇𝑇) = 0 in 𝛺𝛺 and 
𝜙𝜙(x,t)=0 on 𝛴𝛴, we have 
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�
𝑇𝑇

0
�
𝜕𝜕
�𝐷𝐷+𝛼𝛼𝑦𝑦(𝑥𝑥, 𝑡𝑡) − 𝜇𝜇𝑦𝑦(𝑥𝑥, 𝑡𝑡)�𝜙𝜙(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡

= −�
𝜕𝜕
𝜙𝜙(𝑥𝑥, 0)𝐼𝐼+1−𝛼𝛼𝑦𝑦(𝑥𝑥, 0)𝑑𝑑𝑥𝑥 

+ �
𝑇𝑇

0
�
𝜕𝜕
𝑦𝑦(𝑥𝑥, 𝑡𝑡)�−𝐷𝐷−𝑐𝑐,𝛼𝛼𝜙𝜙(𝑥𝑥, 𝑡𝑡) − 𝜇𝜇𝜙𝜙(𝑥𝑥, 𝑡𝑡)�𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡. 

(13) 
 
3 Variational formulation of the problem 
Multiplying the first equation in (1) by a test function 𝜑𝜑(𝑥𝑥) ∈ 𝑉𝑉, integrating over 𝛺𝛺 and 
then applying integration by parts, gives the next formulation: 
Definition 3.1 Galdi et al. [Galdi (2011); Robinson, Rodrigo and Sadowski (2016)] Let 𝑉𝑉 
and 𝐻𝐻 be the spaces defined in subpart 2.2. We consider a forcing term 𝑓𝑓 ∈ 𝐿𝐿2 (0,𝑇𝑇;𝑉𝑉∗). 
We say that (𝑥𝑥, 𝑡𝑡) ↦ 𝑦𝑦(𝑥𝑥, 𝑡𝑡) is a weak solution to the Navier-Stokes equation, if  𝑦𝑦 ∈
𝐿𝐿2(0,𝑇𝑇;𝑉𝑉) ∩ 𝐿𝐿∞(0,𝑇𝑇;𝐻𝐻) and 

�
𝜕𝜕
𝐷𝐷+𝛼𝛼𝑦𝑦.𝜑𝜑 𝑑𝑑𝑥𝑥 + �

𝜕𝜕
(𝑦𝑦.𝛻𝛻)𝑦𝑦.𝜑𝜑 𝑑𝑑𝑥𝑥 + 𝜇𝜇�

𝜕𝜕
𝛻𝛻𝑦𝑦:𝛻𝛻𝜑𝜑 𝑑𝑑𝑥𝑥 = �

𝜕𝜕
𝑓𝑓.𝜑𝜑 𝑑𝑑𝑥𝑥    ∀𝜑𝜑 ∈ 𝑉𝑉. (14) 

From the Eq. (14), we notice that the pressure vanishes, since 

(𝛻𝛻𝛻𝛻,𝜑𝜑) = �
𝜕𝜕
𝛻𝛻𝜑𝜑. 𝑛𝑛𝑑𝑑𝑛𝑛 − (𝛻𝛻,𝛻𝛻.𝜑𝜑) = 0, (15) 

because 𝜑𝜑.𝑛𝑛 = 0 on ∂Ω and ∇.φ = 0. 
Now, define a bilinear form 𝑎𝑎 ∶ 𝑉𝑉 × 𝑉𝑉 → ℝ, for each 𝑡𝑡 ∈ (0,𝑇𝑇) by: 

𝑎𝑎(𝑦𝑦,𝜑𝜑) = (𝐴𝐴𝑦𝑦,𝜑𝜑) = �
Ω
∇𝑦𝑦:∇𝜑𝜑𝑑𝑑𝑥𝑥,      ∀𝜑𝜑 ∈ 𝑉𝑉, (16) 

where the linear operator 𝐴𝐴 ∈ ℒ(𝑉𝑉,𝑉𝑉∗) is defined by: 
𝐴𝐴𝑦𝑦 = −𝜇𝜇Δ𝑦𝑦. (17) 
Lemma 3.1 Galdi et al. [Galdi (2011); Chowdhury and Ramaswamy (2013)] The bilinear 
form defined in Eq. (16) is continuous, symmetric, and coercive over 𝑉𝑉 × 𝑉𝑉.  
On the other hand, take the trilinear form 𝑏𝑏:𝑉𝑉 × 𝑉𝑉 × 𝑉𝑉 → ℝ,  

𝑏𝑏(𝑦𝑦,𝑦𝑦,𝜑𝜑) = �
Ω

(𝑦𝑦.∇)𝑦𝑦.𝜑𝜑𝑑𝑑𝑥𝑥. (18) 

Next, define the linear and continuous functional 𝐹𝐹:𝑉𝑉 → ℝ , 𝐹𝐹(𝜑𝜑) = (𝑓𝑓,𝜑𝜑),   ∀𝜑𝜑 ∈ 𝑉𝑉, 
where 

∥ 𝐹𝐹 ∥𝑉𝑉∗= 𝑛𝑛𝑠𝑠𝛻𝛻𝜑𝜑∈𝑉𝑉
|(𝑓𝑓,𝜑𝜑)|
∥ 𝜑𝜑 ∥

. (19) 

And hence, the weak formulation (14) is tantamount to the abstract form 
(𝐷𝐷+𝛼𝛼𝑦𝑦,𝜑𝜑) + 𝑎𝑎(𝑦𝑦,𝜑𝜑) + 𝑏𝑏(𝑦𝑦,𝑦𝑦,𝜑𝜑) = 𝐹𝐹(𝜑𝜑),        ∀𝜑𝜑 ∈ 𝑉𝑉. (20) 
Lemma 3.2 Galdi et al. [Galdi (2011); Chowdhury and Ramaswamy (2013)] For 𝑛𝑛 ≤ 4, 
and 𝐶𝐶1 > 0, the trilinear form 𝑏𝑏(𝑦𝑦, 𝑧𝑧,𝑤𝑤) is continuous on 𝑉𝑉 = 𝐻𝐻1(𝛺𝛺) and 
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|𝑏𝑏(𝑦𝑦, 𝑧𝑧,𝑤𝑤)| ≤ 𝐶𝐶1 ∥ 𝑦𝑦 ∥𝑉𝑉∥ 𝑧𝑧 ∥𝑉𝑉∥ ‖𝑤𝑤‖𝑉𝑉. (21) 
Lemma 3.3 Galdi et al. [Galdi (2011); Chowdhury and Ramaswamy (2013)] Consider 
𝑦𝑦, 𝑧𝑧,𝑤𝑤 ∈ 𝑉𝑉. Then we have: 
𝑏𝑏(𝑦𝑦, 𝑧𝑧,𝑤𝑤) = −𝑏𝑏(𝑦𝑦,𝑤𝑤, 𝑧𝑧), (22) 
𝑏𝑏(𝑦𝑦, 𝑧𝑧, 𝑧𝑧) = 0.       (23) 
Theorem 3.1 The weak formulation (20) admits only one solution in 𝑊𝑊𝛼𝛼(0,𝑇𝑇;𝑉𝑉,𝑉𝑉∗). 
Proof. For each 𝑦𝑦 ∈ 𝑉𝑉, we rewrite Eq. (20) in the form: 
(𝐷𝐷+𝛼𝛼𝜑𝜑,𝜓𝜓) + 𝑎𝑎(𝜑𝜑,𝜓𝜓) + 𝑏𝑏(𝑦𝑦;𝜑𝜑,𝜓𝜓) = 𝐹𝐹(𝜓𝜓), ∀𝜑𝜑,𝜓𝜓 ∈ 𝑉𝑉, (24) 
and take the bilinear form 𝜋𝜋𝑦𝑦(𝜑𝜑,𝜓𝜓) as following: 
𝜋𝜋𝑦𝑦(𝜑𝜑,𝜓𝜓) = 𝑎𝑎(𝜑𝜑,𝜓𝜓) + 𝑏𝑏(𝑦𝑦;𝜑𝜑,𝜓𝜓),      ∀𝜑𝜑,𝜓𝜓 ∈ 𝑉𝑉. (25) 
Define the map ℬ:𝑉𝑉 → 𝑉𝑉 by ℬ(𝑦𝑦) = 𝜑𝜑 where 𝑦𝑦 ∈ 𝑉𝑉 and 𝜑𝜑 is the unique solution to (25). 
From lemmas 3.1 and 3.2, we guarantee the continuity of the form 𝜋𝜋𝑦𝑦(𝜑𝜑,𝜓𝜓). On the other 
hand, due to the coerciveness of the form 𝑎𝑎(𝜑𝜑,𝜓𝜓) and the skew-symmetric property of the 
form 𝑏𝑏(𝑦𝑦;𝜑𝜑,𝜓𝜓), we deduce the coerciveness of 𝜋𝜋𝑦𝑦(𝜑𝜑,𝜓𝜓), i.e., 
𝜋𝜋𝑦𝑦(𝜑𝜑,𝜑𝜑) ≥ 𝐶𝐶2 ∥ 𝜑𝜑 ∥𝑉𝑉2 ,      𝐶𝐶2 > 0. (26) 
Then, via Lax-Milgram lemma, the mapping ℬ(𝑦𝑦) = 𝜑𝜑 is well defined. Moreover, the 
fixed point of  ℬ forms a solution of Eq. (20). If we replace 𝜓𝜓 by 𝜑𝜑 in Eq. (24), then we 
deduce: 
∥ 𝜑𝜑 ∥𝑉𝑉 +∥ 𝐷𝐷+𝛼𝛼𝜑𝜑 ∥𝑉𝑉∗≤ 𝐶𝐶3 ∥ 𝐹𝐹 ∥𝑉𝑉∗ , 𝐶𝐶3 > 0. (27) 
Hence, ℬ:𝐾𝐾 → 𝐾𝐾,  where 𝐾𝐾 = {𝜑𝜑 ∈ 𝑉𝑉: ∥ 𝜑𝜑 ∥𝑉𝑉 +∥ 𝐷𝐷+𝛼𝛼𝜑𝜑 ∥𝑉𝑉∗≤ 𝐶𝐶3 ∥ 𝐹𝐹 ∥𝑉𝑉∗}  is a bounded, 
closed, and convex subset of 𝑉𝑉. Furthermore, ℬ is also a contraction mapping. In fact, if 
ℬ(𝑦𝑦1) = 𝜑𝜑1, ℬ(𝑦𝑦2) = 𝜑𝜑2 we have, ∀𝑦𝑦1,𝑦𝑦2 ∈ 𝐾𝐾 
(𝐷𝐷+𝛼𝛼𝜑𝜑1,𝜓𝜓) + 𝑎𝑎(𝜑𝜑1,𝜓𝜓) + 𝑏𝑏(𝑦𝑦1;𝜑𝜑1,𝜓𝜓) = 𝐹𝐹(𝜓𝜓), ∀𝜑𝜑1,𝜓𝜓 ∈ 𝑉𝑉, (28) 
(𝐷𝐷+𝛼𝛼𝜑𝜑2,𝜓𝜓) + 𝑎𝑎(𝜑𝜑2,𝜓𝜓) + 𝑏𝑏(𝑦𝑦2;𝜑𝜑2,𝜓𝜓) = 𝐹𝐹(𝜓𝜓) , ∀𝜑𝜑2,𝜓𝜓 ∈ 𝑉𝑉. (29) 
Hence, we obtain 
(𝐷𝐷+𝛼𝛼(𝜑𝜑1 − 𝜑𝜑2),𝜓𝜓) + 𝑎𝑎(𝜑𝜑1 − 𝜑𝜑2,𝜓𝜓) + 𝑏𝑏(𝑦𝑦1;𝜑𝜑1,𝜓𝜓) − 𝑏𝑏(𝑦𝑦2;𝜑𝜑2,𝜓𝜓) = 0, (30) 
by replacing 𝜓𝜓 by 𝜑𝜑1 − 𝜑𝜑2, we have  
(𝐷𝐷+𝛼𝛼(𝜑𝜑1 − 𝜑𝜑2),𝜑𝜑1 − 𝜑𝜑2) + 𝑎𝑎(𝜑𝜑1 − 𝜑𝜑2,𝜑𝜑1 − 𝜑𝜑2) + 𝑏𝑏(𝑦𝑦1;𝜑𝜑1,𝜑𝜑1 − 𝜑𝜑2)

− 𝑏𝑏(𝑦𝑦2;𝜑𝜑2,𝜑𝜑1 − 𝜑𝜑2) = 0. (31) 

Take again 
𝜋𝜋𝑦𝑦2(𝜑𝜑1 − 𝜑𝜑2,𝜑𝜑1 − 𝜑𝜑2) = 𝑎𝑎(𝜑𝜑1 − 𝜑𝜑2,𝜑𝜑1 − 𝜑𝜑2) + 𝑏𝑏(𝑦𝑦2;𝜑𝜑1 − 𝜑𝜑2,𝜑𝜑1 − 𝜑𝜑2), (32) 
then, (31) transformed to 
(𝐷𝐷+𝛼𝛼(𝜑𝜑1 − 𝜑𝜑2),𝜑𝜑1 − 𝜑𝜑2) + 𝜋𝜋𝑦𝑦2(𝜑𝜑1 − 𝜑𝜑2,𝜑𝜑1 − 𝜑𝜑2) = 𝑏𝑏(𝑦𝑦2 − 𝑦𝑦1;𝜑𝜑1,𝜑𝜑1 − 𝜑𝜑2), (33) 
and hence, by using (26) and lemma 3.2, we can derive 
𝐶𝐶2 ∥ 𝜑𝜑1 − 𝜑𝜑2 ∥2 +∥ 𝐷𝐷+𝛼𝛼(𝜑𝜑1 − 𝜑𝜑2) ∥≤ 𝐶𝐶1 ∥ 𝑦𝑦2 − 𝑦𝑦1 ∥∥ 𝜑𝜑1 ∥∥ 𝜑𝜑1 − 𝜑𝜑2 ∥, (34) 
and hence 
𝐶𝐶2 ∥ 𝜑𝜑1 − 𝜑𝜑2 ∥2≤ 𝐶𝐶1 ∥ 𝑦𝑦2 − 𝑦𝑦1 ∥∥ 𝜑𝜑1 ∥∥ 𝜑𝜑1 − 𝜑𝜑2 ∥,  (35) 
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since 𝜑𝜑1 ∈ 𝐾𝐾, we have 

∥ 𝜑𝜑1 − 𝜑𝜑2 ∥≤
𝐶𝐶1
𝐶𝐶2

∥ 𝑦𝑦2 − 𝑦𝑦1 ∥ (𝐶𝐶3 ∥ 𝐹𝐹 ∥ −∥ 𝐷𝐷+𝛼𝛼𝜑𝜑 ∥).  (36) 

If we take 𝐶𝐶1
𝐶𝐶2

(𝐶𝐶3 ∥ 𝑓𝑓 ∥ −∥ 𝐷𝐷+𝛼𝛼𝜑𝜑 ∥) < 1, then, the mapping ℬ is a contraction mapping, and 
the mapping ℬ(𝑦𝑦) = 𝜑𝜑 has a unique fixed point. Thereby the proof is complete.  

4 Formulation of the control problem 
This part is the main topic of this paper. We derive the adjoint state for our problem. Also, 
the necessary first-order optimality conditions are deduced. This problem drives us to build 
the minimization of the quadratic cost functional: 
𝐽𝐽(𝑣𝑣) =∥ 𝑦𝑦(𝑣𝑣) − 𝑧𝑧𝑑𝑑 ∥𝐿𝐿2(𝑄𝑄)

2 + (𝑁𝑁𝑣𝑣, 𝑣𝑣)𝐿𝐿2(𝑄𝑄),    ∀𝑣𝑣 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑 ,  (37) 
subject to; 

⎩
⎨

⎧
𝐷𝐷+𝛼𝛼𝑦𝑦 − 𝜇𝜇Δ𝑦𝑦 + (𝑦𝑦.∇)𝑦𝑦 + ∇𝛻𝛻 = 𝑓𝑓 + 𝑠𝑠      in  𝑄𝑄,
∇ ⋅ 𝑦𝑦 = 0                                                         in  𝑄𝑄,
𝑦𝑦 = 0                                                               on  Σ,
𝐼𝐼+1−𝛼𝛼𝑦𝑦(⋅ ,0) = 0                                             in  Ω.

 (38) 

Consider 𝒰𝒰 = 𝐿𝐿2(𝑄𝑄)  as the control space. For the control 𝑠𝑠 ∈ 𝒰𝒰,  the solution 𝑦𝑦(𝑠𝑠) ∈
𝐿𝐿2(0,𝑇𝑇;𝑉𝑉) of the system is given by Eq. (38). The observation identity is given by 𝑧𝑧(𝑠𝑠) =
𝑦𝑦(𝑠𝑠). For a given 𝑧𝑧𝑑𝑑 ∈ 𝐿𝐿2(𝑄𝑄), the quadratic cost functional is got by Eq. (37), where 𝑁𝑁 ∈
ℒ(𝐿𝐿2(𝑄𝑄), 𝐿𝐿2(𝑄𝑄)) is a definite and positive Hermitian operator such that: 
(𝑁𝑁𝑠𝑠,𝑠𝑠) ≥ 𝛾𝛾 ∥ 𝑠𝑠 ∥𝐿𝐿2(𝑄𝑄)

2 ,      𝛾𝛾 > 0. (39) 

Let 𝒰𝒰𝑎𝑎𝑑𝑑 is a convex closed subset of 𝐿𝐿2(𝑄𝑄), then the problem of the control is to find: 

�
𝑠𝑠 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑 ,
such  that  𝐽𝐽(𝑠𝑠) ≤ 𝐽𝐽(𝑣𝑣),      ∀𝑣𝑣 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑. (40) 

We may then define the operator 𝐵𝐵(𝑦𝑦,𝑦𝑦):𝑉𝑉 × 𝑉𝑉 → 𝑉𝑉∗,  (𝐵𝐵(𝑦𝑦,𝑦𝑦),𝜑𝜑) = 𝑏𝑏(𝑦𝑦,𝑦𝑦,𝜑𝜑),
∀𝑦𝑦,𝜑𝜑 ∈ 𝑉𝑉,  and hence 𝐵𝐵:𝑉𝑉 ⟶ 𝑉𝑉∗,𝐵𝐵(𝑦𝑦) = 𝐵𝐵(𝑦𝑦,𝑦𝑦).  The operator 𝐵𝐵(𝑦𝑦)  is strongly 
continuous for more specifics [Robinson, Rodrigo and Sadowski (2016)]. 
For each 𝑦𝑦 ∈ 𝑉𝑉, define the operator 𝐵𝐵′(𝑦𝑦):𝑉𝑉 ⟶ 𝑉𝑉∗  by: 
(𝐵𝐵′(𝑦𝑦)𝑧𝑧,𝑤𝑤) = 𝑏𝑏(𝑦𝑦, 𝑧𝑧,𝑤𝑤) + 𝑏𝑏(𝑧𝑧,𝑦𝑦,𝑤𝑤),        ∀𝑧𝑧,𝑤𝑤 ∈ 𝑉𝑉, (41) 
and its adjoint operator [𝐵𝐵′(𝑦𝑦)]∗:𝑉𝑉 → 𝑉𝑉∗ by: 
([𝐵𝐵′(𝑦𝑦)]∗𝑧𝑧,𝑤𝑤) = 𝑏𝑏(𝑦𝑦,𝑤𝑤, 𝑧𝑧) + 𝑏𝑏(𝑤𝑤,𝑦𝑦,𝑤𝑤),        ∀𝑧𝑧,𝑤𝑤 ∈ 𝑉𝑉.  (42) 
On the other hand, the weak formulation of (38) leads to the evolution problem of the 
operator form 

�
𝐷𝐷+𝛼𝛼𝑦𝑦 + 𝐴𝐴𝑦𝑦 + 𝐵𝐵(𝑦𝑦) = 𝑓𝑓 + 𝑠𝑠,
𝐼𝐼+1−𝛼𝛼𝑦𝑦(⋅ ,0) = 0.   (43) 

Lemma 4.1 Galdi et al. [Galdi (2011); Robinson, Rodrigo and Sadowski (2016)] The 
mapping 𝑠𝑠 ↦ 𝑦𝑦(𝑠𝑠) from 𝐿𝐿2(0,𝑇𝑇;𝐻𝐻) into 𝐿𝐿2(0,𝑇𝑇;𝑉𝑉) has a Gâteaux derivatives 𝜕𝜕𝑦𝑦(𝑢𝑢)

𝜕𝜕𝑢𝑢
.𝑤𝑤 

in any direction 𝑤𝑤 ∈ 𝐿𝐿2(0,𝑇𝑇;𝐻𝐻). Moreover 𝜕𝜕𝑦𝑦(𝑢𝑢)
𝜕𝜕𝑢𝑢

.𝑤𝑤 = 𝜓𝜓(𝑤𝑤) is a solution of the linearized 
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problem: 

�
𝐷𝐷+𝛼𝛼𝜓𝜓 + 𝐴𝐴𝜓𝜓 + 𝐵𝐵′(𝑦𝑦(𝑠𝑠))𝜓𝜓 = 𝑤𝑤,
𝐼𝐼+1−𝛼𝛼𝜓𝜓(⋅ ,0) = 0.   (44) 

Lemma 4.2 Let 𝑤𝑤1 ∈ 𝐿𝐿2(0,𝑇𝑇;𝐻𝐻) and let 𝜓𝜓(𝑤𝑤1) be the solution to the system (44), then 
for every 𝑤𝑤2 ∈ 𝐿𝐿2(0,𝑇𝑇;𝐻𝐻), we have 

�
𝑇𝑇

0
�
𝜕𝜕
𝑤𝑤2𝜓𝜓(𝑤𝑤1)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 = �

𝑇𝑇

0
�
𝜕𝜕
𝑤𝑤1𝜙𝜙(𝑤𝑤2)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡, (45) 

where 𝜙𝜙(𝑤𝑤2) is a solution of the adjoint linearized problem 

�−𝐷𝐷−
𝑐𝑐,𝛼𝛼𝜙𝜙 + 𝐴𝐴𝜙𝜙 + [𝐵𝐵′(𝑦𝑦(𝑠𝑠))]∗𝜙𝜙 = 𝑤𝑤2,

𝜙𝜙(⋅,𝑇𝑇) = 0.   (46) 

Proof. For every 𝑤𝑤2 ∈ 𝐿𝐿2(0,𝑇𝑇;𝐻𝐻),  we have 

�
𝑇𝑇

0
�
𝜕𝜕
𝑤𝑤1𝜙𝜙(𝑤𝑤2)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 = �

𝑇𝑇

0
�
𝜕𝜕
�𝐷𝐷+𝛼𝛼𝜓𝜓 + 𝐴𝐴𝜓𝜓 + 𝐵𝐵′�𝑦𝑦(𝑠𝑠)�𝜓𝜓�𝜙𝜙𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡. (47) 

By using lemma 2.3, with the property of the self-adjoint of the operator 𝐴𝐴 and the adjoint 
of the operator 𝐵𝐵 defined above, we have 

�
𝑇𝑇

0
�
𝜕𝜕
𝑤𝑤1𝜙𝜙(𝑤𝑤2)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡

= �
𝑇𝑇

0
�
𝜕𝜕

[−𝐷𝐷−𝑐𝑐,𝛼𝛼𝜙𝜙 + 𝐴𝐴(𝑡𝑡)𝜙𝜙 + [𝐵𝐵′(𝑦𝑦(𝑠𝑠)]∗𝜙𝜙)]𝜓𝜓𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡

− �
𝜕𝜕
𝜙𝜙(𝑥𝑥, 0)𝐼𝐼+1−𝛼𝛼𝜓𝜓(𝑥𝑥, 0)𝑑𝑑𝑥𝑥 = �

𝑇𝑇

0
�
𝜕𝜕
𝑤𝑤2𝜓𝜓(𝑤𝑤1)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡. 

(48) 
Theorem 4.1. If the functional cost is given by Eqs. (37) and (39) is satisfied, then the 
optimal control 𝑠𝑠 ∈ 𝒰𝒰ad exists and is unique. Moreover, the equations and inequalities that 
describes the optimal control are given as the following: 

�
−𝐷𝐷−𝑐𝑐,𝛼𝛼𝛻𝛻 + 𝐴𝐴𝛻𝛻 + [𝐵𝐵′(𝑦𝑦(𝑠𝑠)]∗𝛻𝛻 = 𝑦𝑦(𝑠𝑠) − 𝑧𝑧𝑑𝑑         in  𝑄𝑄,
𝛻𝛻(𝑥𝑥,𝑇𝑇;𝑠𝑠) = 0                                                            in  𝑄𝑄, (49) 

with 

�
𝑇𝑇

0
�
Ω

(𝛻𝛻(𝑠𝑠) + 𝑁𝑁𝑠𝑠)(𝑣𝑣 − 𝑠𝑠)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 ≥ 0      ∀𝑣𝑣 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑,𝑠𝑠 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑 , (50) 

where 𝛻𝛻 ∈ 𝐿𝐿2(0,𝑇𝑇;𝑉𝑉) is the adjoint state. 
Proof. The control 𝑠𝑠 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑 is optimal iff. 
𝐽𝐽′(𝑠𝑠). (𝑠𝑠 − 𝑣𝑣) ≥ 0,      ∀𝑣𝑣 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑, (51) 
which is equivalent to the following inequality [Tröltzsch (2010)]:   
�𝑦𝑦(𝑠𝑠) − 𝑧𝑧𝑑𝑑 ,𝑦𝑦(𝑣𝑣) − 𝑦𝑦(𝑠𝑠)� + (𝑁𝑁𝑠𝑠, 𝑣𝑣 − 𝑠𝑠) ≥ 0,      ∀𝑣𝑣 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑 . (52) 
Taking the adjoint state 𝛻𝛻(𝑣𝑣) by: 

�−𝐷𝐷−
𝑐𝑐,𝛼𝛼𝛻𝛻 + 𝐴𝐴𝛻𝛻 + [𝐵𝐵′(𝑦𝑦(𝑠𝑠)]∗𝛻𝛻 = 𝑦𝑦(𝑠𝑠) − 𝑧𝑧𝑑𝑑         in   𝑄𝑄,

𝛻𝛻(𝑥𝑥,𝑇𝑇;𝑠𝑠) = 0                                                            in  𝑄𝑄.  (53) 
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Multiplying the two sides of the first Eq. (53) by 𝑦𝑦(𝑣𝑣) − 𝑦𝑦(𝑠𝑠) and integrating over 𝑄𝑄 then, 
applying lemma 2.3, we deduce 

�
𝑇𝑇

0
�
Ω

(𝑦𝑦(𝑠𝑠) − 𝑧𝑧𝑑𝑑)(𝑦𝑦(𝑣𝑣) − 𝑦𝑦(𝑠𝑠))𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡

= �
𝑇𝑇

0
�
Ω

(−𝐷𝐷−𝑐𝑐,𝛼𝛼𝛻𝛻 + 𝐴𝐴𝛻𝛻 + [𝐵𝐵′(𝑦𝑦(𝑠𝑠)]∗𝛻𝛻)(𝑦𝑦(𝑣𝑣) − 𝑦𝑦(𝑠𝑠))𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡

= −�
Ω
𝛻𝛻(𝑥𝑥, 0)I+1−𝛼𝛼(𝑦𝑦(𝑣𝑣; 𝑥𝑥, 0) − 𝑦𝑦(𝑠𝑠; 𝑥𝑥, 0))𝑑𝑑𝑥𝑥

+ �
𝑇𝑇

0
�
Ω
𝛻𝛻(𝑠𝑠)(𝐷𝐷+𝛼𝛼 + 𝐴𝐴 + 𝐵𝐵′(𝑦𝑦(𝑠𝑠)))(𝑦𝑦(𝑣𝑣) − 𝑦𝑦(𝑠𝑠))𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡. 

(54) 
Since by using Eq. (44), we obtain 

�
𝑇𝑇

0
�
Ω

(𝑦𝑦(𝑠𝑠) − 𝑧𝑧𝑑𝑑)(𝑦𝑦(𝑣𝑣) − 𝑦𝑦(𝑠𝑠))𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 = �
𝑇𝑇

0
�
Ω
𝛻𝛻(𝑣𝑣 − 𝑠𝑠)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡, (55) 

and hence Eq. (52) is equivalent to 

�
𝑇𝑇

0
�
Ω
𝛻𝛻(𝑣𝑣 − 𝑠𝑠)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 + (𝑁𝑁𝑠𝑠, 𝑣𝑣 − 𝑠𝑠) ≥ 0, (56) 

which is scaled down to 

�
𝑇𝑇

0
�
Ω

(𝛻𝛻(𝑠𝑠) + 𝑁𝑁𝑠𝑠)(𝑣𝑣 − 𝑠𝑠)𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡 ≥ 0,      ∀𝑣𝑣 ∈ 𝒰𝒰𝑎𝑎𝑑𝑑. (57) 

This ends the proof. 

5 Summary and conclusion 
This paper provides a new blueprint to study the problem of optimal control to the fractional 
differential models. We are focused on the time-fractional Navier-Stokes equations, which 
are formulated in the system (1). This planner is totally based on the variational formulation, 
the Lax-Milgram lemma with a fixed point theorem, and the adjoint problem mechanism. By 
using the  Lax-Milgram lemma with the assist of the fixed point theorem, we prove the 
existence and uniqueness of the weak solution to the time-fractional Navier-Stokes equation. 
By exploiting the adjoint problem, the optimal control was distinguished. Besides, the 
identities and inequalities which provide the optimality necessary conditions are obtained. 
Also, If 𝛼𝛼 → 1, our results tend to traditional optimal control theory in Chowdhury et al. 
[Chowdhury and Ramaswamy (2013); Tröltzsch (2010)]. 

6 Open problems 
I) By a similar manner, we can also study the time-fractional optimal control of Navier-
Stokes equations, where the time derivative is considered as the left Atangana-Baleanu 
fractional derivative in Riemann-Liouville sense as the following: 
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⎩
⎨

⎧ 𝐷𝐷𝑡𝑡𝛼𝛼0
𝐴𝐴𝐴𝐴𝐴𝐴 𝑦𝑦 − 𝜇𝜇Δ𝑦𝑦 + (𝑦𝑦.∇)𝑦𝑦 + ∇𝛻𝛻 = 𝑓𝑓       in  𝑄𝑄,
∇ ⋅ 𝑦𝑦 = 0                                                        in  𝑄𝑄,
𝑦𝑦 = 0                                                              on  Σ,
𝐼𝐼+1−𝛼𝛼𝑦𝑦(⋅ ,0) = 0                                            in  Ω,

 (58) 

where 𝐷𝐷𝑡𝑡𝛼𝛼0
𝐴𝐴𝐴𝐴𝐴𝐴 𝑦𝑦 is the left Atangana-Baleanu fractional derivative in the sense of Riemann-

Liouville. 
II) The problem can be extended to the time-space fractional derivative as the following: 

⎩
⎨

⎧ 𝐷𝐷𝑡𝑡𝛼𝛼0
𝐴𝐴𝐴𝐴𝐴𝐴 𝑦𝑦 + 𝜇𝜇(−Δ)𝛽𝛽𝑦𝑦 + (𝑦𝑦.∇)𝑦𝑦 + ∇𝛻𝛻 = 𝑓𝑓       in  𝑄𝑄,
∇ ⋅ 𝑦𝑦 = 0                                                                  in  𝑄𝑄,
𝑦𝑦 = 0                                                                        on  Σ,
𝐼𝐼+1−𝛼𝛼𝑦𝑦(⋅ ,0) = 0                                                      in  Ω,

 (59) 

where (−Δ)𝛽𝛽 is the fractional Laplacian for 𝛽𝛽 ∈ (0,1). 
III) The methodology used in this paper based on Lax-Milgram lemma, fixed-point 
theorem, and fractional calculus. This methodology is analytical. That is, it investigates the 
weak solution for the problem analytically. Most of the alternative techniques are 
approximate techniques depend on very long and hard steps, such as the Galerkin 
approximations. The question here can the analytical results for our problem compared 
with approximated results. 
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