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Abstract: In reliability analysis, the stress-strength model is often used to describe the life of 
a component which has a random strength (X) and is subjected to a random stress (Y). In this 
paper, we considered the problem of estimating the reliability 𝑅𝑅=P [Y<X] when the 
distributions of both stress and strength are independent and follow exponentiated Pareto 
distribution. The maximum likelihood estimator of the stress strength reliability is calculated 
under simple random sample, ranked set sampling and median ranked set sampling methods. 
Four different reliability estimators under median ranked set sampling are derived. Two 
estimators are obtained when both strength and stress have an odd or an even set size. The 
two other estimators are obtained when the strength has an odd size and the stress has an 
even set size and vice versa. The performances of the suggested estimators are compared 
with their competitors under simple random sample via a simulation study. The simulation 
study revealed that the stress strength reliability estimates based on ranked set sampling and 
median ranked set sampling are more efficient than their competitors via simple random 
sample. In general, the stress strength reliability estimates based on median ranked set 
sampling are smaller than the corresponding estimates under ranked set sampling and simple 
random sample methods.  
 
Keywords: Stress-Strength model, ranked set sampling, median ranked set sampling, 
maximum likelihood estimation, mean square error.  
 
1 Introduction 
The ranked set sampling (RSS) was first suggested by McIntyre [McIntyre (1952)] to 
estimate the mean of pasture and forage yields as an alternative method to the commonly 
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used simple random sample (SRS) method based on the same number of measurement 
units. The RSS can be described as follows: 

Step 1: Randomly select 2m  units from the population of interest and randomly         
allocated them into m sets, each of size m.  

Step 2: The m units within each set are ranked by visual inspection or by any cheap 
method concerning the variable of interest.  

Step 3: The smallest ranked unit is measured from the first set of m units; the second 
smallest ranked unit is measured from the second set of m units. The process is 
continued until the largest ranked unit is measured from the last set.  

Step 4: The entire process can be repeated several times; say r times, to produce an RSS 
sample of size n=rm. 

Muttlak [Muttlak (1997)] proposed median ranked set sampling (MRSS) as a 
modification of the RSS to estimate the population means. The MRSS technique can be 
summarized as follows: Select m random samples each of size m units from the study 
population. Rank the units within each set concerning a study variable. If the sample size 
m is odd, from each sample select for measurement the ( )( 1) / 2m th+  smallest ranked 
unit, i.e., the median of the sample. If the sample size m is even, select for the 
measurement from the first ( 2)m  samples the ( )2m th  smallest ranked unit and from the 
second ( 2)m  samples the ( )( 2) 1m th+  smallest ranked unit. The cycle can be repeated r 
times if needed to get a sample of size n=rm units from the MRSS data. 
For more details about RSS, Hassan [Hassan (2012)] considered the goodness of fit tests 
for the exponentiated Pareto distribution using an extreme RSS method. Hassan [Hassan 
(2013)] obtained the maximum likelihood and Bayesian estimators based on RSS. Haq et 
al. [Haq, Brown, Moltchanova et al. (2014)] introduced ordered double RSS. Haq et al. 
[Haq, Brown, Moltchanova et al. (2015)] introduced the varied L RSS scheme as a 
modification of the RSS. Al-Omari [Al-Omari (2015)] considered the estimation of the 
distribution function based on L ranked set sampling. Al-Omari [Al-Omari (2016)] 
proposed a new measure of sample entropy of continuous random variables in RSS. 
Zamanzade et al. [Zamanzade and Al-Omari (2016)] proposed a new generalization of 
the RSS for estimating the population means and variance. Al-Omari et al. [Al-Omari and 
Zamanzade (2017)] proposed the goodness of-fit-tests for the Laplace distribution based 
on RSS. Syam et al. [Syam, Al-Omari and Ibrahim (2017)] investigated the mean 
estimation using stratified double MRSS. Bouza et al. [Bouza, Al-Omari, Santiago et al. 
(2017)] considered the ratio type estimation using the knowledge of the auxiliary variable 
for ranking and estimating. Al-Omari et al. [Al-Omari and Al-Nasser (2018)] introduced 
new estimators of the population ratio using multistage MRSS. Al-Nasser et al. [Al-
Nasser and Al-Omari (2018)] suggested a new sampling method called MiniMax RSS for 
estimating the population parameters. Al-Omari et al. [Al-Omari and Haq (2019a)] 
proposed some entropy estimators of a continuous random variable using RSS. 
Zamanzade [Zamanzade (2019)] developed a non-parametric cumulative distribution 
function estimator based on pair RSS. Al-Omari et al. [Al-Omari and Haq (2019b)] 
suggested a new sampling method for estimating the population mean. Zamanzade et al. 
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[Zamanzade and Wang (2020)] investigated nonparametric estimation using partially 
ordered sets. Also, see Haq et al. [Haq and Al-Omari (2015); Al-Nasser and Al-Omari 
(2015); Santiago, Bouza, Sautto et al. (2016)]. 
Making statistical inferences concerning the reliability 𝑅𝑅=P [Y<X] have received 
considerable attention in the context of the reliability. In this sense, X represents the 
strength of a system that is subjected to stress Y. It is clear that the system fails when the 
stress exceeds strength. Therefore, the stress-strength (SS) model is a measure of system 
reliability. In general, statistical inference about the SS model is considered based on 
SRS data. However, in recent years, statistical inferences about the SS model based on 
the RSS method have been considered by several researches. Sengupta et al. [Sengupta 
and Mukhati (2008)] discussed estimation of the SS reliability for exponential 
populations. Muttlak et al. [Muttlak, Abu-Dayyeh, Saleh et al. (2010)] proposed three 
estimators of the SS reliability when X and Y are independent one-parameter exponential 
populations. Hassan et al. [Hassan, Assar and Yahya (2014, 2015)] discussed the 
estimation of the SS reliability when Y and X are two independent Burr type XII 
distribution under several modifications of RSS. Estimation of the SS model for Weibull 
distribution has been discussed by Akgül et al. [Akgül and Şenoğlu (2017)]. Akgül et al. 
[Akgül, Acıtaş and Şenoğluc (2018)] discussed the estimation of the SS reliability when 
X and Y independent Lindley populations. 
The Pareto distribution is well-known in the literature due to its capability in modeling 
the heavy-tailed distributions. Applications of the Pareto distribution appear in several 
areas including economics, finance, stock price fluctuations, environmental studies, 
insurance risk, etc. Recently, it has also been recognized as a useful model for the 
analysis of lifetime data. Gupta et al. [Gupta, Gupta and Gupta (1998)] proposed a simple 
generalization of the well-known standard Pareto distribution of the second kind, named 
as the exponentiated Pareto (EP) distribution. A two-parameter EP distribution can have 
decreasing and upside-down bathtub shaped failure rates. The probability density 
function (pdf) of the EP distribution is given by 

( ) ( ) 1( 1)( ; , ) 1 1 (1 ) ; , , 0,f x x x x
θλ λλ θ λθ λ θ
−− + −= + − + >            (1) 

where θ andλ  are two shape parameters. The cumulative distribution function of the EP 
distribution is defined as 

( )( ; , ) 1 (1 ) .F x x
θλλ θ −= − +                 (2) 

The EP distribution reduces to the standard Pareto distribution of the second kind when  
θ=1. The studies about the EP distribution have been provided by some authors. 
Parameter estimation of the EP is considered by Shawky et al. [Shawky and Abu-Zinadah 
(2009)]. Estimation of the reliability in a multi-component SS model following EP 
distribution, for identical and non-identical components, were discussed by Hassan et al. 
[Hassan and Basheikh (2012a, 2012b)]. Chena et al. [Chena and Cheng (2017)] 
considered the estimation of the SS model for EP populations. Estimation in a partially 
accelerated life test for the EP distribution based on progressive censoring has been 
provided by Hassan et al. [Hassan, Abd-Alla and El-Elaa (2017)]. Parameter estimators 
of the EP distribution in presence of outliers have been considered by Nooghabi 
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[Nooghabi (2017)]. The ML, least squares, weighted least squares and Bayesian 
estimators of an extended EP distribution were discussed by Hassan et al. [Hassan, Nassr 
and Hemeda (2020)]. 
In this study, we obtained the estimators of the SS reliability based on SRS, RSS and 
MRSS schemes. It is assumed that the strength 𝑋𝑋~EP ( , )λ θ and the stress 𝑌𝑌~EP ( , )λ β are 
both independent. The main reason for using the EP distribution is that its flexibility for 
modeling several lifetime data and its extensive consideration in engineering, life testing 
and reliability studies. A simulation study is conducted to compare the behavior of the 
suggested different estimates. 
The rest of this article is organized as follows. Section 2 provides the explicit expression 
of the SS reliability as well as the ML estimator of the reliability R which is obtained 
under SRS. Section 3 gives the ML estimator of the SS reliability based on RSS. Section 
4 comes up with four different reliability estimators based on the MRSS method. The 
numerical study is provided in Section 5. Eventually, the paper is concluded in Section 6.  

2 Reliability estimator based on SRS 
This section provides an explicit expression of the SS reliability. The ML estimator of the 
reliability is derived via SRS.  

2.1 Stress strength reliability  
Let X is the strength of a system and Y is the stress acting on it. Let X and Y are the two 
independent strength-stress random variables observed from EP ( , )λ θ and EP ( , )λ β  
respectively. The SS reliability parameter is evaluated under the assumption that the 
models have the same shape parameter λ  but with different shape parameters θ and β  
that is; EP ( , )λ θ and EP ( , ).λ β  Therefore, the SS reliability parameter R is given by 

( ) ( )
0 0

1( 1)

0

[ ] ( ; , ) ( ; , )

1 1 (1 ) .

x

x y

x

R P Y X f x f y dxdy

x x dx
θ βλ λ

λ θ λ β

θλθ
θ β

∞

= =
∞

+ −− + −

=

= < =

= + − + =
+

∫ ∫

∫
            (3) 

If θ  and β  are known, then the reliability parameter is simply calculated using Eq. (3). 
It can be observed that the SS reliability does not depend on .λ  However, if θ  and β are 
unknown andλ is known, the estimators of θ  and β depend on ,λ and hence so does the 
estimator of the SS reliability. 

2.2 Reliability estimator based on SRS 
Suppose that X1, X2, . . . , Xn is a random sample from EP ( , )λ θ and Y1, Y2, . . . , Ym is a 
sample from EP ( , ).λ β  The ML estimator of the reliability given that the sample is 
obtained. To compute the ML estimator of the reliability, it is required to obtain the ML 
estimators of θ and .β The joint log-likelihood function for the observed samples is  
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( ) ( )

( )( ) ( )( )
1 1

1 1

ln ln ( ) ln ( 1) ln 1 ln 1

( 1) ln 1 1 ( 1) ln 1 1 .

n m

i j
i j

n m

i j
i j

L n m m n x y

x y
λλ

θ β λ λ

θ β

= =

−−

= =

 
= + + + − + + + + 

  

+ − − + + − − +

∑ ∑

∑ ∑
           (4) 

Differentiating Eq. (4) with respect to unknown parameters, then we obtain the following 
equations 

( )( )
1

ln ln 1 1 ,
n

i
i

L n x λ

θ θ
−

=

∂
= + − +

∂ ∑                              (5) 

( )( )
1

ln ln 1 1 ,
m

j
j

L m y
λ

β β
−

=

∂
= + − +

∂ ∑                              (6) 

and 

( ) ( ) ( )
( )

( )
( )

1 1 1

1

( 1) ln 1ln ( ) ln 1 ln 1
ln 1 1

( 1) ln 1
.

1 1

n m n
i

i j
i j i i

m
j

j
j

xL m n x y
x

y

y

λ

λ

θ
λ λ

β

= = =

=

  − +∂ +
= − + + + + ∂  + −   

− +
+

 + −  

∑ ∑ ∑

∑
                        (7) 

Setting Eqs. (5)-(7) with zeros we obtain the ML estimators of ,θ λ  and .β  From Eqs. (5) 
and (6), we obtain the ML estimator of θ  and β  as a function ofλ  as follows: 

( )( )
1

ˆ( ) ,
ln 1 1

n

i
i

n

x λ
θ λ

−

=

−
=

− +∑
                (8) 

and 

( )( )
1

ˆ( ) .
ln 1 1

m

j
j

m

y
λ

β λ
−

=

−
=

− +∑
                (9) 

If λ  is known, the ML estimators of θ  and β can be obtained from Eqs. (8) and (9). In 
case of all the parameters are unknown, then λ can first be estimated by solving the 
following nonlinear equation: 

( ) ( ) ( ) ( )
( )( )

( ) ( )
( )( )1 1 1 1

( ) .
ˆ ˆ( ) 1 ln 1 ( ) 1 ln 1

ln 1 ln 1
1 1 1 1

n m n mi j

i j
i j i ji j

n mb
x y

x y
x y

λλ

λ
θ λ β λ

= = = =

+
=

− + − + 
+ + + − − 

+ −  + −
∑ ∑ ∑ ∑

                   (10) 

Since λ̂  is a fixed point solution of the nonlinear Eq. (10), hence, it can be obtained by 
using a simple iterative procedure. Therefore, the ML estimator of the SS reliability, 
denoted by ˆ,R  can be obtained as follows  
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ˆˆ
ˆ ˆR θ
θ β

=
+

 (11) 

3 Reliability estimator based on RSS 
To obtain the ML estimator of SS reliability; suppose {Xi(i)c, i=1, 2…, n; c=1, 2, …, rx) be 
an RSS observed from X~EP ( , )λ θ , with sample size nrx, where n is the set size and rx is 
the number of cycles. Let {Yj(j)d, j=1, 2, …, m; d=1, 2, …, ry) be an RSS observed from 
Y~EP ( , )λ β with sample size mry, where m is the set size and ry is the number of cycles. 
Therefore, the likelihood functions L1 of the observed data will be as follows: 

( ) ( )1 ( ) ( )
1 1 1 1

,
yx rr n m

i i i c j j j d
c i d j

L f x f y
= = = =

=∏∏ ∏∏  (12) 

where 

( ) ( )( ) ( ) ( )( ) 1( 1)

( ) ( ) ( ) ( )
! 1 1 1 1 1 1 ,

( -1)!( - )!

n i i

i i i c i i c i i c i i c
nf x x x x

i n i

θ θλ λ λλθ
− −− − + − 

= − − + + − + 
      (13) 

and 

( ) ( ) ( ) ( )
1( 1)

( ) ( ) ( ) ( )
! 1 1 1 1 1 1 ,

( 1)!( )!

m j j

j j j d j j d j j d j j d
mf y y y y

j m j

β βλ λ λλβ
− −− − + −    = − − + + − +       − −  

 

 (14) 
are the pdfs of random variables Xi(i)c and Yj(j)d, respectively, where ( ) 0i i cx >  and 

( ) 0j j dy > . The log-likelihood function of L1 will be as follows: 

( ) ( )
( ) ( )
( )

1 1 ( ) ( )
1 1 1 1

( ) ( )
1 1 1 1
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1 1

ln ln ln( ) ( ) ln 1 1 ( 1) ln
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x x
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y

r rn n

x i i c i i c
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i i c y j j d
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θ λβ

λ β

−

= = = =

− −

= = = =

= =

  = + + − − − − +  
  + − − + + − − −  

− + + − −

∑∑ ∑∑
∑∑ ∑∑

∑∑ ( )( )
1 1

,
yr m

j j d
d j

w λ−

= =
∑∑

            (15) 

where H1 is a constant, ( )( ) ( )1 ,i i c i i cz x= + and ( )( ) ( )1 .j j d j j dw y= +  The ML estimators 
of ,θ β  and λ  can be obtained by maximizing ln L1 directly with respect to ,θ β  and λ . 
The first partial derivatives of the log-likelihood function with respect to ,θ β  and λ are 
given by: 

( )
( )

( )( )1
( )

1 1 1 1
( )

( ) ln 1ln ln 1 ,
1 1

x xr rn ni i cx
i i c

c i c i
i i c

n i zr nL i z
z

λ
λ

θλθ θ

−
−

−−= = = =

− −∂
= − + −

∂ − −
∑∑ ∑∑                                               (16) 

( )
( )

( )( )1
( )

1 1 1 1
( )

( ) ln 1ln ln 1 ,
1 1

y yr rm mj j dy
j j d

d j d j
j j d

m j wr mL j w
w

λ
λ

βλβ β

−
−

−−= = = =

− −∂
= − + −

∂ − −
∑∑ ∑∑                                     (17) 
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and 

( )
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1
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β
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−
+
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                      (18) 

Clearly, it is not easy to obtain a closed-form solution to non-linear Eqs. (16)-(18), so we 
apply an iterative technique to solve these equations numerically. Hence, we obtain the 
ML estimators of ,θ β  and ,λ then by using invariance property the ML estimator of the 
reliability is obtained by using Eq. (3). 

4 Reliability estimator based on MRSS 
The MRSS has been proposed by Muttlak [Muttlak (1997)] as a sampling technique to 
estimate the population mean. The MRSS procedure depends on two cases, the first one 
for odd set size while the second case for even set size. In this section, an estimator of the 
SS reliability is obtained when both stress and strength have odd or even set sizes. 
Additionally, the ML estimator of SS reliability is obtained when strength X has an odd 
set size and stress Y has an even set size and vice versa.  

4.1 Reliability estimator with odd set size 
In this sub-section, the ML estimator of the SS reliability is provided when both X and Y are 
drawn using MRSS with an odd set size. Let Xi(g)c; i=1,…,n, c=1,…,rx; g=[ ]( 1) 2n +  be an 
MRSS observed from X~ EP ( , )λ θ , with sample size nrx, where n is the set size and rx is 
the number of cycles. Let Yj(k)d; j=1, …, m, d=1, …, ry ; k= [ ]( 1) 2m +  be an MRSS observed 
sample from Y~EP ( , )λ β with sample size mry, where m is the set size and ry is the number 
of cycles. Therefore, the likelihood function L2 of the observed data will be as follows: 

( ) ( )2 ( ) ( )
1 1 1 1

,
yx rr n m

g i g c k j k d
c i d j

L f x f y
= = = =

=∏∏ ∏∏  (19) 

where 

( )
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( )( ) ( ) ( )
1 1( 1)
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! 1 1 1 1 1 1 ,

1 !

g g
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nf x x x x
g

θθλ λ λλθ
− −− − + −      = − − + + − +        −         

(20) 

and 
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( )

( )( ) ( ) ( )( )
1 1( 1)
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! 1 1 1 1 1 1 ,
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k k

k j k d j k d j k d j k d
mf y y y y
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β βλ λ λλβ
− −− − + − 

= − − + + − + 
   − 

    (21) 
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are the pdfs of Xi(g)c and Yj(k)d, respectively, where ( ) 0,i g cx >  and ( ) 0.j k dy >  The log-
likelihood function of L2 will be as follows: 

( )
( ) ( )

( )

( )

2 2 ( )
1 1 1 1
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1 1 1 1

( ) (
1 1
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= =
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    (22) 

where H2 is a constant, ( ) ( )1 ,i g c i g cQ x= + and ( ) ( )1 .j k d j k dT y= +  The ML estimators of 
,θ β  and λ  can be obtained by maximizing ln L2 directly with respect to ,θ β  and .λ  

The first partial derivatives of ln L2 with respect to ,θ β  and λ are given by: 
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1 1 1 1

( 1) ln 1ln ln 1 ,
1 1

x xi g c

i g c

i g c

r rn n
x

c i c i

g Qr nL g Q
Q

λ

λ

λ
θθ θ

−

−

−
−

= = = =

− −∂
= − − − ∂  − −  

∑∑ ∑∑                                       (23) 

( ) ( )
y( )2

( )
1 1 1 1

( )

( 1) ln 1ln ln 1 ,
1 1

yr rm mj k dy
j k d

d j d j
j k d

k Tr mL k T
T

λ

λ

λ θβ β

−

−

− −
= = = =

− −∂
= − + −

∂   − −   

∑∑ ∑∑                              (24) 
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        (25) 

Since Eqs. (23)-(25) have no closed-form solution, so an iterative technique is employed 
to solve these equations numerically. Hence, the ML estimators of the unknown 
parameters based on the MRSS in case of an odd set size are obtained. Therefore, the ML 
estimator of the SS reliability is obtained by substituting the ML estimators of population 
parameters in Eq. (3). 

4.2 Reliability estimator with even set size 
Here, the reliability estimator is investigated when both X and Y are drawn based on 
MRSS with even set size. In case of the even set sizes, the qth smallest unit is chosen 
from the first q ordered sets, while the (q+1)th smallest unit is chosen from each of the 
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remaining q sets. Let the set {Xi(q)c, i=1, …, q; c=1, …, rx} ∪  {Xi(q+1)c, i=q+1, …, n=; 
c=1,…,rx} be an MRSS drawn from EP ( , )λ θ  with even set sizes where 2.q n=  By a 
similar way, let the set{Yj(v)d, j=1, …, v; d=1,…,ry}∪ {Yj(v+1)d, j=v+1, …, m; d=1, …, ry} 
be an MRSS drawn from the EP ( , )λ β  with even set sizes where 2.mν =  Therefore, the 
likelihood functions L3 of the observed data will be as follows: 

( ) ( ) ( )3 ( ) 1 ( 1) ( ) 1 ( 1)
1 1 1 1 1 1 1 1

,
y yx x r rr rq n m

q i q c q i q c j d j d
c i c i q d j d j

L f x f x f y f y
ν

ν ν ν ν
ν

+ + + +
= = = = + = = = = +

 =  ∏∏ ∏∏ ∏∏ ∏∏        (26) 

where

( ) ( ) ( )( ) ( ) ( )( ) 1( 1)

( ) ( ) ( ) ( )
! 1 1 1 1 1 1 ,
1 ! !

q q

q i q c i q c i q c i q c
nf x x x x

q q

θ θλ λ λλθ −− − + −  = − − + + − + −   
  (27) 

( ) ( ) ( )( )
( ) ( )( )

1

1 ( 1) ( 1)

1( 1)
( 1) ( 1)

! 1 1 1
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1 1 1 ,

q

q i q c i q c

q

i q c i q c

nf x x
q q

x x
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θ θλ λ

λθ
−

−

+ + +

+ −− + −

+ +

  = − − +  −  

× + − +

                                           (28) 

( ) ( )( ) ( ) ( )( ) 1( 1)
( ) ( ) ( ) ( )

! 1 1 1 1 1 1 ,
( 1)! !j d j d j d j d

mf y y y y
νβ βνλ λ λ

ν ν ν ν ν
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ν ν
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= − − + + − + −  

 

(29) 
and 
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1
( 1)

1 ( 1) ( 1) ( 1)
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  = − − + + ×  −  

− +

               (30) 

be the pdfs of Xi(q)c, Xi(q+1)c, Yj(v)d and Yj(v+1)d, respectively, where ( ) ( 1)0, 0,i q c i q cx x +> >  

( ) 0,j dy ν > and ( 1) 0j dy ν + >  . The log-likelihood function of L3 will be as follows: 

3 3 1 2 ( ) ( 1)
1 1 1 1

1 2 ( ) ( 1)
1 1 1 1

ln ln ln( ) ( ) ( 1) ln ln
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ν ν
ν
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+
= = = = =

+
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+ + + − + + 
 

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
             (31) 

where H3 is a constant, ( ) ( )1 ,i q c i q cM x= +  and ( ) ( )1 ,j d j dN yν ν= +   

( ) ( )1 ( ) ( 1)
1 1

ln 1 1 ( 1) ln 1 1 ,
q n

i q c i q c
i i q

A q M q M
θ θλ λ− −

+
= = +

   = − − + − − −      ∑ ∑                                   (32) 

( ) ( )2 ( ) ( 1)
1 1

( 1) ln 1 ( 1) ln 1 ,
q n

i q c i q c
i i q

A q M q Mλ λθ θ θ− −
+

= = +
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( ) ( )1 ( ) ( 1)
1 1

ln 1 1 ( 1) ln 1 1 ,
m

j d j d
j j

B N N
ν β βλ λ

ν ν
ν
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+
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and 
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The ML estimators of ,θ β  and λ can be obtained by maximizing ln L3 directly with 
respect to ,θ β  and λ . The first partial derivatives of log-likelihood function with respect 
to ,θ β  and λ  are given by: 
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and 
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where 
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and 
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Eqs. (36)-(38) are solved numerically via iterative technique to obtain the ML estimators 
of population parameters. Further, the ML estimators of population parameters will be 
employed in Eq. (3) to get the reliability estimator. 

4.3 Reliability estimator with odd strength and even stress set sizes 
Here, the reliability estimator is obtained when the strength of X has MRSS with an odd 
set size, while the stress of Y has MRSS with an even set size. Let Xi(g)c; i=1, …, n, 
c=1, …, rx; [ ]( 1) 2g n= +  be an MRSS observed from X~ EP ( , )λ θ with sample size nrx, 
where n is the odd set size and rx is the number of cycles. Let the set {Yj(v)d; j=1, …, v; 
d=1, …, ry}∪ {Yj(v+1)d ; j=v+1, …, m; d=1,…, ry} be an MRSS drawn from EP ( , )λ β with 
even set sizes where 2.mν =  Therefore, the likelihood functions L4 of the observed data 
will be as follows: 

( ) ( ) ( )4 ( ) ( ) 1 ( 1)
1 1 1 1 1 1

.
y yx r rr n m

g i g c j d j d
c i d j d j

L f x f y f y
ν

ν ν ν ν
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=∏∏ ∏∏ ∏∏                                   (43) 

Therefore, the likelihood functions L4 of the observed data will be as follows 
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(44) 

where H4 is a constant, ( ) ( )1 ,i g c i g cQ x= +  and ( ) ( )1 .j d j dN yν ν= +  The ML estimators of 
,θ β  and λ  can be obtained by maximizing ln L4 directly with respect to the parameters 
,θ β  and .λ  The first partial derivatives of log-likelihood function with respect to ,θ β  

and λ  are given by: 



 
 
 
846                                                                              CMC, vol.64, no.2, pp.835-857, 2020 

( )
( )

( )( )

( )

( )

4

1 1 1 1

( 1) ln 1ln ln 1 ,
1 1

x xi g c

i g c

i g c

r rn n
x

c i c i

g Qr nL g Q
Q

λ

λ

λ
θθ θ

−

−

−
−

= = = =

− −∂
= − − − ∂  − −   

∑∑ ∑∑                                     (45) 

( ) ( )

( ) ( )

( ) ( 1)4

1 1 1
( ) ( 1)

( ) ( 1)
1 1 1

ln(1 ) ( 1) ln(1 )ln

1 1 1 1

ln 1 ( 1) ln 1 ,

y

y

r m
j d j dy

d j j
j d j d

r m

j d j d
d j j

N NmrL

N N

N N

λ λν
ν ν
β βλ λν

ν ν

ν
λ λ
ν ν

ν

ν ν
β β

ν ν

− −
+

− −− −= = = +
+

− −
+

= = = +

 
 − − −∂

= − + 
∂     − − − −        

 
+ − + + − 

  

∑ ∑ ∑

∑ ∑ ∑

                           (46) 

and 
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As it seems the likelihood Eqs. (45)-(47) have no closed-form solutions. Therefore, the 
numerical technique will be utilized to get the solution. The ML estimators of population 
parameters will be employed in Eq. (3) to get the reliability estimator. 

4.4 Reliability estimator with even strength and odd stress set sizes 
Here, the reliability estimator is obtained when the strength of X is selected using MRSS 
with even set size, while the stress of Y is selected based on MRSS with an odd set size. 
Let the set {Xi(q)c , i=1, …, q; c=1, …, rx}∪ {Xi(q+1)c, i=q+1, …, n; c=1, …, rx} be an 
MRSS drawn from EP ( , )λ θ with even set sizes where 2.q n=  Let Yj(k)d ; j=1, …, m, 
d=1, …, ry ; k=[ ]( 1) 2m +   be MRSS observed from Y~EP ( , )λ β with sample size mry, 
where m is the set size and ry is the number of cycles. Therefore, the likelihood functions 
L5 of observed data, where X and Y independent, is given by: 
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Therefore, the likelihood functions L5 of the observed data will be as follows: 
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where H5 is a constant, ( ) ( )c1i iq c qM x= +  and ( ) ( )1 .j jk d k dT y= +  The ML estimators of 

,θ β  and λ can be obtained by maximizing ln L5 directly with respect to ,θ β  and .λ  The 
first partial derivatives of log-likelihood function with respect to ,θ β  and λ are given by: 
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and 
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(50) 

It is clear that the Eqs. (48)-(50) do not have an analytical solution, so the ML estimators 
of ,θ β  and λ  can also be obtained by numerical methods. Hence, the ML estimators of 
θ  and β are employed in Eq. (3) to get reliability estimator. 

5 Simulation study 
In this section, an extensive simulation study is provided to compare the performance of 
the reliability estimates based on RSS and MRSS with their SRS counterparts. In this 
comparison, the absolute bias, the mean square error and the relative efficiency criteria 
are utilized. In the simulation setup, the set sizes and the number of cycles are selected as 
(mx, my)=(2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5), (6, 6), (7, 7) and 
C=rx=ry=5, respectively. Thus, the sample sizes are obtained as n = mxr and m = myr for 
RSS and MRSS samples. Also, we use (n, m)=(10, 10), (10, 15), (15, 10), (15, 15), (15, 
20), (20, 15), (20, 20), (25, 25), (30, 30), (35, 35) as a sample sizes for SRS samples. The 
values of parameters are selected as ( ,θ β )=(3, 2), (5, 2), (5, 1), (8, 0.8) and λ =1, where 
the true values of system reliability R=0.600, 0.714,0.833 and 0.933. We generate 1000 
random samples from EP ( , )λ θ and EP ( , )λ β distributions. The estimated reliability is 
examined via absolute bias (AB), mean square errors (MSEs), efficiencies and difference 
of efficiencies (D) criteria. The efficiencies of RSS and MRSS with respect to SRS are 
defined as: 
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( ) ( )
( )

, ,RSS
RSS SRS

SRS

MSE R
Efficiency R R

MSE R
= ( ) ( )

( )
, .MRSS

MRSS SRS
SRS

MSE R
Efficiency R R

MSE R
=   

and ( ) ( ).D Efficieny RSS Efficieny MRSS= −   

While the absolute bias is defined as ( ) ( ) , , ,AB R E R R SRS RSS MRSSδ δ δ= − = . 

Tabs. 1 to 4 summarize the ABs and MSEs of the reliability estimate based on SRS, RSS and 
MRSS. They also give the efficiencies of the reliability estimate based on RSS and MRSS 
with respect to SRS for various values of the sample sizes and distribution parameters.  
From Tabs. 1 to 5 and Figs. 1 to 6 we can conclude the following: 
• Tabs. 1 to 4 show that the reliability estimates under RSS and MRSS schemes are more 

efficient than the corresponding under SRS in approximately most of the situations.  
• At true value R=0.6, Fig. 1 shows that the MSE of the reliability estimate based on 

SRS takes the largest values as compared with the corresponding one based on RSS 
and MRSS. While the MSE of the reliability estimate based on MRSS picks the 
smallest values in most cases considered in this study. 

• The MSE of the reliability estimate based on MRSS, at true value R=0.714, gets the 
smallest values while the MSE of the reliability estimate based on SRS has the 
largest values.  
 

Table 1: MSEs and ABs of R estimates based on SRS, RSS and MRSS and their 
efficiencies with respect to SRS for even set size for 5 cycles 

C   (mx, my) 
SRS RSS MRSS Efficiency 

AB MSE AB MSE AB MSE RSS MRSS 
R=0.6, (θ, β)=(3, 2) 

5 (2,2) 0.3630 0.1674 0.3953 0.1562 0.1974 0.0395 1.0717 4.2380 
5 (4,4) 0.3821 0.1635 0.1591 0.0256 0.1545 0.0239 6.3867 6.8410 
5 (6,6) 0.4000 0.1600 0.1867 0.0350 0.1393 0.0194 4.5714 8.2474 
    R=0.714, (θ, β)=(5, 2) 

5 (2,2) 0.2827 0.0829 0.2809 0.0789 0.2590 0.0671 1.0507 1.2355 
5 (4,4) 0.2841 0.0821 0.2825 0.0798 0.2643 0.0699 1.0288 1.1745 
5 (6,6) 0.2830 0.0802 0.2822 0.0796 0.1535 0.0236 1.0075 3.3983 
    R=0.833, (θ, β)=(5, 1) 

5 (2,2) 0.1667 0.0278 0.1620 0.0263 0.1314 0.0173 1.0570 1.6069 
5 (4,4) 0.1653 0.0273 0.1631 0.0266 0.1341 0.0180 1.0263 1.5167 
5 (6,6) 0.1667 0.0278 0.1473 0.0218 0.1535 0.0236 1.2752 1.1780 
    R=0.9, (θ, β)=(8, 0.8) 

5 (2,2) 0.0809 0.0165 0.0500 0.0026 0.0597 0.0036 6.3462 4.5833 
5 (4,4) 0.0958 0.0093 0.0470 0.0024 0.0908 0.0083 3.8750 1.1205 
5 (6,6) 0.0918 0.0086 0.0450 0.0021 0.0909 0.0083 4.0952 1.0361 
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Table 2: MSEs and ABs of R estimates based on SRS, RSS and MRSS and their 
efficiencies with respect to SRS for odd set size for 5 cycles 

C (mx, my) 
SRS RSS MRSS Efficiency 

AB MSE AB MSE AB MSE RSS MRSS 
R=0.6, (θ, β)=(3, 2) 

5 (3,3) 0.354 0.1692 0.3878 0.1504 0.3685 0.1658 1.125 1.021 
5 (5,5) 0.386 0.1628 0.1591 0.0256 0.2910 0.085 6.359 1.915 
5 (7,7) 0.400 0.1600 0.1582 0.0251 0.2100 0.044 6.375 3.636 
  R=0.714, (θ, β)=(5, 2) 

5 (3,3) 0.2847 0.0821 0.2788 0.0777 0.2071 0.0434 1.057 1.892 
5 (5,5) 0.2857 0.0816 0.2823 0.0797 0.1150 0.0130 1.024 6.277 
5 (7,7) 0.2787 0.0779 0.2796 0.0782 0.1140 0.0130 0.996 5.992 
  R=0.833, (θ, β)=(5, 1) 

5 (3,3) 0.1654 0.0274 0.1630 0.0266 0.1248 0.0159 1.030 1.723 
5 (5,5) 0.1653 0.0273 0.1499 0.0226 0.0420 0.0022 1.208 12.409 
5 (7,7) 0.1658 0.0275 0.1456 0.0213 0.0320 0.0014 1.291 19.643 
  R=0.9, (θ, β)=(8, 0.8) 

5 (3,3) 0.0809 0.0164 0.0480 0.0023 0.0082 0.0011 7.130 14.909 
5 (5,5) 0.0933 0.0088 0.0460 0.0022 0.0055 0.0008 4.000 11.000 
5 (7,7) 0.0915 0.0084 0.0450 0.0020 0.0033 0.0005 4.200 16.800 

Table 3: MSEs and ABs of R estimates based on SRS, RSS and MRSS and their efficiencies 
with respect to SRS when X has odd set size and Y has even set sizes for 5 cycles 

C (mx, my) 
SRS RSS MRSS Efficiency 

AB MSE AB MSE AB MSE RSS MRSS 
R=0.6, (θ, β)=(3, 2) 

5 (3,2) 0.3620 0.1676 0.3950 0.1560 0.1306 0.0180 1.0744 9.3111 
5 (3,4) 0.3621 0.1675 0.3990 0.1602 0.2918 0.0852 1.0456 1.9660 
    R=0.714, (θ, β)=(5, 2) 
5 (3,2) 0.2857 0.0816 0.2769 0.0766 0.2232 0.0513 1.0653 1.5906 
5 (3,4) 0.2847 0.0821 0.2822 0.0796 0.2813 0.0792 1.0314 1.0366 
    R=0.833, (θ, β)=(5, 1) 
5 (3,2) 0.1657 0.0275 0.1456 0.0218 0.1413 0.0253 1.2615 1.0870 
5 (3,4) 0.1657 0.0275 0.1670 0.0280 0.1661 0.0276 0.9821 0.9964 
    R=0.9, (θ, β)=(8, 0.8) 
5 (3,2) 0.0291 0.0120 0.0470 0.0022 0.0895 0.0080 5.4550 1.5000 
5 (3,4) 0.0960 0.0093 0.0510 0.0026 0.0907 0.0082 3.5770 1.1340 

 



 
 
 
850                                                                              CMC, vol.64, no.2, pp.835-857, 2020 

Table 4: MSEs and ABs of R estimates based on SRS, RSS and MRSS and their efficiencies 
with respect to SRS when X has even set size and Y has odd set size for 5 cycles 

C  (mx, my) 
SRS RSS MRSS Efficiency 

AB MSE AB MSE AB MSE RSS MRSS 
R=0.6, (θ, β)=(3, 2) 

5 (2,3) 0.358 0.1684 0.396 0.1608 0.2068 0.0431 1.047 3.907 
5 (4,3) 0.375 0.165 0.1527 0.0237 0.2717 0.0847 6.962 1.948 

    R=0.714, (θ, β)=(5, 2) 
5 (2,3) 0.2837 0.0825 0.2857 0.0816 0.26 0.0676 1.011 1.22 
5 (4,3) 0.2857 0.0816 0.2825 0.0798 0.2735 0.0748 1.023 1.091 

    R=0.833, (θ, β)=(5, 1) 
5 (2,3) 0.1658 0.0275 0.0346 0.0012 0.1471 0.0217 22.917 1.267 
5 (4,3) 0.1658 0.0275 0.1461 0.0216 0.0797 0.0321 1.273 0.857 

    R=0.9, (θ, β)=(8, 0.8) 
5 (2,3) 0.0809 0.0164 0.049 0.0024 0.0076 0.0155 6.833 1.058 
5 (4,3) 0.0943 0.009 0.049 0.0024 0.015 0.0003 3.75 3 

 
Table 5: A comparison between RSS and MRSS based on Tab. 1 to Tab. 4 

Table 1 D 
 

Table 2 D 
RSS MRSS 

 
RSS MRSS 

1.0717 4.238 -3.1663 
 

1.125 1.021 0.104 
6.3867 6.841 -0.4543 

 
6.359 1.915 4.444 

4.5714 8.2474 -3.676 
 

6.375 3.636 2.739 
1.0507 1.2355 -0.1848 

 
1.057 1.892 -0.835 

1.0288 1.1745 -0.1457 
 

1.024 6.277 -5.253 
1.0075 3.3983 -2.3908 

 
0.996 5.992 -4.996 

1.057 1.6069 -0.5499 
 

1.03 1.723 -0.693 
1.0263 1.5167 -0.4904 

 
1.208 12.409 -11.201 

1.2752 1.178 0.0972 
 

1.291 19.643 -18.352 
6.3462 4.5833 1.7629 

 
7.13 14.909 -7.779 

3.875 1.1205 2.7545 
 

4 11 -7 
4.0952 1.0361 3.0591   4.2 16.8 -12.6 

Table 3 D 
 

Table 4 D 
RSS MRSS 

 
RSS MRSS 

1.0744 9.3111 -8.2367 
 

1.047 3.907 -2.86 
1.0456 1.966 -0.9204 

 
6.962 1.948 5.014 

1.0653 1.5906 -0.5253 
 

1.011 1.22 -0.209 
1.0314 1.0366 -0.0052 

 
1.023 1.091 -0.068 

1.2615 1.087 0.1745 
 

22.917 1.267 21.65 
0.9821 0.9964 -0.0143 

 
1.273 0.857 0.416 
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5.455 1.5 3.955 
 

6.833 1.058 5.775 
3.577 1.134 2.443   3.75 3 0.75 

 

 

 

Figure 1: MSE of the reliability estimate at R=0.6  

 

Figure 2: MSE of the reliability estimate at R=0.714 

• The AB of the reliability estimate under SRS takes the largest values compared with 
the corresponding for all values of R in most of the cases (see Figs. 3 and 4). 
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Figure 3: AB of the reliability estimate at R=0.714 

 

Figure 4: AB of the reliability estimates at R=0.833 

• At true value R=0.833, the MSE of the reliability estimate under MRSS and RSS have 
smallest values except at (mx, my)=(3, 4),(4, 3) (see Fig. 5). At true value, R=0.9, Fig. 6 
demonstrates that the reliability estimate under RSS has less MSE than that the 
corresponding under MRSS except at (mx, my)=(3, 3), (4, 3), (5, 5) and (7, 7). 
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Figure 5: MSE of all reliability estimates at R=0.833 

 
Figure 6: MSE of all reliability estimates at R=0.9 

• Fig. 7 shows that the efficiency of the reliability estimate under MRSS is greater than 
the efficiency of the reliability estimate under RSS expect at (mx, my)=(3, 3), (5, 5), (7, 
7), where the true value of R=0.6.  

• The reliability estimate under MRSS has greater efficiency than the reliability 
estimate based on RSS in case of the true value of R=0.714 (see Fig. 8).  
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Figure 7: Efficiency of the reliability estimate at R=0.6 

 
Figure 8: Efficiency of the reliability estimate at R=0.714 

• For the true value R=0.833, the reliability estimate under MRSS has greater efficiency 
than the reliability estimate under RSS for all values of (mx, my) expect at (2, 3).  

• As the set size increases, the efficiency of all the reliability estimates increases in 
almost all cases. 

6 Conclusions 
In this article, the estimation of the reliability R=P[Y<X] is studied when the strength X 
and stress Y are independent variables follow the exponentiated Pareto distribution. The 
maximum likelihood estimators of R are computed using SRS, RSS and MRSS. Based on 
MRSS, the reliability estimate is considered in four different cases. The simulation study 
is performed to evaluate the performance of the different proposed estimates. From the 
simulation study, it is found that, the MSEs of the reliability estimates based on SRS data 
are greater than their competitors based on RSS and MRSS data, respectively. The MSEs 
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of the reliability estimates under MRSS are the smallest in most of the cases as compared 
with the corresponding estimates using RSS and SRS data. The efficiency of all 
reliability estimates increases as the set size increases in almost cases.  
Also, it is found that the reliability estimates using MRSS is more efficient than the 
reliability estimates based on RSS. Also, the reliability estimates based on RSS and 
MRSS are more efficient than the reliability estimates under SRS. In general, the 
reliability estimates under MRSS are more efficient as compared with the other reliability 
estimates based on RSS and SRS methods. 
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