Computers, Materials & Continua CMC, vol.64, no.2, pp.813-834, 2020

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud
Infrastructures Using Swarm-Intelligence Meta-Heuristics

Amit Chhabra® ", Gurvinder Singh” and Karanjeet Singh Kahlon’

Abstract: Cloud computing infrastructure has been evolving as a cost-effective platform
for providing computational resources in the form of high-performance computing as a
service (HPCaaS) to users for executing HPC applications. However, the broader use of
the Cloud services, the rapid increase in the size, and the capacity of Cloud data centers
bring a remarkable rise in energy consumption leading to a significant rise in the system
provider expenses and carbon emissions in the environment. Besides this, users have
become more demanding in terms of Quality-of-service (QoS) expectations in terms of
execution time, budget cost, utilization, and makespan. This situation calls for the design
of task scheduling policy, which ensures efficient task sequencing and allocation of
computing resources to tasks to meet the trade-off between QoS promises and service
provider requirements. Moreover, the task scheduling in the Cloud is a prevalent NP-
Hard problem. Motivated by these concerns, this paper introduces and implements a
QoS-aware Energy-Efficient Scheduling policy called as CSPSO, for scheduling tasks in
Cloud systems to reduce the energy consumption of cloud resources and minimize the
makespan of workload. The proposed multi-objective CSPSO policy hybridizes the
search qualities of two robust metaheuristics viz. cuckoo search (CS) and particle swarm
optimization (PSO) to overcome the slow convergence and lack of diversity of standard
CS algorithm. A fitness-aware resource allocation (FARA) heuristic was developed and
used by the proposed policy to allocate resources to tasks efficiently. A velocity update
mechanism for cuckoo individuals is designed and incorporated in the proposed CSPSO
policy. Further, the proposed scheduling policy has been implemented in the CloudSim
simulator and tested with real supercomputing workload traces. The comparative analysis
validated that the proposed scheduling policy can produce efficient schedules with better
performance over other well-known heuristics and meta-heuristics scheduling policies.

Keywords: HPC-as-a-Service, task scheduling, quality-of-service, meta-heuristics and
energy-efficiency.

! Department of Computer Engineering & Technology, Guru Nanak Dev University, Amritsar, 143005, India.
2 Department of Computer Science, Guru Nanak Dev University, Amritsar, 143005, India.

* Corresponding Author: Amit Chhabra. Email: amit.cse@gndu.ac.in.

Received: 08 April 2020; Accepted: 27 April 2020.

CMC. doi:10.32604/cmc.2020.010934 www.techscience.com/journal/cme

814 CMC, vol.64, no.2, pp.813-834, 2020

1 Introduction and motivation

Cloud computing is emerging as a cost-effective, pay-as-you-go and anytime-anywhere
service paradigm that offers remote computational resources in the form of utility
services. Cloud computing systems allow the provisioning of a large number of resources
to applications by sharing and aggregation of computing resources (virtual machines
(VMs)) from single and multiple data centers [Moghaddam, Buyya and Kotagiri (2019)].
Due to low capital investment, availability of a large number of resources and pay-as-
you-go model characteristics, the users have started the migration of their HPC
applications from traditional Cluster and Grid computing systems to HPC clouds [Netto,
Calheiros, Rodrigues et al. (2018)]. The Cloud computing service providers (CSP) offer
different types of computational resources to users in the form of HPCaaS to execute
HPC applications [Amazon EC2 instances (2020)].

Day by day, the QoS demands of cloud users regarding execution time, makespan,
execution budget, utilization, and availability are increasing. These issues bring new
challenges for the job schedules to deal with job scheduling and resource allocation issues
for satisfying QoS demands. Moreover, with the continuous increase in capacity, size, and
use of cloud computing systems, the associated energy consumption has also increased
tremendously [Ayanoglu (2019)]. The energy consumption associated with data centers is
mainly due to two reasons; the energy required for the operation of hardware components
and energy used by cooling facilities to regulate heat dissipation in data centers. The energy
demand by global data centers is continuously increasing and currently, it is reported to be
between 1-3% of total demand for electricity in the world [Ilager, Ramamohanarao and
Buyya (2019]. The increased energy consumption induces escalation in the electricity bills
of system providers, reduces hardware life and releases more carbon (CO,) emissions in the
environment. This situation calls for the design of efficient task schedulers in large-scale
computing infrastructures that could provide a trade-off between QoS parameters and
conflicting energy consumption objectives simultaneously.

The primary goal of task scheduling policies in the Cloud is to provide the mapping of
jobs to appropriate cloud resources to obtain maximal performance. However cloud task
scheduling is a known NP-Hard problem and complexity of the problem rises further due
to large problem size, dynamicity and heterogeneity of computing resources. The
scheduling policy in the cloud can be static or dynamic. In static scheduling, all the
details regarding task characteristics and virtual machines configurations are known to
the scheduler before the start of scheduling, whereas in the case of dynamic scheduling,
cloudlets arrive at unknown times and scheduling decisions are taken at run-time
[Hemasian-Etefagh and Safi-Esfahani (2019)]. In this paper, our focus is on the static
scheduling of cloudlets.

Motivated by the highlighted issues in this section, we have proposed the CSPSO policy

to deal with the task scheduling problem in cloud computing systems. The many-fold
contributions of the current research paper are summarized as follows:

1) An exhaustive literature survey related to the undertaken task scheduling problem in
the large-scale Cloud computing infrastructure is carried out. An objective function for
the minimization of makespan and energy consumption is designed.

2) A fitness-aware resource allocation heuristic is developed to allocate virtual machines

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 815

(and their cores) to tasks by considering both makespan and energy consumption. This
resource allocation heuristic is used by the proposed CSPSO algorithm to convert the real-
value population into the discrete population and to allocate resources to tasks efficiently.

3) A scheduling algorithm (CSPSO) by combining the search mechanisms of CS and
PSO algorithms is suggested to provide an optimal solution to task scheduling problem in
the Cloud. The suggested CSPSO policy possesses diversity in scheduling solutions over
successive generations, avoidance of trapping in local optima and information exchange
mechanism between CS and PSO solutions. Further, a cuckoo velocity update mechanism
is designed to incorporate velocity features in the cuckoo search phase in CSPSO
algorithm. The suggested CSPSO policy has the potential to optimize both makespan and
energy consumption objectives.

4) Lastly, the experimental results of the proposed policies are compared with classical
heuristics and meta-heuristics by using workloads obtained from real-supercomputing sites.

The remaining part of the paper is structured as follows. Section 2 presents extensive
literature works in context with the underlying scheduling problem. Section 3 describes
the system model, problem definition and proposed fitness function. Solution encoding
and proposed hybrid meta-heuristics algorithm are explained in Section 4. Section 5
presents the simulation results and analysis of results. Finally, the paper is summed up
with the observed conclusions in Section 6.

2 Related works

Nature-inspired meta-heuristic approaches such as evolutionary and swarm intelligence
algorithms have been successfully applied over NP-hard task scheduling problem in
distributed computing systems such as Grid and Cloud environments to obtain optimal
or approximate solutions [Madni, Latiff, Coulibaly et al. (2017); Yu, Li, Yang et al.
(2018); Mansouri, Mohammad Hasani Zade and Javidi (2019); Motlagh, Movaghar and
Rahmani (2020)].

Genetic Algorithm (GA) and its variants have been extensively applied to propose novel
cloud task scheduling techniques to improve various QoS parameters [Wang, Liu, Chen
et al. (2014); Fang, Xia and Ge (2019)]. Shojafar et al. [Shojafar, Javanmardi, Abolfazli
et al. (2015)] have combined Fuzzy logic with a Genetic algorithm to propose FUGE
method for scheduling tasks over the Cloud for reducing makespan, execution budget and
degree of imbalance. Vila et al. [Vila, Guirado, Lerida et al. (2019)] have suggested a
BLEMO (blacklist evolutive multi-objective) approach based on GA method, to schedule
batch of parallel tasks composed of independent tasks over laaS Cloud resources to
minimize the makespan and energy consumption. Shojafar et al. [Shojafar, Kardgar,
Hosseinabadi et al. (2015)] have proposed a two-phase GA-based task scheduler to
reduce energy and makespan on cloud computing systems.

The artificial bee colony (ABC) algorithm has been applied in Rastkhadiv et al.
[Rastkhadiv and Zamanifar (2016)], with the objectives to minimize makespan and the
degree of imbalance. Jena [Jena (2017)] introduced multi-objective ABC approaches for
the Cloud task scheduling to optimize energy consumption, task completion time,
execution cost, and utilization. A few Ant colony optimization (ACO) based algorithms
for task scheduling are also found in the literature [Guo (2017); Li and Wu (2019)].

816 CMC, vol.64, no.2, pp.813-834, 2020

PSO scheduling algorithm has been applied in various research studies to efficiently
allocate the cloud resources to tasks to improve QoS parameters [Zhang and Zuo (2013);
Zuo, Zhang and Tan (2014); Zhao (2014)]. An APSO-VI based task scheduling algorithm
was introduced in the cloud environment by considering deadline as a constraint [Kumar
and Sharma (2018)].

In Navimipour et al. [Navimipour and Milani (2015)], the authors suggested cuckoo
search based policy to efficiently schedule tasks and improve QoS parameters. Madni et
al. [Madni, Latiff, Ali et al. (2019)], have introduced a multi-objective algorithm CS
policy to provide an efficient task-resource mapping to minimize makespan and
execution cost in IaaS cloud systems. Further, a hybrid gradient descent cuckoo search
algorithm was suggested by combining the features of gradient descent approach and
cuckoo search algorithm for scheduling meta-task in IaaS cloud [Madni, Latiff,
Abdulhamid et al. (2019)]. Another CS based hybrid task scheduling method was
introduced by combining the position update mechanisms of both CS and PSO algorithms
to optimize makespan and budget cost considering deadline constraint [Jacob and
Pradeep (2019)].

A multi-objective independent task scheduling scheme has been suggested by employing
a mean Grey wolf optimization (GWO) method to minimize both makespan and energy
[Natesan and Chokkalingam (2019)]. Another task scheduling method based on multi-
objective Whale optimization algorithm (WOA) was introduced to deal with various QoS
metrics [Reddy and Kumar (2017)]. In another study, the WOA method was applied to
schedule independent tasks in the Cloud for reducing both makespan and energy
consumption [Sharma and Garg (2017)]. A multi-objective WOA scheme, called as W-
Scheduler for independent task scheduling in clouds was suggested for minimizing the
makespan and execution cost [Sreenu and Sreelatha (2019)].

Most of the research works discussed in this section deals with the scheduling of bag-of-
tasks applications where each task in the application requires a single core or CPU for
execution and mostly the artificial data-sets were used for benchmarking. Further,
analysis of the existing literature reveals that most of cloud scheduling algorithms either
do not produce optimal results for different scheduling objectives or usually do not
simultaneously consider both QoS and energy saving as objectives. In this paper, we deal
with the scheduling of bag-of-tasks, where each task is a parallel HPC task consisting of a
number of tasks and requiring a fixed number of cores for execution. Moreover, we have
used the real workloads, which are extracted from workload traces of supercomputing
facilities. We have proposed a multi-objective task scheduling algorithm by considering
both makespan and energy efficiency aspects. Our proposed scheduling approach is
capable of optimizing both task-order and allocation of VMs to task problems as opposed
to other scheduling policies presented in this section, which optimize only resource
allocation problem.

3 System model and problem definition

In this section, we describe the HPC task model, cloud datacenter model, makespan
model, energy model, and fitness function underneath our approach.

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 817

3.1 Cloud data-center model and HPC tasks

The cloud computing system in this paper is an HPC Cloud that consists of a single data-
center and K different classes of VMs such that VMC={VMC\, VMC,,..., VMCx}. Each
VM class consists of a distinct number of virtual machines (VMs) whereas each VM is
represented by two tuples; a number of CPU cores and computational capacity of each
core (in MIPS format). It is assumed in this paper that VMs are pre-configured from
physical machines (PMs) and available to the data-center broker for allocation to waiting
queue tasks.

Each arriving task in the cloud system is an embarrassingly parallel task composed of a
fixed number of independent tasks. Each parallel task (also known as cloudlet) consists of
two main parameters; task length (in MI) and task size (which are the number of CPU cores
required to execute the task). Since our focus in this paper is on static scheduling, therefore
we assume that several arriving tasks are collected in a batch and submitted to a data-center
broker for assignment of pre-configured virtual machines. Therefore input to the proposed
scheduling policy in the cloud data-center broker is a batch of cloudlets obtained from real-
workloads and set of pre-configured virtual machines. The task scheduler will provide the
mapping of VM cores to the cloudlets on the basis of the number of cores requested by
each parallel task subject to the fulfillment of pre-defined objectives.

3.2 Task execution time model

The actual execution time (in seconds) of each task to be executed on the number of CPU
cores is calculated using the Eq. (1). The task length parameter is obtained from the real-
workload trace and the computation capacity of VM cores is acquired from the VM
configuration, as shown in Tab. 1.

Task Length (in MI) (1)
VM.NumCores x VM.Core.Capacity (in MIPS)

Execution Time =

3.3 Problem definition and fitness function
3.3.1 Makespan model

The Makespan (MS) is the finish or completion time of all tasks of workload and it is
calculated by Eq. (2). Finish time of a job is calculated as the sum of job start time and
job execution time.

MS = maxje, (FinishTimej) — min;e; (arrivalTime;) 2

3.3.2 Energy model
The energy consumption (EC) by a single VM core can be expressed by Eq. (3).

MS
EC(Cy) = fo ECcomp (Ci»t) + ECigre (Cr,) dt 3)

where ECcomp and ECjq. measure the energy consumption (in watts) during the

computation and the idle period, respectively, by the CPU core Cy in the time-period ¢.
The total energy consumption of all the CPU cores of all VMs provisioned from all
physical machines of HPC cloud can be calculated by Eq. (4) as follows:

EC = X¢, epmEC(Cy) VPM € PMs in the datacenter 4)

818 CMC, vol.64, no.2, pp.813-834, 2020

3.3.2 Fitness function

In this paper, the static task scheduling problem on HPC Cloud is expressed as a bi-
objective optimization problem for the minimization of makespan and total energy
consumption of workload composed of a set of parallel tasks.

The weighted-sum-method is used to define the fitness function for the bi-objective
scheduling problem, as shown in Eq. (5).

Fitness function, ObjFn=min (w1 xMS+w2XEC) %)
where wl and w2 are the weights of Makespan (MS) and Energy consumption (EC)
objectives, respectively. The sum of the weights of both objectives is equal to 1.
Minimizing MS and EC in the fitness function, ObjFn, are conflicting objectives.

4. Scheduling methodology

4.1 Standard Cuckoo search

The CS algorithm is based on the unique reproduction behavior of a cuckoo bird species
combined with the Lévy flight mechanism of some birds and fruit flies [Yang and Deb
(2009)]. This algorithm has proved its effectiveness over many other meta-heuristics for
solving a variety of single and multiple-objective problems.

First of all, the parameters of the CS algorithm are initialized and an initial random
population X of N host nest (and cuckoos) is randomly generated. A random cuckoo
individual X (with dimension d) is selected from the current generation (G) population
and the cuckoo position is updated using the Lévy flight mechanism using Eq. (6).

X = X7 + a®Lévy(B) (6)

where « is a step size whose value can be decided on the basis of the underlying
optimization problem. The step size can be obtained from the Eq. (7).

a = ag(X{; — gBest(G))DLévy(S) @
where a is a scaling factor (generally ap = 0.01) and gBest is the best solution obtained
so far. The product operator ® denotes entry-wise multiplications. Lévy(f) is a random
number, which is drawn from a Lévy distribution for large steps, as shown in Eq. (8).

Lévy(B)~u=t"1"F,(0 < B <2) ®)
In the implementation, Lévy(f) can be calculated as follows using Eq. (9):
1
in(mxB B
(14 B)xsin(wx
oxu ra+ (nx5)

Lévy(B)~—, ¢ = T((1+B)/2x Bx2(p-1)/2) 9)
[vl#

where f is a constant and set to 1.5 in the standard software implementation of CS [Yang
and Deb (2010)], and u and v are random numbers drawn from a normal distribution with
a mean of 0 and a standard deviation of 1, and I" is a gamma function.

During each generation, a fixed fraction p, of solutions from the population is abandoned
and replaced by random solutions to avoid local optima. Solutions are ranked using
fitness function and the current global best solution is obtained. The whole procedure is
repeated until the termination condition is reached.

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 819

4.2 Standard particle swarm optimization (PSO) algorithm

Each individual (ch) in PSO is known as Particle, which represents the candidate
solution for the undertaken problem, where i is the index of individual and d is the
dimension of the individual. Each particle consists of two tuples; velocity and position.
Particles are randomly initialized in the beginning to build an initial population. The
fitness of the particles is calculated from the defined objective function.

For every particle in the population, velocity (VifiG) and position (X l-"lG) of the particle are
updated based on its previous best position and global best position of the whole
population, as shown in Egs. (10)-(12).

Vific+1 = WGVi,dG + C1T1(P335tic,ic - Xic,lc) + ;12 (gBest(g) — Xf_l(; (10)
Worr = Ws xa (11)

where cl and c2 are self-recognition and social constant respectively and rl, r2 two
random numbers generated uniformly between 0 and 1. W;; is inertia weight and o is a

decrementing factor randomly generated between 0 and 1. Personal best position and
global best particle position are found using Egs. (13) and (14).

X611 = X6 + ViGaa (12)
a _ [Xie F(X{5.1) < F(X{5)

pBestic =1 _, d d (13)
Xig+v F(Xig+1) > F(Xig)

gBestc;:minargv,-(pBestgG (14)

This procedure of velocity and position update is repeated until the maximum generations
condition is achieved.

4.3 The proposed CSPSO scheduling policy

The CS algorithm requires very few control parameters and possesses powerful global-
search ability. In CS, the solution updating mechanism using Lévy flights provides high
randomness, which allows the solution search process to quickly bounce from one area to
another in the solution space leading to robust global-search ability. However, this high
randomness sometimes also starts an obtuse search resulting in a slowdown of the
convergence rate and reduction of searching ability when the search reaches near to
optimal solution due to lack of solution diversity [Chi, Su, Qu et al. (2019)]. On the other
hand, PSO has been known for its faster convergence and global searching ability due to
its ability to memorize previous solutions and unique information exchange mechanisms
between PSO particles after the end iteration [Mohanapriya and Kalaavathi (2019)]. In
order to improve the convergence speed and increase the solution diversity of CS, we
have hybridized the PSO algorithm with CS algorithm for task scheduling in cloud
computing infrastructures to optimize both makespan and energy consumption. In every
generation in the CSPSO algorithm, the fitted individuals from CS and PSO phases are
mixed in a unique way leading to sustained solution diversity and avoidance of premature
convergence. These unique abilities of the proposed CSPSO scheduling policy resulted in
efficient global and local search, faster convergence, and better diversity of solutions
throughout the CSPSO algorithm.

820 CMC, vol.64, no.2, pp.813-834, 2020

4.3.1 Solution encoding

The most important step in the implementation of the proposed multi-objective hybrid
policy CSPSO for performing task scheduling is the solution representation. Task
scheduling problem generally consists of two sub-problems; 1) Task ordering problem, to
decide the order of execution of queued tasks, and 2) Allocation problem, to decide the
mapping of computational resources to tasks. Therefore an individual X, which
represents a task scheduling solution, is characterized by two decision variables; task-
order component (O) and allocation component (A). X° represents an individual X;
solution for both task-ordering and allocation sub-problems.

Both CS and PSO algorithms are originally designed to deal with optimization problems
with real-value continuous solutions. However, task scheduling sub-problems such as
task-ordering and allocation problem involves discrete-value task numbers and virtual
machines. Therefore we need a mechanism to convert real-value solutions produced by
meta-heuristics to discrete values required by the task scheduling problem. Initially, we
represent the job vector part of the solution by continuous solution as X©, which is
converted to discrete-valued task execution order solution X™© using the Smallest
Position Value (SPV) method [Tasgetiren, Liang, Sevkli et al. (2006)].

Allocation part (X*) of the task scheduling solution is initially represented by the VM
availability matrix (AM) scheme, which is adapted from the proven blacklist allocation
mechanism by Gabaldon et al. [Gabaldon, Lerida, Guirado et al. (2017)] and mapping
method by Srichandan et al. [Srichandan, Kumar and Bibhudatta (2018)]. Each cell entry
in the VM availability matrix is a real value between 0 and 1, providing complete
unavailability of all VMs to complete availability of all VMs of a particular VM class,
reserving a few VMs of each PM for queued tasks. Discrete-value allocation part (X™*) of
solution is obtained by applying the fitness-aware resource allocation heuristic on
availability matrix and discrete task-order vector X"©.

We adapted and modified the allocation algorithm used in Vila et al. [Vila, Guirado,
Sergi et al. (2019)] to improve the discrete resource allocation to tasks for the current
research paper. The significant differences between our resource allocation heuristic and
the original allocation algorithm are the level at which availability of VMs is decided and
the way of selecting VMs for allocation to tasks. The improved resource allocation
heuristic hereafter called Fitness-Aware Resource Allocation (FARA) heuristic is
explained using pseudo-code in Algorithm 1. The FARA heuristic starts by updating the
VMs availability in availability matrix (AM) for each task by multiplying the
corresponding AM (task, vmClass.vms) pair value with the total VMs of the
corresponding vmClass (Line 4). In the next step, for each task, it prepares a list of all
those virtual machines which have CPU cores greater than or equal to the number
requested by the current task (Lines 5-10). Further, a temporary allocation is done for
(task, shortlisted vm) pair and the fitness function (ObjFn) value using Eq. (5) for all
shortlisted vm s is calculated (Lines 11-14).

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 821

Algorithm 1: Fitness-aware Resource Allocation (FARA) Heuristic

Input: VMC: Set of different classes of virtual machines (vimClass), VM: Total virtual
machines in the system, vmClass.vms: Virtual machines (vm) in each class, TK: Set of
queued tasks provided by discrete cloudlet-order vector X l_o

Require: VMs availability represented by the availability matrix (AM)
Output: Allocation list (A): a pair of (task € TK, vimE VM)
1. for each fask€TK do

2. Declare sets: vmClass.vms.available, vm.shortlisted, vm.final, TempA: a
temporary pair of (task € TK, vimE VM)

3 for each vinClass € VMC do

4 vmClass.vms.available=vmClass.vms* AM (task, vimClass)
5 for each vin € vmClass.vms.available

6. if (vm.cores.available>task.coresReqd)

7 vm.shortlisted—vm.shortlisted U VM

8 end if

9 end for

10. end for

11. for each vin Evm.shortlisted do

12. TempA«—TempA U (task, vin)

13. ObjFn.vm«—QObjFn.vm (TempA)

14. end for

15. vm.shortlisted=argminyume vm.shordisiea(ObjFn.vm)

16. vm.final=best-fit (vm.shortrlisted, vm.cores.available)
17. A—AU (task, vin.final)

18. end for

In the next step, the best-fit method is applied to select a single v out of multiple short-
listed vms (Line 15), which leaves the least free cores after current task allocation to
reduce external fragmentation. In the last step, the selected VM cores are finally allocated
and the allocation list (A) is updated. This procedure continues until all tasks are mapped
to virtual machines. If we run out of CPU cores during the VM allocation process, the
resource allocation heuristic predicts the first task to finish and then releases the allocated
VM cores from the predicted task for the queued tasks.

The proposed, multi-objective cuckoo search particle swarm optimization algorithm
(CSPSO) is explained using the pseudo-code given in Algorithm 2. The major stages in
the pseudo-code of CSPSO based scheduling policy are discussed as follows:

822 CMC, vol.64, no.2, pp.813-834, 2020

4.3.2 Initial stage- solution encoding and population Initialization

In this step, parameters of the underlying task scheduling problem and meta-heuristics
such as the number of parallel-tasks, configuration of VMs are initialized. An objective
function is defined using Eq. (5). Scheduling solution is represented using the encoding
scheme discussed in Section 4.3.1. The initial population of N real-value individuals is
generated randomly and the corresponding discrete-form population is generated using
the SPV method and FARA heuristic discussed in the Section 4.3.1. The fitness of each
solution in the population is evaluated and the overall best solution is recorded.

Algorithm 2: Cuckoo Search Particle Swarm Optimization (CSPSO) Algorithm

Input: Tasks, Virtual machines, scheduling solution encoding, objective function: ObjFn (X),

Variables: X: Real-value population, X*: Equivalent integer-value population, G: Index of current
generation; NP: Population size, MaxGeneration: maximum number of generations of CSPSO

Output: Best solution (schedule) representing task-order and allocation of VMs to tasks

1: Initialize parameters of CS algorithm and PSO algorithm

2: G=0 //initial generation

3: Xig— X%A //real-value solution (for both task-order (O) and allocation (A) components)
4: XZG<— X:(gﬂ) //integer-value solution (for both task-order (O) and allocation (A) components)
5

: Generate initial real-value population X and equivalent integer-form population X" using SPV
rule and FARA heuristic

6: Fitness (X")«—ObjFn (X") // Evaluate the fitness of population using objective function

7: X*B=argmin (Fitness (X; ¢)) // global best solution among whole population

8: while (G<MaxGeneration)

9: Split the real-value population X with size NP into two equal random halves; sub-populationl

with range [1...NP/2] and sub-population2 with range [NP/2+1...NP]

10: for each individual X g in sub-populationl do /ICS phase starts

11: for both task-order and allocation dimensions of individual X, g do

12: Apply CS search on individual X;, g using Egs. (6)-(9) to obtain X g+
13: Update position if Xi, g+ is better than X; ¢ and mark it as pBest. X;
14: Update velocity of individual X; g+ using Eq. (15) to produce Vi G+
15: end for

16: end for

17: Update sub-population] by replacing a fraction of worst individuals by OBL random walks
18: //CS phase ends

19: for each individual X g in sub-population? do //PSO phase starts
20: for both task-order and allocation dimensions of individual X, g do

21: Update velocity of individual X; g using Eqgs. (10)-(11) to produce Vi G+

22: Apply PSO search on individual X; g using Eq. (12) to obtain Xi g+

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 823

23: Update pBest.X: of individual X; g+1 using Eq. (13)

24: end for

25: end for

26: //PSO phase ends

27: //Hybridization phase starts

28: Combine the updated sub-populationl and sub-population2 into new population of size NP
29: //Hybridization phase ends

30: Obtain integer-value population X" using SPV and FARA heuristic

31: Evaluate the fitness of new population using ObjFn

32: Update the integer and real-value global best solution of the current population of size NP
33: end while

34: Record the best solution X8 (schedule) found

4.3.3 Population partitioning and updating stage

The real-value population is divided randomly into two equal sub-populations. CS updates
the position and velocity of individuals of sub-populationl using a levy flight mechanism,
and PSO updates the velocity and position of particles of sub-population2. In order to
increase the local-search efficiency in cuckoo search, the worst solutions are replaced by
solutions obtained from the opposition based learning (OBL) technique instead of standard
random walks. OBL is simple yet powerful technique to generate opposite solutions
[Tizhoosh (2005)]. During the random equal partitioning of the whole population after
every alternate generation, some of the solutions processed by the CS phase in the previous
generation may become part of the PSO sub-population in the next generation.

Since CS does not have velocity mechanism, but the PSO method requires velocity to
update the position of solutions. In the current situation, the PSO phase may not be able
to improve the position of solution due to the unavailability of velocities of those
solutions, which were earlier part of the cuckoo sub-population. Therefore we introduced
a velocity update mechanism using Eq. (15) in the CS phase to add velocity feature to
solutions in cuckoo search.

v _ {Xi,G+1 — gBestg, F(Xic+1) > gBest; (15)
LG+l T | gBestg — Xigy1, F(Xige1) < gBestg

4.3.4 Hybridization stage

The new sub-populations obtained from both CS and PSO phases are combined to build a
new population. If the maximum number of iterations condition reached is false, then
Step 2 is called again. This procedure of population division, individual position updating
by CS and PSO phases and population hybridization continues till maximum iteration
condition is satisfied. Finally, at the end of the proposed CSPSO algorithm, a global best
solution is found, which represents the optimal schedule, which provides optimized task
ordering and resource allocation to tasks.

824 CMC, vol.64, no.2, pp.813-834, 2020

5 Experimentation and results

In this section, we have conducted an extensive number of experiments to analyze the
efficiency of the proposed CSPSO scheduling algorithm over other existing scheduling
techniques. FCFS, MOCS, MOPSO, and CSPSO scheduling algorithms are implemented
in the CloudSim 3.0.3 simulator with the help of Java and JMetal 5.4 meta-heuristic
framework for multi-objective optimization [JMetal (2019)]. The computer system used
for experimentation is i7-8550U @ 1.80-2.0 GHz (8 Cores), 16 GB RAM running over
Windows 10. The benchmarking results of Min-Min, Hill-Climbing, and BLEMO
algorithms have been obtained from the corresponding author of selected base paper
[Vila, Guirado, Lerida et al. (2019)].

5.1 Real-workloads and cloud configuration

The input workloads for the benchmarking of scheduling algorithms are acquired from
workload traces of two real-supercomputing sites; CEA-Curie and HPC2N. Workload
logs of both CEA-Curie and HPC2N traces are maintained by Feitelson [Feitelson
(2005)]. In our experimentation, we have used 20 workloads (10 workloads are extracted
from each of the CEA-Curie and HPC2N workload traces). Each workload contains 200
tasks. In this paper, the Cloud computing system modeled for experimentation in
CloudSim is consisting of one data center with five classes of pre-configured VMs. The
same VM configuration is taken for the experimentation as used in our baseline research
paper [Vila, Guirado, Lerida et al. (2019)] and it is shown in Tab. 1.

Table 1: VM configuration used for experiments in CloudSim

VM VM instance # VMs # MIPS CPU model Energy Energy
Class id vCPU/ during during
Cores idle time comp.
per VM (W/h) time
(W/h)
Class 1 T2.nano 20 1 3400 Xeon E5-2637 V4 23.625 33.75
Class 2 T2 .xlarge 10 4 2600 Xeon E5-2623 V4 59.5 85
Class 3 T2.2xlarge 8 8 2100 Xeon E5-2620 V4 59.5 85
Class 4 M5 4xlarge 6 16 2500 Xeon Plat. 8180 M 82 117.14
Class 5 M4.10xlarge 4 40 2400 Xeon E5-2686 V4 225.55 32222

5.2 Baseline scheduling algorithms

The performance of the proposed CSPSO scheduling policy has been compared with
popular existing single-objective heuristics (FCFS, Hill-Climbing, and Min-Min) and
multi-objective meta-heuristic algorithms (MOPSO, MOCS and BLEMO). FCFS
schedules the tasks in the waiting queue using First Come First Serve approach. Hill-
Climbing continuously scans the solution space towards increasing elevation to seek the
best solution to the problem and terminates at a point where no other neighbor has a higher
value. Min-Min is a variant of traditional Min-Min algorithm which selects the task with
maximum completion time and assigns it to appropriate computing resource with the
objectives to reduce overall makespan and efficient resource utilization [Patel, Mehta and
Bhoi (2015)]. MOPSO is a multi-objective version of the PSO algorithm used by many task

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 825

scheduling research studies [Alkayal, Jennings and Abulkhair (2016)]. MOCS is a multi-
objective version of the cuckoo search (CS) algorithm implemented in many research
studies focused on task scheduling in cloud computing systems [Madni, Latiff, Ali et al.
(2019)]. BLEMO is a multi-objective scheduling policy that uses a blacklist allocation
scheme and GWASF-GA meta-heuristics algorithm to decide the mapping of VMs to
cloudlets [Vila, Guirado, Lerida et al. (2019)]. FCFS and Min-Min are deterministic and
non-iterative, whereas the rest of the algorithms are stochastic and iterative.

5.3 Comparative results
5.3.1 Convergence analysis of meta-heuristic approaches

Before conducting simulation experiments, we have conducted a number of independent
experiments by varying population size and the number of generations with 200 tasks to
determine optimal parameters for the scheduling policies. The final meta-heuristics
parameters for experimentation for both HPC2N and CEA-Curie workloads as follows:

-MOPSO policy

e Population size: 60, Generations: 45, Inertia weight (®): 0.9, random numbers (r1 and
r2): 0.65 and 0.35, and Coefficients (c1 and c¢2): 2.0 and 2.0

-MOCS policy

e Population size: 60, Generations: 50

e CS parameters: step size, ay: 0.01, fraction of worst individuals (pa): 0.25
-CSPSO policy

e Population size: 50, Generations: 50

e CS parameters: step size, oy: 0.01, fraction of worst individuals (pa): 0.25

e PSO parameters: Inertia weight (): 0.9, random numbers (rl1 and r2): 0.65 and 0.35,
and Coefficients (c1 and ¢2): 2.0 and 2.0

-BLEMO policy
e Population size: 60, Generations: 40, Crossover rate: 0.33 and Mutation rate: 0.10

5.3.2 Makespan and energy consumption results of different workloads

This section presents the makespan and energy consumption results of all the scheduling
policies executed on both CEA-Curie and HPC2N workloads. Each scheduling
experiment was repeated 30 times for the same input conditions, and the average of 30
readings was recorded to remove randomness from collected experimental results.

Fig. 1 shows that the proposed CSPSO policy generated optimal makespan value among
all tested scheduling policies for W0-W6 workloads. For W7-W9 workloads, proposed
CSPSO is the second-best policy after Min-Min policy. FCFS policy produced the worst
results, followed by the Hill-Climbing policy. BLEMO policy ended up with a second
and third spot in most of the tested workload instances for the makespan objective.

826 CMC, vol.64, no.2, pp.813-834, 2020

100000
- i FCFS
50000 L CEA-Curie
m Hill-Climbing
80000
B Min-Min
70000
—_ B MOPSO
2 60000 +
c B MOCS
& 50000 |
] EBLEMO
= 40000
= B CSPSO
30000 -
20000 -
10000 -+
0 -

wo w1 w2 w3 W4 W5 Weé W7 \WE] w9
Workloads

Figure 1: Makespan of scheduling policies for CEA-Curie workloads

Fig. 2 indicates that the CSPSO policy yielded optimal energy consumption values for
80% workloads among all scheduling policies for CEA-Curie trace followed by BLEMO,
MOCS, and Min-Min policy.

55000 CEA-Curi —

50000 — -Lurie —

| Hill-Climbing

. 45000 +
= = Min-Min
< 40000 +—
[|
2 35000 MOPSO
o
B 30000 H MOCS
g 25000 mBLEMO
. 20000 B CSPSO
oo
g 15000
=
* 10000

5000 -

0 1
wo w1 w2 w3 w4 w5 W6 w7 ws w9
Workloads

Figure 2: Energy consumption of scheduling policies for CEA-Curie workloads

Figs. 3 and 4 present the makespan and energy consumption results for all tested
scheduling policies for HPC2N workloads. The proposed CSPSO policy produced lowest
makespan and energy consumption as compared to other policies for most of the HPC2N
workloads followed by BLEMO, MOCS, MOPSO and Min-Min policy. FCFS and Hill-
Climbing policies yielded the worst results since these policies failed to exploit the
heterogeneity of virtual machines. FCFS also could not produce good results since it did
not employ any logic for task ordering and resource allocation to tasks.

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 827

140000 HPC2ZN
FCFS
120000 - =
B Hill-Climbing
___ 100000 B Min-Min |
=z = MOPSO
[
§ 80000 EVIOCS
w
g B BLEMO
= 60000
= m CSPSO
40000
20000
0 -+

WO w1 W2 W3 w4 W5 We w7 w8 w9
Workloads

Figure 3: Makespan of scheduling policies for HPC2N workloads

5.4 Overall experimentation results and analysis

Finally, the box plots are used to explain the overall experimentation results of all
scheduling policies, which were collected from both CEA-Curie and HPC2N workloads.
Figs. 5 and 6 show the box plot for overall makespan and energy consumption results of
all scheduling policies by executing 10 workloads of CEA-Curie trace.

80000

HPC2N FCFS

70000 m Hill-Climbing
g 60000 B Min-Min
g H MOPSO
-E_ 50000 B MOCS
2 40000 BLE |
5 = CSPSO
2 30000
=
2 20000 —
W

10000

0 -

WO w1 W2 W3 w4 W5 W6 w7 w8 w9
Workloads

Figure 4: Energy consumption of scheduling policies for HPC2N workloads

It is evident from box plot that among all scheduling policies, the proposed CSPSO
policy produced both lowest median (as shown by the dark horizontal black line in the
interquartile range (IQR)) makespan and energy consumption results as well as lowest
mean (represented by ‘+’ sign in IQR) makespan and energy consumption values. The
proposed CSPSO policy also produced lower minimum makespan and energy
consumption values, as indicated by the lowest whisker in the box plot. FCFS and Hill-
climbing policies produced worst and second-worst makespan and energy consumption
values (represented by worst mean and median values) respectively. The CSPSO policy
also obtained better overall minimum, maximum, mean, and median values of makespan

828 CMC, vol.64, no.2, pp.813-834, 2020

and energy consumption objectives among all scheduling policies for CEA-Curie
workloads as shown in Figs. 7 and 8.

CEA-Curie Makespan (s)

|

120000 i

100000 N i

1

1

80000 ;

60000 : E

40000

1

L

I I
FCFS Hill.Climbing Min.Min MOPSO MOCS BLEMO CSPSO

1

20000

0#

Figure 5: Makespan box plot of all experiments with CEA-Curie workloads
CEA-Curie Energy Consumption (W)

70000 —

60000 -

50000 —

40000 -

30000 —
20000 | + -

100007 - = — ﬁ

I I 1 1
FCFS Hlll.Cllmblng Min.Min MOPSO MOCS BLEMO CSPSO

Figure 6: Energy consumption box plot with CEA-Curie workloads

Finally, for quantitative analysis, the mean values of overall experimental results (of both
makespan and energy consumption) for all scheduling policies and performance
improvement rate percentage (PIR% calculated using Eq. (17)) of proposed CSPSO
scheduling policy over other baseline scheduling policies are shown in Tab. 2.

Algorithm — CSPSO Algorithm
[— [
PIR(%) SPS0 Algorich X 100% (17)

It is evident from the Tab. 2 that among all scheduling policies, the CSPSO scheduling
policy has achieved minimum mean values for both makespan and energy consumption
objectives for both CEA-Curie and HPC2N workloads.

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 829

Table 2: Overall mean values and PIR% of the CSPSO over other scheduling policies

Policy FCFS Hill- Min-Min MOPSO MOCS BLEMO CSPSO
Climbing

CEA-Curie

Makespan (s) 38395.91 25811.11 15285.12 12838.08 12189.95 11905.82 11000.33

PIR% of CSPSO over +249.04% +134.64% +38.95% +16.71% +10.81% +8.23% -
Energy Consumption (W) 22188.44 15318.96 9371.26 797246 7602.63 743135 7122.73

PIR% of CSPSO over 211.52% +115.07% +31.57% +11.93% +6.74% +433% -
Simulation Time (s) 0.39 0.73 045 10.29 12.35 15.75 10.73
HPC2N

Makespan (s) 48199.21 36972.56 16643 14670.64 1340435 1328563 12154.53
PIR% of CSPSO over +296.55% +204.19% +36.93% +20.70% +10.28% +931% -
Energy Consumption (W) ~ 26024.09 21123.09 10188.52 9407.02 359242 8088.15 7664.85
PIR% of CSPSO over +239.53% +175.58% +32.93% +22.73% t1210% 455000
Simulation Time (s) 0.41 0.93 0.44 14.24 17.58 26.32 15.07

As far as PIR% is concerned, the CSPSO records the makespan improvement in the range
8.23-249.04% and 4.33-211.52% improvement in energy consumption over rest of the
scheduling policies for CEA-Curie workloads. +sign against PIR% indicates that all
scheduling algorithms other than CSPSO policy produced increased makespan and
energy consumption mean results than CSPSO policy.

Our proposed CSPSO scheduling policy obatined makespan reduction in the range of
9.31-296.55% and improved energy consumption in the range of 5.52-239.53% over
other scheduling policies for HPC2N workloads. The proposed CSPSO policy produced
quality scheduling solutions with acceptable convergence speed represented by
simulation time for both workloads, as shown in Tab. 2. The time taken by the proposed
CSPSO policy is better than the MOCS and BLEMO meta-heuristic based scheduling
policies. The higher simulation time of the CSPSO as compared to FCFS and Min-Min
heuristics is also acceptable with respect to significant makespan and energy-
consumption improvement of the CSPSO over these heuristics.

830 CMC, vol.64, no.2, pp.813-834, 2020

HPC2N-Makespan (s)

150000 - ﬁ_ —:’_
100000 — :
50000 .|. —_ o
| [symaniS
et L L1 L

| |
FCFS Hill.Climbing Min.Min MOPSO MOCS BLEMO CSPSO

Figure 7: Makespan box plot of all experiments with HPC2N workloads

HPC2N-Energy Consumption (W)

80000 o '
60000 — I :
40000 - ; E
i i = -
20000 —— s T
| === ==
| |

I T T T 1
FCFS Hill.Climbing Min.Min MOPSO MOCS BLEMO CSPSO

Figure 8: Energy consumption box plot of all experiments with HPC2N workloads

6 Conclusions

The user base, the size and scale of cloud computing environments is increasing due to
cost-effectiveness, anytime-anywhere service, and pay-as-you-go model characteristics.
Due to these characteristics, HPC users nowadays are migrating from traditional clusters
and grids to cloud computing systems to execute HPC applications. However, with these
trends, associated energy consumption is also rising to a greater extent leading to higher
carbon emissions and system provider expenses. This situation calls for the development
of efficient schedulers to allocate the resources to HPC applications for meeting both
QoS-specific and energy-saving expectations. In this paper, a hybrid multi-objective
policy, CSPSO, is proposed for scheduling a set of parallel tasks in IaaS cloud systems to
meet QoS and energy-efficiency expectations. The proposed CSPSO scheduling policy
effectively combines the searching qualities of both CS and PSO algorithms resulting in

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 831

the increase in the searching efficiency, better convergence rate, and solution diversity
over successive generations, which finally helped to produce quality task schedules and
resource allocation solutions. The CSPSO policy uses a fitness-aware resource allocation
heuristic to efficiently allocate resources to tasks in the task vector obtained from the best
real real-value solution of the CSPSO policy.

The proposed CSPSO policy was evaluated against many well-known heuristics and
meta-heuristic scheduling techniques using twenty different workloads extracted from
two real workload traces. The obtained experimental results have proved the efficacy of
our CSPSO policy over other tested scheduling policies by obtaining promising
performance improvement in terms of QoS objective makespan and energy consumption.
Another reason for the performance improvement obtained by our proposed CSPSO
policy is the ability to optimize both task-ordering and allocation issues of the task
scheduling problem as opposed to only allocation optimization done by other tested
scheduling policies. In the future, we plan to evaluate our proposed policy against other
robust meta-heuristic approaches with different supercomputing workloads using
different objective functions.

Availability of Data and Materials: All the input and output data file links are available
in the manuscript.

Acknowledgement: Authors acknowledge the help of Sergi Villa Almenara, Department
of Computer and Industrial Engineerings, Universitat de Lleida, Lleida, Spain, for
providing few comparative benchmarking results.

Funding Statement: The author(s) received no specific funding for this study.

Contflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References

Alkayal, E. S.; Jennings, N. R.; Abulkhair, M. F. (2016): Efficient task scheduling
multi-objective particle swarm optimization in cloud computing. Proceedings of the
IEEE 41st Conference on LCN Workshops, Dubai, pp. 17-24.

Ayanoglu, E. (2019): Energy-efficiency in data centers, /[EEE ComSoc Technical
Committees Newsletter, pp. 1-8.

Babu, D.; Krishna, P. (2013): Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Applied Soft Computing, vol. 13, pp. 2292-2303.

Chi, R.; Su, Y.; Qu, Z.; Chi, X. (2019): A hybridization of cuckoo search and
differential evolution for the logistics distribution center location problem. Mathematical
Problems in Engineering, pp. 1-16.

EC2-AWS Instances (2020): Amazon EC2 instance types-Amazon Web services.
Amazon Web Services, Inc. https://aws.amazon.com/ec2/instance-types/.

832 CMC, vol.64, no.2, pp.813-834, 2020

Elaziz, M. A.; Xiong, S.; Jayasena, K. P. N.; Li, L. (2019): Task scheduling in cloud
computing based on hybrid moth search algorithm and differential evolution. Knowledge-
Based Systems, vol. 169, pp. 39-52.

Fang, Y.; Xia, X.; Ge, J. (2019): Cloud computing task scheduling algorithm based on
improved genetic algorithm. /[EEE 3rd Information Technology, Networking, Electronic
and Automation Control Conference, pp. 852-856.

Feitelson, D. (2005): Parallel Workloads Archive Available online:
https://www.cse.huji.ac.il/labs/parallel/workload/.

Gabaldon, E.; Lerida, J. L.; Guirado, F.; Planes, J. (2017): Blacklist multi-objective
genetic algorithm for energy saving in heterogeneous environments. Journal of
Supercomputing, vol. 73, pp. 354-3609.

Guo, Q. (2017): Task scheduling based on ant colony optimization in cloud environment,
AIP Conference Proceedings, Busan, South Korea.

Hemasian-Etefagh, F.; Safi-Esfahani, F. (2019): Dynamic scheduling applying new
population grouping of whales meta-heuristic in cloud computing. Journal of
Supercomputing, vol. 75, pp. 6386-6450.

Ilager, S.; Ramamohanarao, K.; Buyya, R. (2019): ETAS: energy energy and
thermal-aware dynamic virtual machine consolidation in cloud data center with
proactive hotspot mitigation. Concurrency and Computation: Practice and Experience,
vol. 31, no. 17, pp. 1-15.

Jacob, T. P.; Pradeep, K. (2019): A multi-objective optimal task scheduling in cloud
environment using Cuckoo particle swarm optimization. Wireless Personal
Communications, vol. 109, pp. 315-331.

Jena, R. K. (2017): Task scheduling in cloud environment: a multi-objective ABC
framework. Journal of Information & Optimization Sciences, vol. 38, pp. 1-19.

JMetal 5 (2019): jMetal 5 web site available online: http://jmetal.github.io/jMetal/.
Kumar, M.; Sharma, S. C. (2018): PSO-COGENT: cost cost and energy efficient
scheduling in cloud environment with deadline constraint. Sustainable Computing:
Informatics and Systems, vol. 19, pp. 147-164.

Li, G.; Wu, Z. (2019): Ant colony optimization task scheduling algorithm for SWIM
based on load balancing. Future Internet, vol. 11, no. 4, pp. 1-18.

Madni, S. H. H.; Abd Latiff, M. S.; Abdulhamid, S. M.; Ali, J. (2019): Hybrid
gradient descent cuckoo search (HGDCS) algorithm for resource scheduling in IaaS
cloud computing environment. Cluster Computing, vol. 22, pp. 301-334.

Madni, S. H. H.; Abd Latiff, M. S.; Abdullahi, M.; Abdulhamid, S. M.; Usman, M. J.
(2017): Performance comparison of heuristic algorithms for task scheduling in IaaS cloud
computing environment. PLoS One, vol. 12, no. 5, pp. 1-26.

Madni, S. H. H.; Latiff, M. S. A.; Ali, J.; Abdulhamid, S. M. (2019): Multi-objective-
oriented Cuckoo search optimization-based resource scheduling algorithm for clouds.
Arabian Journal for Science and Engineering, vol. 44, pp. 3585-3602.

QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud 833

Mansouri, N.; Mohammad Hasani Zade, B.; Javidi, M. M. (2019): Hybrid task
scheduling strategy for cloud computing by modified particle swarm optimization and
fuzzy theory. Computers & Industrial Engineering, vol. 130, pp. 597-633.

Moghaddam, S. K.; Buyya, R.; Kotagiri, R. (2019): Performance-aware management
of cloud resources: a taxonomy and future directions. ACM Computing Surveys, vol. 54,
no. 2, pp. 1-37.

Mohanapriya, N.; Kalaavathi, B. (2019): Adaptive image enhancement using hybrid
particle swarm optimization and watershed segmentation. Intelligent Automation and Soft
Computing, vol. 25, no. 4, pp. 663-672.

Motlagh, A. A.; Movaghar, A.; Rahmani, A. M. (2020): Task scheduling mechanisms
in cloud computing: a systematic review. International Journal of Communication
Systems, vol. 33, pp. 1-23.

Natesan, G.; Chokkalingam, A. (2019): Task scheduling in heterogeneous cloud
environment using mean grey wolf optimization algorithm. /CT Express, vol. 5, pp. 110-114.

Navimipour, J. N.; Milani, S. F. (2015): Task scheduling in the cloud computing based
on the Cuckoo search algorithm. International Journal of Modeling and Optimization,
vol. 5, no. 1, pp. 44-47.

Netto, M. A. S.; Calheiros, R. N.; Rodrigues, E. R.; Cunha, R. L.; Buyya, R. (2018):
HPC cloud for scientific and business applications: taxonomy, vision, and research
challenges. ACM Computing Surveys, vol. 51, no. 1, pp. 1-29.

Patel, G.; Mehta, R.; Bhoi, U. (2015): Enhanced load balanced min-min algorithm for
static meta task scheduling in cloud computing. Procedia Computer Science, vol. 57, pp.
545-553.

Qin, X., Yang, Z., Li, W., Yang, Y. (2013): Optimized task scheduling and resource
allocation in cloud computing using PSO based fitness function. Information Technology
Journal, vol. 12, pp. 7090-7095.

Rastkhadiv, F.; Zamanifar, K. (2016): Task scheduling based on load balancing using
artificial bee colony in cloud computing environment. International Journal of Advance
Biotechnology Research, vol. 7, pp. 1058-1069.

Reddy, G. N.; Kumar, S. P. (2017): Multi objective task scheduling algorithm for cloud
computing using whale optimization technique. International Conference on Next
Generation Computing Technologies, pp. 286-297.

Shojafar, M.; Javanmardi, S.; Abolfazli, S.; Cordeschi, N. (2015): FUGE: a joint
meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a
genetic method. Cluster Computing, vol. 18, pp. 829-844.

Shojafar, M.; Kardgar, M.; Hosseinabadi, A. A. R.; Shamshirband, S.; Abraham, A.
(2015): TETS: a Genetic-based scheduler in cloud computing to decrease energy and
makespan. Proceedings of the 15th International Conference HIS on Hybrid Intelligent
Systems, pp. 103-115.

Sreenu, K.; Sreelatha, M. (2019): W-Scheduler: whale optimization for task scheduling
in cloud computing. Cluster Computing, vol. 22, pp. 1087-1098.

834 CMC, vol.64, no.2, pp.813-834, 2020

Srichandan, S.; Kumar, T. A.; Bibhudatta, S. (2018): Task scheduling for cloud
computing using multi-objective hybrid bacteria foraging algorithm. Future Computing
and Informatics Journal, vol. 3, pp. 210-230.

Tasgetiren, F. M.; Liang, Y. C.; Sevkli, M.; Gencyilmaz, G. (2006): Particle swarm
optimization and differential evolution for the single machine total weighted tardiness
problem. International Journal of Production Research, vol. 44, pp. 4737-4754.

Tizhoosh, H. R. (2005): Opposition-based learning: a new scheme for machine
intelligence. Proceedings of CIMCA-IAWTIC, vol. 1, pp. 695-701.

Vila, S.; Guirado, F.; Lerida, J. L.; Cores, F. (2019): Energy-saving scheduling on
IaaS HPC cloud environments based on a multi-objective genetic algorithm. Journal of
Supercomputing, vol. 75, pp. 1483-1495.

Wang, T.; Liu, Z.; Chen, Y.; Xu, Y.; Dai, X. (2014): Load balancing task scheduling
based on genetic algorithm in cloud computing. Proceedings of the IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing, pp. 146-152.

Yang, X. S.; Deb, S. (2009): Cuckoo search via Lévy flights. IEEE World Congress on
Nature and Biologically Inspired Computing, pp. 210-214.

Yu, W.; Li, X.; Yang, H.; Huang, B. (2018): A multi-objective metaheuristics study on
solving constrained relay node deployment problem in WSNS. Intelligent Automation
and Soft Computing, vol. 24, no. 2, pp. 367-376.

Zhang, G.; Zuo, X. (2013): Deadline constrained task scheduling based on standard-
PSO in a hybrid cloud. Advances in Swarm Intelligence ICSI, Lecture Notes in Computer
Science, vol. 7928.

Zhao, G. (2014): Cost-aware scheduling algorithm based on PSO in cloud computing
environment. International Journal of Grid & Distributed Computing, vol. 7, pp. 33-42.
Zuo, X.; Zhang, G.; Tan, W. (2014): Self-adaptive learning PSO-based deadline
constrained task scheduling for hybrid laaS cloud. /[EEE Transactions on Automation
Science and Engineering, vol. 11, pp. 564-573.

	QoS-Aware Energy-Efficient Task Scheduling on HPC Cloud Infrastructures Using Swarm-Intelligence Meta-Heuristics
	Amit Chhabra0F , *, Gurvinder Singh2 and Karanjeet Singh Kahlon2

	1 Introduction and motivation
	2 Related works
	3 System model and problem definition
	3.1 Cloud data-center model and HPC tasks
	3.2 Task execution time model
	3.3 Problem definition and fitness function
	3.3.1 Makespan model
	3.3.2 Energy model
	3.3.2 Fitness function

	4. Scheduling methodology
	4.1 Standard Cuckoo search
	4.2 Standard particle swarm optimization (PSO) algorithm
	4.3 The proposed CSPSO scheduling policy
	4.3.1 Solution encoding
	4.3.2 Initial stage- solution encoding and population Initialization
	4.3.3 Population partitioning and updating stage
	4.3.4 Hybridization stage

	5 Experimentation and results
	5.1 Real-workloads and cloud configuration
	5.2 Baseline scheduling algorithms
	5.3 Comparative results
	5.3.1 Convergence analysis of meta-heuristic approaches
	5.3.2 Makespan and energy consumption results of different workloads

	5.4 Overall experimentation results and analysis

	6 Conclusions
	References

