
Computers, Materials & Continua CMC, vol.64, no.2, pp.729-752, 2020

CMC. doi:10.32604/cmc.2020.010394 www.techscience.com/journal/cmc

Performance Anomaly Detection in Web Services: An RNN-
Based Approach Using Dynamic Quality of Service Features

Muhammad Hasnain1, Seung Ryul Jeong2, *, Muhammad Fermi Pasha3 and

Imran Ghani4

Abstract: Performance anomaly detection is the process of identifying occurrences that
do not conform to expected behavior or correlate with other incidents or events in time
series data. Anomaly detection has been applied to areas such as fraud detection,
intrusion detection systems, and network systems. In this paper, we propose an anomaly
detection framework that uses dynamic features of quality of service that are collected in
a simulated setup. Three variants of recurrent neural networks-SimpleRNN, long short
term memory, and gated recurrent unit are evaluated. The results reveal that the proposed
method effectively detects anomalies in web services with high accuracy. The
performance of the proposed anomaly detection framework is superior to that of existing
approaches using maximum accuracy and detection rate metrics.

Keywords: Point anomaly, anomaly detection, recurrent neural networks, web
services, simulated data.

1 Introduction
In the modern era of web technology, web services occasionally exhibit undesirable
and unexpected behavior. This behavior is referred to as an anomaly, which is a
bottleneck in the underlying web services [Ibidunmoye, Hernández-Rodriguez and
Elmroth (2015)]. If unnoticed, performance anomalies can last from seconds to days
and can arise due to a multitude of factors. For example, increasing workload, bugs,
and hardware failure are known causes of performance anomalies [Wang, Wei, Zhang
et al. (2014)]. Furthermore, low bandwidth and low scalability of a web server can also
result in performance anomalies [Naseer and Saleem (2018); Wang, Du, Lin et al.

1 School of Information Technology, Monash University, Subang Jaya, 47500, Malaysia.
2 Graduate School of Business IT, Kookmin University, Seoul, Korea.
3 School of Information Technology, Monash University, Subang Jaya, 47500, Malaysia.
4 Department of Mathematical and Computer Sciences, Indiana University of Pennsylvania, Indiana, USA.
* Corresponding Author: Seung Ryul Jeong. Email: srjeong@kookmin.ac.kr.
Received: 02 March 2020; Accepted: 09 April 2020.

730 CMC, vol.64, no.2, pp.729-752, 2020

(2019)]. In this study, we address the challenge of detecting performance anomalies in
web services.
Performance anomalies are a major problem that threatens the quality of web services
[Zhang, Meng, Chen et al. (2016); Hababeh, Thabain and Alouneh (2019)]. Performance
degradation can result in higher monetary costs, and service providers thus require an
automated means of detecting performance problems in their web services. For large-scale
and integrated web services, user interaction with web servers changes frequently and
thereby affects resource requirements and workload patterns. For instance, web services are
prone to various performance problems that involve the central processing unit (CPU) and
memory resources [Kardani-Moghaddam, Buyya and Ramamohanarao (2019)].
Performance anomaly detection at the service level is addressed from a gray box or
white box perspective, in which some knowledge regarding the source code, flow of
users’ transactions, and distributed components is known a priori. This approach is not
feasible, however, because the source code of web services is not provided without the
consent of the service providers. In addition, integrated services belong to various
services providers [Ibidunmoye, Rezaie and Elmroth (2017)], and web services
providers do not necessarily ship source code along with other software items. This
limitation has led to new research within the academic and software development
community, and researchers are now more interested in developing innovative
performance anomaly detection approaches that are versatile and scalable.
Bigonha et al. [Bigonha, Ferreira and Souza (2019)] proposed using software object-
oriented (OO) metrics to assess software quality. Software faults and bad smells affect
the quality of software. Software code is necessary for evaluating OO metrics for smell
detection and fault prediction. The proposed approach using a threshold of OO metrics
is effective for general systems in which code is available, and metrics’ thresholds are
known in the literature. This approach is more relevant to code anomalies and cannot
be applied to software systems or web services that do not provide code access. To
overcome the limitations of existing approaches, other software metrics, such as
performance metrics, can be used to perform anomaly detection in web services.
For example, quality of service (QoS) assessment is an effective tool for investigating
performance anomalies. QoS is the representation of quality instead of the functional
features of web services. As a conceptual term, QoS includes several concrete
attributes. These are categorized into two broad classes: static QoS attributes and
dynamic QoS attributes. Syu et al. [Syu, Kuo and Fanjiang (2017)] discussed static QoS
values, which are provided by service providers. However, static QoS values are
unreliable and often ineffective because they are infrequently updated. In contrast, the
values of dynamic QoS metrics, such as response time and throughput, change
significantly over time due to the distributed, autonomic, and heterogeneous features of
web services.
Web services are owned and provided by different services providers (SPs), and run on
various platforms. In addition, the dynamics of the environment, including unexpected
connection latency and internet congestion, may lead to fluctuations in the response
time and throughput values. Therefore, it is unwise to rely only on static values of
quality attributes to perform web services operations, such as selection,

Performance Anomaly Detection in Web Services: An RNN 731

recommendation, and ranking. Instead, dynamic values acquired using appropriate
means can provide accurate and reliable QoS values. The majority of existing studies
propose using various time-series methods to address prediction problems. Time series
forecasting is a well-developed and widely examined research field, and its forecasting
methods can be used effectively. Several forecasting methods have been developed and
applied to resolve real-world issues, and identifying which forecasting methods are
more suitable for the dynamic QoS prediction of web services is an important task.
Owing to differences in QoS values between users’ obtained QoS values and the values
stated in the service level agreement (SLA), researchers have proposed a technique to
optimize the SP side by considering user satisfaction. Several researchers have stated that
the declaration of users’ workload is an essential precondition for SLA negotiation
[Ranaldo and Zimeo (2016)]. Therefore, underestimation of the users’ workload can
influence the QoS attributes because the actual workload may surpass the estimated load.
Because this study does not concern short-duration anomaly information, the anomaly
detection method considers a week's performance of web services. Short-duration anomaly
detection is suitable for measuring traffic anomalies in a network [Lakhina, Crovella and
Diot (2004)]. Based on the predicted performance and actual metric values, we propose
determining performance anomalies using total (actual+predicted) QoS metric values,
which can effectively explain and map total QoS values to the occurrence of near-future
performance anomalies in web services. This can result in quality improvement of web
services because service managers or providers can avoid future anomalies.
In our proposed anomaly detection framework, two sets of anomaly detections processes
are combined in the post-processing phase to estimate a long pattern of point anomaly
detection. The first set of anomalies from actual data may consist of many weeks’ data,
while the second set of anomalies is obtained from the training and testing of the actual
data. The resulting set of anomalies can be used to determine web service outages, which
may be seriously taken to fix the issue in web services.
The contributions of our proposed work are as follows:
1. We propose a point anomaly detection framework that uses dynamic features of web
services. This is a hybrid framework that combines performance prediction and anomaly
detection from QoS features of web services.
2. We evaluate the proposed point anomaly detection framework and perform simulated
data collection of dynamic features of web services.
3. We compare the performance of the proposed approach with state-of-the-art anomaly
detection approaches.
The remainder of this paper is structured as follows.
In Section 2, we present background on anomaly detection approaches, while in Section 3,
we describe the proposed anomaly detection approach. Next, in Section 4, we provide the
results of a comparison between the proposed method and existing anomaly detection
approaches. The conclusion and ideas for future work are presented in Section 5.

732 CMC, vol.64, no.2, pp.729-752, 2020

2 Background
The anomaly detection problem is the problem of detecting patterns that do not conform to
the expected behavior in a dataset of web services. In addition, Sauvanaud et al. consider
erroneous behavior of web services and SLA to be performance anomalies [Sauvanaud,
Kaâniche, Kanoun et al. (2018)]. These anomalies arise from dynamic workloads and the
configuration of web services. Anomaly descriptions are built upon a relationship between
the behavior of web services and the performance fitness level. Various types of anomalies
exist and have been discussed in the literature. For example, a point anomaly represents a
point at which a web service deviates from the range of expected values (e.g., memory
usage deviation from the mean value and latency spikes [Tsuda, Samejima, Akiyoshi et al.
(2014); Li, Yuan, Shen et al. (2019)]. The second type of anomaly is a collective anomaly,
which is a homogenous deviation of a group of data points from normal regions of the
remaining data. The third type of anomaly is a contextual anomaly, which arises from
specific conditions such as workload (e.g., low, moderate, and high levels). The fourth type
of anomaly is known as a pattern anomaly, which arises from high dimensional data that
appear in any dimension [Kim and Cho (2018)].
Web services anomaly detection is generally aimed at discovering errors by analyzing
performance-related data. The goal is to verify whether a web service behaves
according to expectations [Cotroneo, Natella and Rosiello (2017)]. Most existing
anomaly detection approaches are focused on intrusion or misuse detection. However,
our research contributes to detecting performance anomalies and their impact on the
performance of web services.
In a similar work, Wang et al. [Wang, Wei, Zhang et al. (2014)] proposed a payload
anomaly detection approach for web applications. The authors aimed to improve the
reliability of web applications by detecting behavior that did not conform to the normal
behavior of web applications. Anomalies occur when resource utilization exceeds a
specified amount, or when customers rush to perform online purchase transactions on
special events, including promotions and holidays such as Christmas. Workload patterns,
which are access patterns and request volume, can be used to detect contextual anomalies.
Similar to our proposed work, Jin et al. [Jin, Cui, Li et al. (2018)] employed the multiple-
classifier payload-based anomaly detector (McPAD) model to extract features from
network traffic of web applications. Based on the extracted features, anomalies are detected
using a feature clustering algorithm. The proposed McPAD model has limitations in
anomaly detection based on prior anomaly probabilities because certain words (SELECT,
XSS, and UNION) used for web attacks are given less priority than other words. Jin et al.
[Jin, Cui, Li et al. (2018)] extended this model and built a prior knowledge concerning the
collection of common words that are widely used during anomalies.
Rodriguez et al. [Rodriguez, Kotagiri and Buyya (2018)] discussed performance
anomalies in the context of the increasing size of scientific applications and their
performance. Both resource contention and failures have been considered leading causes
of delay in the workflow runtime. To address this delay, the researchers proposed a
hierarchical temporal memory (HTM) metric-based infrastructure model for the early
detection of anomalies. Based on timestamp t, task start time e, and measure of resource
consumption c, the proposed HTM model provides an anomaly output score. The

Performance Anomaly Detection in Web Services: An RNN 733

proposed HTM model has been evaluated in biological applications, such as BLAST and
1000 Genome. The results demonstrated that the performance of the HTM model is
superior to that of other approaches in anomaly detection. The application of the HTM
model can also be applied to web service information. Therefore, the current study is
aimed at the detection of anomalies while web services receive dynamically changing
workloads from users.
In a recently published work, Jayathilaka et al. [Jayathilaka, Krintz and Wolski (2019)]
detected performance anomalies by observing the workload data in cloud services.
Sudden changes in users’ requests and slow database queries were identified as the
leading causes of performance anomalies. In addition, Ghaith et al. [Ghaith, Wang, Perry
et al. (2016)] proposed a performance testing method for detecting regression anomalies
caused by software updates. Existing methods perform various performance regression
testing in the context of applied workloads. This can become a lengthy process that
requires extra effort for performance testing. The authors’ proposed approach has been
evaluated on two systems to identify performance regression anomalies. Real anomalies
are isolated from other anomalies that emerge from workload changes.
Kim et al. [Kim and Cho (2018)] proposed the C-LSTM model to detect anomalies in
traffic data of online web systems. C-LSTM combines a convolutional neural network
(CNN), deep neural network (DNN), and LSTM. The proposed method extracted spatial
and temporal information from complex raw data. The CNN layer was used to reduce the
frequency variation in the spatial data. The main limitation of this approach is that many
point anomalies, contextual anomalies, and collective anomalies were not detected. The
second problem that remains unaddressed by this approach is the large delay in detecting
anomalies in real data. In a more recent work, Li et al. [Li and Niggeman (2020)]
proposed a geometric method for anomaly detection in complex industrial automation
systems. The proposed method is effective for one-class classification by developing a
boundary, such as non-convex hulls. Convex-hull-based methods provide an intuitive
solution to the problem of one-class classification for convex data; however, they fail to
classify non-convex data collected from cyber-physical production systems (CPPSs).
Data points outside the boundary are considered anomalous data points. This method is
effective because no prior knowledge is necessary; boundaries are compact and efficient
representations, and generalization can be adjusted. However, a decision boundary drawn
from the exact border points by the normal behavior of data may create the overfitting
problem of the proposed method, which should be addressed in future work.
A point anomaly is one of the parameters of the univariate category of anomalies that
occur in several types of data. Other parameters include contextual and collective
anomalies. In contrast to the latter two anomalies, a point anomaly is easier to detect
because it corresponds to an excessive value from individual samples [Pilastre, Boussouf,
D’Escrivan et al. (2020)]. We handle the simulated data of web service performance
metrics in our proposed framework to detect anomalous points, and consider a point
anomaly a more appropriate parameter. Prior to our proposed work, Canizo et al.
[Canizo, Triguero, Conde et al. (2019)] investigated anomaly detection in time series data
of an industrial case study. The multi-head CNN method proposed in their study detected
three types of anomalies. A point anomaly is one type that considers peak points in the

734 CMC, vol.64, no.2, pp.729-752, 2020

sensor data. In their study, Canizo et al. referred to peak points that descend from normal
points as anomalous points. The main difference between our proposed method and the
multi-head CNN method is that our approach considers all points beyond the normal
points (i.e., either higher or lower than the normal points). In contrast, the study by
Canizo et al. was limited in that it only considered points descending beyond the normal
points to be anomalous, while considering ascending points to be non-anomalous points.
Jia et al. [Jia, Chen, Gao et al. (2019)] also argued that points or instances near the center
point have a small anomalous effect, while those far from the center point have a large
impact. This implies that a point that is far away from the center is an anomalous point.
Wang et al. [Wang, Jing, Qi et al. (2019)] proposed the adaptive label screening and
relearning (ALSR) approach, which is aimed at detecting differences between
anomalous points. Because earlier approaches focus more on individual points rather
than events, the labels of continuous anomalies and their intervals are not appropriately
handled, and the predicted performance is not precise in real-world situations. To
overcome this problem, the ALSR approach uses continuous label screening and
intervals of anomalies for finer granularity. The ALSR approach is effective with
mainstream performance indicators. However, the performance of this approach is
affected by the diversity of performance indicators.
Ding et al. [Ding, Ma, Gao et al. (2019)] investigated anomaly detection in system
design, as high-quality anomaly detection can ensure the high performance of various
applications, such as disaster prevention, system monitoring, and intrusion detection. To
overcome the above-stated anomaly detection issue, the researchers proposed an anomaly
detection approach of time series information by combining LSTM and the Gaussian
matrix model (GMM). The former model best evaluates real-time anomalies in time
series information, while the latter model detects possible point anomalies. The method
proposed by Ding et al. performs better than state-of-the-art methods in univariate time
series with the best convergence; however, it displays performance degradation when
applied to multivariate (high-dimensional) time series data for anomaly detection.
In summary, existing research on anomaly detection identifies point anomalies,
contextual anomalies, collection anomalies, and pattern anomalies in different types of
software systems. For each type of anomaly detection, several methods have been
proposed. The proposed anomaly detection methods focus on the univariate and
multivariate features of datasets. However, research is necessary for handling anomaly
detection in multivariate datasets because complexity increases with a high-dimensional
dataset. None of the aforementioned studies considers performance anomaly detection in
a dynamic QoS dataset collected in a simulated environment. However, the existing
approaches inspire us to locate the performance points that surpass the normal points.

3 Proposed anomaly detection approach
In this section, we describe the proposed anomaly detection framework, which is
illustrated in Fig. 1.

Performance Anomaly Detection in Web Services: An RNN 735

Figure 1: Proposed anomaly detection framework

To predict performance anomalies in web services, variants of the recurrent neural
network (RNN) model, such as GRU, LSTM, and SimpleRNN, have been proposed.
Before this, the aforementioned sequential models including GRU, LSTM, and
SimpleRNN were successfully applied to estimate the performance of web services from
time series data [Hasnain, Fermi, Lim et al. (2019)]. The proposed GRU model is the
most effective of the approaches when there are large fluctuations in the performance of
web services. The problem of performance prediction and anomaly detection has long
been unresolved; therefore, we implemented deep learning methods to detect point
anomalies in web services. The proposed anomaly detection framework is based on two
phases and several sub-phases, as illustrated in Fig. 1.
We have proposed to use training and testing phases, as shown in Fig. 1. The training
phase of the proposed anomaly detection framework involves further steps, including
simulated dataset collection, data pre-processing, and time-series data. Once these steps
are completed, we train the sequential model (GRU, LSTM, and SimpleRNN) by using
the time series data of web services. Upon the completion of the training of sequential
models, we evaluate the sequential model at the testing phase of the proposed framework.
An appropriate portion of the same simulated dataset is used to test the sequential models.
Performance prediction results, as well as anomaly detection results, are reported in this
phase of the proposed framework. Both web services users and web service managers get
alarmed when performance anomalies are detected.

3.1 Overview of anomaly detection approach
In this subsection, we present an overview of the anomaly detection framework. Anomaly
detection approaches require benchmark datasets to evaluate and compare their
performance with other detection methods. We used a benchmark QoS dataset with a
large number of performance instances of web services [Zheng, Zhang and Lyu (2010,

736 CMC, vol.64, no.2, pp.729-752, 2020

2012)]. The dataset contained outdated information regarding throughput and response
time quality metrics. Moreover, aforementioned dataset does not contain the workload
information regarding web services users. In this paper, we aim to bridge this gap by
describing time series data collection in a simulated environment and analyze the data to
identify performance problems in web services.
Simulation dataset collection is the first step in the training phase of the proposed
framework. The procedure for dataset collection is as follows. First, we created a
simulation environment to collect quality features of web services. The purpose was to
collect the time series data of web services for different workloads. The WSDream
dataset has been widely used in published works [Ma, Wang, Hung et al. (2015); Raj,
Mahajan, Singh et al. (2019)]. Because this dataset consists of historical information
about web service quality attributes, we were unable to use the collected information
because it was outdated and less feasible for the proposed framework. Instead, we used
concurrent workloads from 100 users and 200 users during the simulation with the help
of Apache Jmeter 5.1.1. Our previous work outlines the proposed strategy of workloads
(concurrent users) and other requirements [Hasnain, Pasha and Ghani (2020)]. Once the
Apache Jmeter node was established on the computer system, we collected web service
information. From the simulation environment, we collected time series data for 40 days
and stored the data in a CSV file for further data preprocessing. We then fed the
preprocessed data into our RNN methods for training. It is worth noting that no
anomalous signal filtering process was used during the training phase in this method. We
simultaneously trained the prediction and detection modules of the selected RNN
methods. The proposed framework detects anomalous signals (performance) in advance,
which allows the web service manager to examine the abnormal data points and modify
the actions of web services developers and testers to correct them.

3.2 Prediction
The proposed prediction method module is intended to forecast the performance of web
services as well as abnormal signals of web services. The prediction of abnormal and
normal sequences of information has not been performed in previous studies. Therefore,
our proposed anomaly detection framework is the first to both evaluate the performance
of web service information from time series simulated data and detect unusual behavior
of web services. This enables web service managers to obtain forecasted information on
performance and abnormalities in web services. Because web service managers receive
information in advance about anomalous behavior of the web service, they can correct
this behavior to avoid performance degradation.
Suppose that we have sequential simulated data with an input d0: t [a0, a1…at] in web
services such as throughput, where a represents univariate data and t represents the time
step. We perform data transmission proposed in a paper by Wang et al. [Wang, Li, Fu et al.
(2019)], in which the authors predicted wind power to address fluctuations in its features.

3.2.1 Gated recurrent unit
The GRU with the forward pass is expressed as follows:
𝑧𝑧𝑡𝑡 = σ (𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) (1)

Performance Anomaly Detection in Web Services: An RNN 737

𝑟𝑟𝑡𝑡 = σ (𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) (2)
ℎ′𝑡𝑡 = tanh (𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ𝑥𝑥(𝑟𝑟𝑡𝑡ℎ𝑡𝑡−1) + 𝑏𝑏𝑥𝑥) (3)
ℎ𝑡𝑡 = (𝑧𝑧𝑡𝑡)(ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ℎ′𝑡𝑡) (4)
tanh(𝑡𝑡) = (𝑒𝑒𝑡𝑡 − 𝑒𝑒−𝑡𝑡)/(𝑒𝑒𝑡𝑡 + 𝑒𝑒−𝑡𝑡) (5)
σ(𝑡𝑡) = 1/(1 + 𝑒𝑒−𝑡𝑡), (6)
where 𝑧𝑧𝑡𝑡 represents the update gate that aims to ensure that a part of current hidden state
ℎ𝑡𝑡 updates, and ℎ𝑡𝑡−1 denotes the last time output. In addition, σ and tanh are two
different activation functions that are used to represent the gated mechanism and
normalize the input information, respectively, and represents the dot
products. Wxz, Wxc , and Wxr are weight vectors pertaining to the current input.

Figure 2: Overview of gated recurrent unit (GRU) architecture

For the representation of the GRU model as an RNN model, a neuron is designated as a
GRU. The new architecture of the RNN-based GRU model is presented in Fig. 2. Simple
RNN parameters are used to train the method, and can be calculated by following the
backpropagation network as follows:
𝑜𝑜𝑡𝑡 = 𝑉𝑉𝑉𝑉(𝑈𝑈𝑋𝑋𝑡𝑡 + 𝑊𝑊𝑉𝑉�𝑈𝑈𝑋𝑋𝑡𝑡−1 + 𝑊𝑊𝑉𝑉(𝑈𝑈𝑋𝑋𝑡𝑡−2 + 𝑊𝑊𝑉𝑉(𝑈𝑈𝑋𝑋𝑡𝑡−3 + ⋯)))� (7)
Here, 𝑜𝑜𝑡𝑡 denotes the output of one neural cell. U, V, and W denote the weight matrices of x,
h, and the output layer, respectively, and f (.) is the representation of the activation function.
A standard GRU model is capable of handling the time series (sequential) data efficiently
and eases the vanishing problem of RNNs. Also, the gating structure of the GRU model
can lead to the omission of important contents in the time series data. As shown in Fig. 2,
there is the input layer, which is composed of many neurons. Above the input layer, there
is a middle layer, which is also known as hidden layer. Each neuron in the output layer
corresponds to the output space, as shown in Fig. 2. The middle layer, which is the one
where the primary function of the GRU model takes place. So any change in the cell
status depends on the working of reset and update gates.

3.2.2 Long short term memory
LSTM is another derivation of the RNN that is widely used to address sequential
prediction problems. Like the GRU model, LSTM also aims to overcome the gradient
vanishing problem that is observed in RNNs [Kim and Chung (2019)]. Due to this

738 CMC, vol.64, no.2, pp.729-752, 2020

problem, the gradient is further reduced when it returns to the early layers. As a result,
learning in the earlier layers is inadequate, and the performance of the neural network
decreases [Liu, Li, Chen et al. (2019)]. To overcome this limitation, the LSTM model is
designed alongside three gates, including the input gate, output gate, and forget gate.
These gates aid in remembering the results of the input sequences that are computed
much earlier. The importance of LSTM in prediction is due to its cell state, which
updates after every time step [Thara, PremaSudha and Xiong (2019)]. The cell state at
moment t is recorded as 𝑐𝑐𝑡𝑡, which can be regarded as the memory unit of LSTM. Reading
as well as memory modification can be achieved by controlling the input, output, and
forget gates. These gates are generally described with tanh or sigmoid functions. The
structure of the LSTM network is illustrated in Fig. 3.

Figure 3: Overview of long short term memory (LSTM) unit

Fig. 3 provides an illustration of the structure and workflow of the LSTM unit. At each
time, an LSTM unit obtains an input from the current state known as 𝑥𝑥𝑡𝑡 and hidden state
known as ℎ𝑡𝑡−1 of the LSTM using three gates. In addition, each door obtains the internal
information input that is the state of memory unit 𝑐𝑐𝑡𝑡−1. Each gate operates on the data
obtained from various sources, and the logic function defines whether the gate is active
after it receives the inputs. A nonlinear function transforms the input obtained at the input
gate. It also superimposes the memory cell's state that is processed by the forget gate to
construct a new memory cell state, 𝑐𝑐𝑡𝑡. Finally, memory cell state 𝑐𝑐𝑡𝑡 leads the LSTM unit
to output ℎ𝑡𝑡 from operation of the nonlinear function as well as dynamic control by the
output gate. Calculation of the above is as follows:
𝑉𝑉𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥� (8)
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) (9)
𝑐𝑐𝑡𝑡 = 𝑉𝑉𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 tanh(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) (10)
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑥𝑥) (11)
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 tanh(𝑐𝑐𝑡𝑡), (12)

Performance Anomaly Detection in Web Services: An RNN 739

where 𝑊𝑊𝑥𝑥𝑥𝑥, 𝑊𝑊𝑥𝑥𝑥𝑥, 𝑊𝑊𝑥𝑥𝑥𝑥 , and 𝑊𝑊𝑥𝑥𝑥𝑥 represent the weight matrices that connect the input data
signal 𝑥𝑥𝑡𝑡 ; 𝑊𝑊𝑥𝑥𝑥𝑥 , 𝑊𝑊𝑥𝑥𝑥𝑥 , and 𝑊𝑊𝑥𝑥𝑥𝑥 represent the diagonal matrices that combine the output
vectors 𝑐𝑐𝑡𝑡 with the gate functions of the neuron activation functions; 𝑊𝑊ℎ𝑥𝑥 ,
𝑊𝑊𝑥𝑥ℎ ,𝑊𝑊ℎ𝑥𝑥 , and 𝑊𝑊ℎ𝑥𝑥 represent the weight matrices that combine the hidden layer output
signal ℎ𝑡𝑡; 𝜎𝜎 represents the activation function that is usually tanh or a sigmoid function;
and 𝑏𝑏𝑥𝑥 ,𝑏𝑏𝑥𝑥,𝑏𝑏𝑥𝑥, and 𝑏𝑏𝑥𝑥 represent the offset vectors.

3.2.3 SimpleRNN
For the performance prediction of web services, SimpleRNN has the same structure as
GRU and LSTM for implementation in the Keras framework. To execute SimpleRNN,
GRU, or LSTM, layers are replaced with SimpleRNN layers (Zhang et al. [Zhang, Xiong,
He et al. (2018)]. A simple RNN architecture is presented in Fig. 4.

WWW

Ý

V

U UU

Figure 4: SimpleRNN network

Fig. 4 illustrates a simple architecture of the SimpleRNN model adopted from an existing
study [Reddy and Delen (2018)]. Each node in this figure represents a layer of network
units at each time step. Three meaningful connections, such as an input to a hidden layer,
a hidden layer to a hidden layer, and a hidden layer to an output layer, are displayed in
Fig. 4. Here, the U, W, and V matrices represent the weighted connections from an input
to a hidden layer, a hidden layer to a hidden layer, and a hidden layer to an output layer,
respectively. A scalar Y value is produced by passing the final weight matrix through the
sigmoid function that is classified as a binary variable, and it is referred to as Ý. For
comparison of Y-Predicted and the Y-actual, a loss function is used. It is worth noting
that the same weights are used at each time step.
In addition to SimpleRNN, two popular enhancements to SimpleRNN have been
developed. GRU and LSTM are extensions of SimpleRNN that can store prior

740 CMC, vol.64, no.2, pp.729-752, 2020

information of extracted features in memory. In this study, we use GRU and LSTM along
with SimpleRNN to compare their performance on a simulated dataset of web services.

3.3 Detection method
The GRU method was initially proposed by Cho et al. [Cho, Merriënboer and Gulcehre
(2014)], and has a more straightforward architecture than the LSTM method. However,
SimpleRNN and LSTM are still effective in performance prediction and anomaly
detection for fluctuating behavior of web services [Hasnain, Fermi, Lim et al. (2019)].
The GRU method is used to avoid the limitations of the SimpleRNN and LSTM methods.
A GRU method with its update and reset gate vectors is capable of determining what
information that is part of the input should be memorized, and what information should
be forgotten [Kong, Tang, Deng et al. (2020)]. In addition, a GRU method can keep
performance stable due to fewer parameters that can suppress overfitting. A GRU method
contains an information modulation process, which is similar to LSTM; however, a GRU
method does not contain a separate memory cell. The detection method module, as
illustrated in Fig. 1, is intended to receive input signals (throughput value) and determine
whether any of the signals are anomalous.
The presence of anomalies leads to inconsistency in signal reconstruction because RNN
methods exploit their reconstruction Therefore, an auto-encoder method is trained on the
data, and a threshold value above the reconstruction is known as an anomaly [Wielgosz,
Mertik, Skoczeń et al. (2018); Habler and Shabtai (2018)]. Previous papers have dealt
with different types of signals, and the approach based on the SimpleRNN, LSTM, and
GRU methods can be effectively used in the domain of web services anomaly detection.

3.4 Anomaly threshold frequency
An automated threshold frequency was determined by considering the simulated data of
the quality metrics of web services, as presented in Tab. 1.

Table 1: Threshold statistics for two different workloads

Statistics
 100 Users 200 Users
N Valid 40 40

Missing 0 0
Mean 11.955 19.015
Median 12.150 18.350
Std. Deviation 2.1957 4.0623
Skewness -0.463 -0.056
Std. Error of Skewness 0.374 0.374
Kurtosis 0.799 -1.225
Std. Error of Kurtosis 0.733 0.733
Minimum 5.9 11.6
Maximum 15.7 25.3

Performance Anomaly Detection in Web Services: An RNN 741

Tab. 1 provides an illustration of the statistics extracted on the collected simulated dataset
over 40 days. We verified all errors in the collected data and performed preprocessing to
clean the data. The statistics in Tab. 1 indicate that no values were missing, and the mean
and standard deviation (SD) values for two workloads were calculated.
Prior to the execution of the RNN anomaly detection methods, we determined the
threshold values for the simulated workloads. Therefore, a threshold value is arbitrary
because it is difficult to discern, agreeing for the detection of all anomalies, and would be
adequate relying on the results achieved from the simulated data. A possible combination
of threshold frequency might be the mean and SD, which can be used to filter out the
anomalous points from time series information of web services. This representation
allows us to compute the mean and SD values of any type of data equivalent with a
number of week’s information. However, the mean value and SD value can be updated to
increase the size of the data for many weeks and keep the proposed method up to date
while changes occur in time series information [Guigou, Collet and Parrend (2019)].
This method is robust and lightweight because the mean and SD values of time series
information over a long period of time can be easily maintained. Therefore, this method
can handle changes in time series information in web services. First, a threshold was
applied to simulated data to mark the information contained in the training dataset [Tian,
Azarian and Pecht (2014)]. This was because the training data contained both anomalous
and normal values of web services. For instance, we used 11.955 and 19.015 as
thresholds for a 100-user workload and 200-user workload, respectively. We proposed
adding ±1.00 to the threshold value to represent the normal behavior of web services.
Therefore, any predicted value that exceeded 11.955±1.00 was represented as an
abnormal value and was also considered a performance anomaly in the case of the 100-
user workload. Similarly, a value that was above and below 19.015±1.00 was considered
an anomaly in the case of the 200-user workload. Traditional methods use mean and SD
with the mean plus two SDs [Zuo, Wang and Chen (2015)]. We reduced the mean
positive and negative values to 1 because web service users are not satisfied with web
services with high performance fluctuations.

4 Experiments
4.1 Dataset
To test our proposed performance prediction and anomaly detection, we used the simulated
dataset of web services with throughput as a quality attribute. The dataset consisted of both
abnormal and normal behavior of web services in terms of the quality attributes. The value
of the quality attribute was obtained from the installed software, which enabled the
simulation environment in the lab. Each point in the dataset was obtained using a uniform
environment for 40 consecutive days. Web service (WS1) data collected from the
simulation environment with two different workloads is plotted in Fig. 5.

742 CMC, vol.64, no.2, pp.729-752, 2020

Figure 5: Example of simulation information in which two workloads are represented by
different colors in terms of the throughput of web service 1 (WS1)

Fig. 5 provides a representation of the actual data obtained from simulation using two
workloads of 100 users and 200 users, respectively. To visualize normal states in the
actual simulated dataset, we changed the number of users. When the number of users was
changed from 100 to 200, the average throughput value decreased, and consequently,
web service performance degraded. Thus, for the 200-user workload, the throughput of
the web service demonstrated more fluctuations than for the 100-user workload.

4.2 Evaluation metric
To evaluate the performance of our proposed GRU method and baseline (SimpleRNN
and LSTM) methods, the mean absolute error (MAE) was employed as the criteria.
Within the MAE (%), a smaller MAE represents superior performance of the method.
The MAE equation is expressed as follows:
(MAE) = 1

n
∑ absn
i=1 �yi − λ(xi)�, (13)

where yi and n represent the predicted value and a total number of predicted values at
any given time, respectively. In conjunction with MAE, the mean absolute percent error
(MAPE) metric can be used to demonstrate the proportional relationship between the
predicted value and actual value. In addition to these metrics, the mean square error
(MSE) and root mean square error (RMSE) metrics are sensitive to outliers that can limit
their efficacy [Jackson, Roberts, Nelsen et al. (2019)]. Thus, we selected the simplest
metric, MAE that is widely used to measure absolute error. In addition, the MAE metric
avoids the problem of errors canceling each other out, and can accurately reflect actual
error prediction.

4.3 Results and analysis
In this subsection, we present the performance prediction and anomaly detection results
and their analysis.

Performance Anomaly Detection in Web Services: An RNN 743

4.3.1 Performance prediction results
Here, we are interested in predicting the performance of a web service before the
detection of anomalies. GRU, SimpleRNN, and LSTM were compiled, and the
comparison results are provided in Figs. 6 and 8 for two different workloads.

Figure 6: Performance prediction results from 100-user workload data

Fig. 6 illustrates the results from 100-user workload simulated data that were calculated
to predict the performance of a web service for the next seven timestamps (days).

Table 2: Parameters and epochs
Prediction
Method

Number of total
params

Number of trainable
params

Number of
epochs

Neuron at dense
layer

SimpleRNN 30,401 30,401 800 100
LSTM 121,301 121,301 800 100
GRU 91,001 91,001 800 100

Each performance prediction method was compiled on 800 epochs with 100 neurons in
the dense layers. In our experiments on simulated data of 100-user and 200-user
workloads, the total trainable parameters, biases, and weights combined were 30,401,
121,301, and 91,001 for the SimpleRNN, LSTM, and GRU methods, respectively. The
total number of parameters was equal to the sum of the trainable parameters for each
method. Our selected prediction methods (SimpleRNN, LSTM, and GRU) displayed
better prediction accuracy at 800 epochs, as illustrated in Tab. 4.

744 CMC, vol.64, no.2, pp.729-752, 2020

Figure 7: SimpleRNN, LSTM, and GRU methods error loss on prediction from
simulation data of 100-users. Line in plot (a) represents the SimpleRNN method loss
during the performance prediction. Line in plot (b) represents the LSTM method loss
during the performance prediction, while line in plot (c) represents the GRU method loss
of 6.0×102

The number of epochs influences the performance of a prediction method. Each method
has a fixed architecture, and the loss function varies with the prediction process. As
illustrated in Fig. 7(a), prediction results are apparent with errors although the loss
decreases without stabilizing. In comparison with the SimpleRNN and GRU prediction
methods, the LSTM method is less stable as it reaches the end of the epochs. Therefore,
both SimpleRNN and LSTM are less stable and have a larger number of prediction errors.
In contrast, the GRU method, as illustrated in Fig. 7(c), is more stable with a fixed
number of epochs. This indicates that the GRU model is more effective in predicting the
performance of web services.

Performance Anomaly Detection in Web Services: An RNN 745

Figure 8: Performance prediction results from 200-user workload data

Fig. 8 presents the prediction results of 200-user workload data using RNN methods. In
comparison to the SimpleRNN and LSTM methods, GRU exhibits performance
prediction that is similar to neighboring results for the next seven timestamps (days).

Figure 9: SimpleRNN, LSTM, and GRU methods error loss on prediction from
simulation data of 200-users. Line in plot (a) represents the SimpleRNN method loss
during the performance prediction. Line in plot (b) represents the LSTM method loss
during the performance prediction, while line in plot (c) represents the GRU method loss
of 6.0×102

746 CMC, vol.64, no.2, pp.729-752, 2020

Fig. 9 demonstrates that the error loss of the three performance prediction models
decreases with an increase in the number of epochs from 200-user simulated data.
However, the GRU method becomes more stable than the SimpleRNN and LSTM
methods, and therefore, performance prediction by GRU is more effective than by the
latter two methods.

4.3.2 Anomaly detection results
To determine whether an anomaly has occurred as a detection, a threshold is used in our
proposed detection method. Anomalous points, along with their frequency for each
detection method, are provided in Tab. 3. By using these anomalous points, we calculated
the overall percent of anomalies. We used our proposed threshold values for each detection
method to determine the total anomalous points for the data of two different workloads.
We observed a total of 47 points. Of these, 40 points represent the actual data, and the
remaining seven points are the predicted points. The upper bound and lower bound define
the space in which normal performance information lies. Our proposed anomaly detection
framework sets the values of the upper bounds and lower bounds in Section 3.4 for two
different workloads. An anomalous threshold value (11.955±1.00) is used to observe the
upper bound (12.955) and lower bound (10.955) for the 100-user workload. Similarly,
anomaly threshold frequency (19.015±1.00) statistics were further elaborated by specifying
the upper bound (20.015) and lower bound (18.015) values for the 200-user workload.
Points emerging far from the upper bound and lower bound are considered abnormal or
anomalous points. The false alarm rate can be determined by calculating data points beyond
the upper bound and lower bound to avoid the risk of performance degradation. Although
mitigating the effects of the detected point anomalies is outside of the scope of this study, it
is advised to keep web services in the region between the two bounds.
Based on the actual and predicted performance points, we employed anomaly detection to
calculate the anomalous points for both actual and predicted points. Based on the
proposed criteria of anomalous point detection, we used the statistics provided in Tab. 1.
The proposed measures are helpful for determining anomalous points, which are beyond
11.955±1.00 and 19.015±1.00 for two different workloads. Using these statistics, we
determined point anomalies from two different workloads, as presented in Tab. 3.

Table 3: Point anomalies detected by RNN methods
Detection
method

Workload Actual
points

Predicted
points

Anomalous
points in the
actual data

Anomalous
points in
predicted data

Total
anomalous
points

Percent of
anomalies
(%)

Simple
RNN

 100-user 40 07 20 01 21 44.68
 200-user 40 07 35 07 42 89.36

LSTM 100-user 40 07 20 06 26 55.32
 200-user 40 07 35 05 40 85.11

GRU 100-user 40 07 20 06 26 55.32
 200-user 40 07 35 00 35 74.47

Performance Anomaly Detection in Web Services: An RNN 747

Tab. 3 presents detailed information about point anomalies and their detection in the
actual data and predicted data by the proposed anomaly detection framework. We
collected simulated data of 40 points (timestamps), and out of these points, we detected
20 and 35 anomalous points in the 100-user and 200-user workloads, respectively. A 100-
user workload is more favorable for a web service manager, as it has a smaller number of
points beyond the threshold performance values. Upon increasing the workload, the
actual data collected from the simulation demonstrated a large number of points beyond
the upper and lower bounds of the threshold, as indicated in Tab. 3.
We observed variation in the predicted anomalous points for three prediction methods.
All methods were implemented in the Colab environment with Keras layers. The GRU
method and other two methods were composed of one method layer and one dense layer.
The number of epochs was set to 800 because the GRU method displayed better
performance for this number of epochs. To compare the efficiency of the different
prediction methods, we performed anomaly detection. LSTM and GRU were more
effective than the SimpleRNN method in the detection of point anomalies for the 100-
user workload. However, SimpleRNN was more effective than GRU and LSTM in the
detection of point anomalies for the 200-user workload. This indicates that SimpleRNN is
effective in detecting abnormal points in a simulated dataset.

4.3.3 Comparison of performance of RNN methods
To verify the effectiveness of the proposed RNN methods, we conducted experiments on
time series simulated data from two different workloads. As stated earlier in Section 4.3,
for all simulations (including data collection, prediction, and detection), we used the
same settings for software and hardware. However, for the performance prediction of
web services, we adjusted the parameters of the RNN methods, including the
SimpleRNN, LSTM, and GRU methods. We used the MAE metric to evaluate the
prediction performance of web services. The comparison results are provided in Tab. 4.

Table 4: Performance accuracy comparison
Workload Feature MAE%

Throughput Simple RNN LSTM GRU
100-user 0.96 0.93 1.02
200-user 1.08 0.93 1.56

Tab. 4 presents a comparison of the performance of the three RNN methods. The
SimpleRNN and LSTM methods were used as baseline methods, while the GRU method
was used as the main contender. The results in Tab. 4 indicate that LSTM is superior to the
SimpleRNN and GRU methods, as it achieves a lower MAE% for both 100-user and 200-
user workloads. The comparison results demonstrate that all three prediction methods have
a high prediction accuracy in web services performance prediction and anomaly detection.
A smaller value of MAE (%) for a method indicates better prediction quality.

748 CMC, vol.64, no.2, pp.729-752, 2020

4.3.4 Comparison between proposed point anomaly detection framework and other
approaches
Existing point anomaly detection approaches have been evaluated on datasets other than
web service dynamic quality features, and our proposed framework is the first to employ
the dynamic features of web services. To demonstrate the effectiveness of the proposed
framework, we performed evaluation using the detection rate (DR) and maximum
accuracy metrics.

Table 5: Performance comparison of our proposed framework
Study Approach Detection

rate
Maximum
accuracy (%)

[Hundman, Constantinou,
Laporte et al. (2018)]

LSTM 59% --

[Poornima and Paramasivan
(2020)]

Principal component
analysis (PCA)

-- 91.00

Support vector machine
(SVM)

-- 89.00

Decision Tree -- 82.00
[Garg, Kaur, Batra et al.
(2020)]

Boruta Firefly Aided
Partitioning DBSCAN
(BFA- DBSCAN)

-- 98.90

Our study SimpleRNN 89.36 99.04
LSTM 85.11 99.07
GRU 74.47 98.98

Tab. 5 presents the performance evaluation results of the proposed framework and state-
of-the-art anomaly detection approaches. The performance comparison results in Tab. 5
indicate that our proposed framework achieved a higher DR than existing approaches.
Moreover, maximum accuracy values such as 99.07, 99.04, and 98.98 indicate that the
proposed framework is superior in point anomaly detection in web services.

5 Conclusion and future work
In this paper, we proposed an application of RNN prediction and anomaly detection
methods. Our target was the GRU method along with SimpleRNN and LSTM variants to
analyze simulated data of throughput as a quality metric of web services. We used a
simulated dataset of web services that contained throughput quality data from 100 and
200 users for 40 days. We preprocessed the data to prepare it for RNN variant structures.
Three RNN variants were used for performance prediction and anomaly detection. In this
paper, we present a performance prediction and anomaly detection framework that
employs threshold frequency. This anomaly detection framework, which is inspired by
the paradigm of deep learning methods, forecasts the seven-step performance of web
services. Then, anomalous points are determined from the behavior of web services. We
performed a theoretical performance comparison of the proposed GRU method with other
RNN variants. Our proposed GRU method and other methods including LSTM and

Performance Anomaly Detection in Web Services: An RNN 749

SimpleRNN were able to effectively predict the performance of web services. Based on
the simulated information and predicted performance, the proposed framework can be
used to detect anomalies in web service quality metrics information.
In future work, we plan to extend our proposed anomaly detection framework from the
perspective of design and application. Regarding design, we plan to use deep learning for
the detection of high dimensionality in the sample data, which has been rarely undertaken
in the literature. Second, we plan to extend the proposed framework in its applications for
multivariate datasets with the aim of improving the quality of the framework.

Acknowledgement: The authors would like to thank School of Information Technology
Malaysia, Monash University for providing research facilities.

Funding Statement: The authors receive no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Bigonha, M. A.; Ferreira, K.; Souza, P.; Sousa, B.; Januário, M. et al. (2019): The
usefulness of software metric thresholds for detection of bad smells and fault prediction.
Information and Software Technology, vol. 115, pp. 79-92.
Canizo, M.; Triguero, I.; Conde, A.; Onieva, E. (2019): Multi-head CNN-RNN for
multi-time series anomaly detection: an industrial case study. Neurocomputing, vol. 363,
pp. 246-260.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F. et al.
(2014): Learning phrase representations using RNN encoder-decoder for statistical
machine translation. Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, pp. 1724-1734.
Cotroneo, D.; Natella, R.; Rosiello, S. (2017): A fault correlation approach to detect
performance anomalies in virtual network function chains. IEEE 28th International
Symposium on Software Reliability Engineering, pp. 90-100.
Ding, N.; Ma, H.; Gao, H.; Ma, Y.; Tan, G. (2019): Real-time anomaly detection based
on long short-term memory and gaussian mixture model. Computers & Electrical
Engineering, vol. 79, pp. 1-11.
Garg, S.; Kaur, K.; Batra, S.; Kaddoum, G.; Kumar, N. et al. (2020): A multi-stage
anomaly detection scheme for augmenting the security in IoT-enabled applications.
Future Generation Computer Systems, vol. 104, pp. 105-118.
Ghaith, S.; Wang, M.; Perry, P.; Jiang, Z. M.; O’Sullivan, P. et al. (2016): Anomaly
detection in performance regression testing by transaction profile estimation. Software
Testing, Verification and Reliability, vol. 26, no. 1, pp. 4-39.

750 CMC, vol.64, no.2, pp.729-752, 2020

Guigou, F.; Collet, P.; Parrend, P. (2019): SCHED A: lightweight euclidean-like
heuristics for anomaly detection in periodic time series. Applied Soft Computing, vol. 82,
pp. 1-14.
Hababeh, I.; Thabain, A.; Alouneh, S. (2019): An effective multivariate control
framework for monitoring cloud systems performance. KSII Transactions on Internet &
Information Systems, vol. 13, no. 1, pp. 86-109.
Habler, E.; Shabtai, A. (2018): Using LSTM encoder-decoder algorithm for detecting
anomalous ADS-B messages. Computers & Security, vol. 78, pp. 155-173.
Hasnain, M.; Pasha, M. F.; Ghani, I. (2020): Drupal core 8 caching mechanism for
scalability improvement of web services. Software Impacts, vol. 3, pp. 1-4.
Hasnain, M.; Pasha, M. F.; Lim, C. H.; Ghani, I. (2019): Recurrent neural network for
web services performance forecasting, ranking and regression testing. Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference, pp. 96-105.
Hundman, K.; Constantinou, V.; Laporte, C.; Colwell, I.; Soderstrom, T. (2018):
Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding.
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 387-395.
Ibidunmoye, O.; Hernández-Rodriguez, F.; Elmroth, E. (2015): Performance anomaly
detection and bottleneck identification. ACM Computing Surveys, vol. 48, no. 1, pp. 1-35.
Ibidunmoye, O.; Rezaie, A. R.; Elmroth, E. (2017): Adaptive anomaly detection in
performance metric streams. IEEE Transactions on Network and Service Management,
vol. 15, no. 1, pp. 217-231.
Jackson, E. K.; Roberts, W.; Nelsen, B.; Williams, G. P.; Nelson, E. J. et al. (2019):
Introductory overview: error metrics for hydrologic modelling-A review of common
practices and an open source library to facilitate use and adoption. Environmental
Modelling & Software, vol. 119, pp. 32-48.
Jayathilaka, H.; Krintz, C.; Wolski, R. M. (2018): Detecting performance anomalies in
cloud platform applications. IEEE Transactions on Cloud Computing, pp. 1-14.
Jia, Q. X.; Chen, C. X.; Gao, X.; Li, X. P.; Yan, B. et al. (2019): Anomaly detection
method using center offset measurement based on leverage principle. Knowledge-Based
Systems, vol. 190, pp. 1-16.
Jin, X.; Cui, B.; Li, D.; Cheng, Z.; Yin, C. (2018): An improved payload-based
anomaly detector for web applications. Journal of Network and Computer Applications,
vol. 106, pp. 111-116.
Kim, T. Y.; Cho, S. B. (2018): Web traffic anomaly detection using C-LSTM neural
networks. Expert Systems with Applications, vol. 106, pp. 66-76.
Kim, J.; Chung, K. (2019): Prediction model of user physical activity using data
characteristics-based long short-term memory recurrent neural networks. KSII
Transactions on Internet & Information Systems, vol. 13, no. 4, pp. 2060-2077.
Kardani-Moghaddam, S.; Buyya, R.; Ramamohanarao, K. (2019): Performance
anomaly detection using isolation-trees in heterogeneous workloads of web applications

Performance Anomaly Detection in Web Services: An RNN 751

in computing clouds. Concurrency and Computation: Practice and Experience, vol. 31,
no. 20, pp. 1-17.
Kong, Z.; Tang, B.; Deng, L.; Liu, W.; Han, Y. (2020): Condition monitoring of wind
turbines based on spatio-temporal fusion of SCADA data by convolutional neural
networks and gated recurrent units. Renewable Energy, vol. 146, pp. 760-768.
Lakhina, A.; Crovella, M.; Diot, C. (2004): Characterization of network-wide
anomalies in traffic flows. Proceedings of the 4th ACM SIGCOMM Conference on
Internet Measurement, pp. 201-206.
Li, B.; Yuan, G.; Shen, L.; Zhang, R.; Yao, Y. (2019): Incorporating URL embedding
into ensemble clustering to detect web anomalies. Future Generation Computer Systems,
vol. 96, pp. 176-184.
Li, P.; Niggemann, O. (2020): Non-convex hull based anomaly detection in CPPS.
Engineering Applications of Artificial Intelligence, vol. 87, pp. 1-11.
Liu, J.; Li, Q.; Chen, W.; Yan, Y.; Qiu, Y. et al. (2019): Remaining useful life
prediction of PEMFC based on long short-term memory recurrent neural
networks. International Journal of Hydrogen Energy, vol. 44, no. 11, pp. 5470-5480.
Ma, Y.; Wang, S.; Hung, P. C.; Hsu, C. H.; Sun, Q. et al. (2015): A highly accurate
prediction algorithm for unknown web service QoS values. IEEE Transactions on
Services Computing, vol. 9, no. 4, pp. 511-523.
Naseer, S.; Saleem, Y. (2018): Enhanced network intrusion detection using deep
convolutional neural networks. KSII Transactions on Internet & Information Systems, vol.
12, no. 10, pp. 5159-5178.
Pilastre, B.; Boussouf, L.; D’Escrivan, S.; Tourneret, J. Y. (2020): Anomaly detection
in mixed telemetry data using a sparse representation and dictionary learning. Signal
Processing, vol. 168, pp. 1-10.
Poornima, I. G. A.; Paramasivan, B. (2020): Anomaly detection in wireless sensor
network using machine learning algorithm. Computer Communications, vol. 151, pp.
331-337.
Raj, G.; Mahajan, M.; Singh, D.; Singh, A. (2019): Imputing missing data analysis in
web service quality dataset for improving QoS prediction. Recent Trends in
Programming Languages, vol. 6, no. 2, pp. 8-22.
Ranaldo, N.; Zimeo, E. (2016): Capacity-driven utility model for service level
agreement negotiation of cloud services. Future Generation Computer Systems, vol. 55,
pp. 186-199.
Reddy, B. K.; Delen, D. (2018): Predicting hospital readmission for lupus patients: an
RNN-LSTM-based deep-learning methodology. Computers in Biology and Medicine, vol.
101, pp. 199-209.
Rodriguez, M. A.; Kotagiri, R.; Buyya, R. (2018): Detecting performance anomalies in
scientific workflows using hierarchical temporal memory. Future Generation Computer
Systems, vol. 88, pp. 624-635.

752 CMC, vol.64, no.2, pp.729-752, 2020

Sauvanaud, C.; Kaâniche, M.; Kanoun, K.; Lazri, K.; Silvestre, G. D. S. (2018):
Anomaly detection and diagnosis for cloud services: practical experiments and lessons
learned. Journal of Systems and Software, vol. 139, pp. 84-106.
Syu, Y.; Kuo, J. Y.; Fanjiang, Y. Y. (2017): Time series forecasting for dynamic quality of
web services: an empirical study. Journal of Systems and Software, vol. 134, pp. 279-303.
Thara, D. K.; PremaSudha, B. G.; Xiong, F. (2019): Epileptic seizure detection and
prediction using stacked bidirectional long short term memory. Pattern Recognition
Letters, vol. 128, pp. 529-535.
Tsuda, Y.; Samejima, M.; Akiyoshi, M.; Komoda, N.; Yoshino, M. (2014): An
anomaly detection method for individual services on a web-based system by selection of
dummy variables in multiple regression. Electronics and Communications in Japan, vol.
97, no. 2, pp. 9-16.
Tian, J.; Azarian, M. H.; Pecht, M. (2014): Anomaly detection using self-organizing
maps-based k-nearest neighbor algorithm. Proceedings of the European Conference of
the Prognostics and Health Management Society, pp. 1-9.
Wang, T.; Wei, J.; Zhang, W.; Zhong, H.; Huang, T. (2014): Workload-aware anomaly
detection for web applications. Journal of Systems and Software, vol. 89, pp. 19-32.
Wang, R.; Li, C.; Fu, W.; Tang, G. (2019): Deep learning method based on gated
recurrent unit and variational mode decomposition for short-term wind power interval
prediction. IEEE Transactions on Neural Networks and Learning Systems, pp. 1-14.
Wang, J.; Jing, Y.; Qi, Q.; Feng, T.; Liao, J. (2019): ALSR: an adaptive label
screening and relearning approach for interval-oriented anomaly detection. Expert
Systems with Applications, vol. 136, pp. 94-104.
Wang, X.; Du, Y.; Lin, S.; Cui, P.; Shen, Y. et al. (2019): adVAE: a self-adversarial
variational autoencoder with Gaussian anomaly prior knowledge for anomaly
detection. Knowledge-Based Systems, vol. 190, pp. 1-12.
Wielgosz, M.; Mertik, M.; Skoczeń, A.; De Matteis, E. (2018): The model of an
anomaly detector for HiLumi LHC magnets based on recurrent neural networks and
adaptive quantization. Engineering Applications of Artificial Intelligence, vol. 74, pp.
166-185.
Zhang, X.; Meng, F.; Chen, P.; Xu, J. (2016): TaskInsight: a fine-grained performance
anomaly detection and problem locating system. IEEE 9th International Conference on
Cloud Computing, pp. 917-920.
Zhang, Y.; Xiong, R.; He, H.; Pecht, M. G. (2018): Long short-term memory recurrent
neural network for remaining useful life prediction of lithium-ion batteries. IEEE
Transactions on Vehicular Technology, vol. 67, no. 7, pp. 5695-5705.
Zheng, Z.; Zhang, Y.; Lyu, M. R. (2010): Distributed QoS evaluation for real-world
web services. IEEE International Conference on Web Services, pp. 83-90.
Zheng, Z.; Zhang, Y.; Lyu, M. R. (2012): Investigating QoS of real-world web
services. IEEE Transactions on Services Computing, vol. 7, no. 1, pp. 32-39.
Zuo, R.; Wang, J.; Chen, G.; Yang, M. (2015): Identification of weak anomalies: a
multifractal perspective. Journal of Geochemical Exploration, vol. 148, pp. 12-24.

