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Abstract: Performance anomaly detection is the process of identifying occurrences that 
do not conform to expected behavior or correlate with other incidents or events in time 
series data. Anomaly detection has been applied to areas such as fraud detection, 
intrusion detection systems, and network systems. In this paper, we propose an anomaly 
detection framework that uses dynamic features of quality of service that are collected in 
a simulated setup. Three variants of recurrent neural networks-SimpleRNN, long short 
term memory, and gated recurrent unit are evaluated. The results reveal that the proposed 
method effectively detects anomalies in web services with high accuracy. The 
performance of the proposed anomaly detection framework is superior to that of existing 
approaches using maximum accuracy and detection rate metrics.   
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1 Introduction 
In the modern era of web technology, web services occasionally exhibit undesirable 
and unexpected behavior. This behavior is referred to as an anomaly, which is a 
bottleneck in the underlying web services [Ibidunmoye, Hernández-Rodriguez and 
Elmroth (2015)]. If unnoticed, performance anomalies can last from seconds to days 
and can arise due to a multitude of factors. For example, increasing workload, bugs, 
and hardware failure are known causes of performance anomalies [Wang, Wei, Zhang 
et al. (2014)]. Furthermore, low bandwidth and low scalability of a web server can also 
result in performance anomalies [Naseer and  Saleem (2018); Wang, Du, Lin et al. 
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(2019)]. In this study, we address the challenge of detecting performance anomalies in 
web services.  
Performance anomalies are a major problem that threatens the quality of web services 
[Zhang, Meng, Chen et al. (2016); Hababeh, Thabain and Alouneh (2019)]. Performance 
degradation can result in higher monetary costs, and service providers thus require an 
automated means of detecting performance problems in their web services. For large-scale 
and integrated web services, user interaction with web servers changes frequently and 
thereby affects resource requirements and workload patterns. For instance, web services are 
prone to various performance problems that involve the central processing unit (CPU) and 
memory resources [Kardani-Moghaddam, Buyya and Ramamohanarao (2019)]. 
Performance anomaly detection at the service level is addressed from a gray box or 
white box perspective, in which some knowledge regarding the source code, flow of 
users’ transactions, and distributed components is known a priori. This approach is not 
feasible, however, because the source code of web services is not provided without the 
consent of the service providers. In addition, integrated services belong to various 
services providers [Ibidunmoye, Rezaie and Elmroth (2017)], and web services 
providers do not necessarily ship source code along with other software items. This 
limitation has led to new research within the academic and software development 
community, and researchers are now more interested in developing innovative 
performance anomaly detection approaches that are versatile and scalable.  
Bigonha et al. [Bigonha, Ferreira and Souza (2019)] proposed using software object-
oriented (OO) metrics to assess software quality. Software faults and bad smells affect 
the quality of software. Software code is necessary for evaluating OO metrics for smell 
detection and fault prediction. The proposed approach using a threshold of OO metrics 
is effective for general systems in which code is available, and metrics’ thresholds are 
known in the literature. This approach is more relevant to code anomalies and cannot 
be applied to software systems or web services that do not provide code access. To 
overcome the limitations of existing approaches, other software metrics, such as 
performance metrics, can be used to perform anomaly detection in web services.  
For example, quality of service (QoS) assessment is an effective tool for investigating 
performance anomalies. QoS is the representation of quality instead of the functional 
features of web services. As a conceptual term, QoS includes several concrete 
attributes. These are categorized into two broad classes: static QoS attributes and 
dynamic QoS attributes. Syu et al. [Syu, Kuo and Fanjiang (2017)] discussed static QoS 
values, which are provided by service providers. However, static QoS values are 
unreliable and often ineffective because they are infrequently updated. In contrast, the 
values of dynamic QoS metrics, such as response time and throughput, change 
significantly over time due to the distributed, autonomic, and heterogeneous features of 
web services.  
Web services are owned and provided by different services providers (SPs), and run on 
various platforms. In addition, the dynamics of the environment, including unexpected 
connection latency and internet congestion, may lead to fluctuations in the response 
time and throughput values. Therefore, it is unwise to rely only on static values of 
quality attributes to perform web services operations, such as selection, 
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recommendation, and ranking. Instead, dynamic values acquired using appropriate 
means can provide accurate and reliable QoS values. The majority of existing studies 
propose using various time-series methods to address prediction problems. Time series 
forecasting is a well-developed and widely examined research field, and its forecasting 
methods can be used effectively. Several forecasting methods have been developed and 
applied to resolve real-world issues, and identifying which forecasting methods are 
more suitable for the dynamic QoS prediction of web services is an important task. 
Owing to differences in QoS values between users’ obtained QoS values and the values 
stated in the service level agreement (SLA), researchers have proposed a technique to 
optimize the SP side by considering user satisfaction. Several researchers have stated that 
the declaration of users’ workload is an essential precondition for SLA negotiation 
[Ranaldo and Zimeo (2016)]. Therefore, underestimation of the users’ workload can 
influence the QoS attributes because the actual workload may surpass the estimated load.  
Because this study does not concern short-duration anomaly information, the anomaly 
detection method considers a week's performance of web services. Short-duration anomaly 
detection is suitable for measuring traffic anomalies in a network [Lakhina, Crovella and 
Diot (2004)]. Based on the predicted performance and actual metric values, we propose 
determining performance anomalies using total (actual+predicted) QoS metric values, 
which can effectively explain and map total QoS values to the occurrence of near-future 
performance anomalies in web services. This can result in quality improvement of web 
services because service managers or providers can avoid future anomalies.  
In our proposed anomaly detection framework, two sets of anomaly detections processes 
are combined in the post-processing phase to estimate a long pattern of point anomaly 
detection. The first set of anomalies from actual data may consist of many weeks’ data, 
while the second set of anomalies is obtained from the training and testing of the actual 
data. The resulting set of anomalies can be used to determine web service outages, which 
may be seriously taken to fix the issue in web services.  
The contributions of our proposed work are as follows: 
1. We propose a point anomaly detection framework that uses dynamic features of web 
services. This is a hybrid framework that combines performance prediction and anomaly 
detection from QoS features of web services.  
2. We evaluate the proposed point anomaly detection framework and perform simulated 
data collection of dynamic features of web services. 
3. We compare the performance of the proposed approach with state-of-the-art anomaly 
detection approaches. 
The remainder of this paper is structured as follows.  
In Section 2, we present background on anomaly detection approaches, while in Section 3, 
we describe the proposed anomaly detection approach. Next, in Section 4, we provide the 
results of a comparison between the proposed method and existing anomaly detection 
approaches. The conclusion and ideas for future work are presented in Section 5. 
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2 Background 
The anomaly detection problem is the problem of detecting patterns that do not conform to 
the expected behavior in a dataset of web services. In addition, Sauvanaud et al. consider 
erroneous behavior of web services and SLA to be performance anomalies [Sauvanaud, 
Kaâniche, Kanoun et al. (2018)]. These anomalies arise from dynamic workloads and the 
configuration of web services. Anomaly descriptions are built upon a relationship between 
the behavior of web services and the performance fitness level. Various types of anomalies 
exist and have been discussed in the literature. For example, a point anomaly represents a 
point at which a web service deviates from the range of expected values (e.g., memory 
usage deviation from the mean value and latency spikes [Tsuda, Samejima, Akiyoshi et al. 
(2014); Li, Yuan, Shen et al. (2019)]. The second type of anomaly is a collective anomaly, 
which is a homogenous deviation of a group of data points from normal regions of the 
remaining data. The third type of anomaly is a contextual anomaly, which arises from 
specific conditions such as workload (e.g., low, moderate, and high levels). The fourth type 
of anomaly is known as a pattern anomaly, which arises from high dimensional data that 
appear in any dimension [Kim and Cho (2018)]. 
Web services anomaly detection is generally aimed at discovering errors by analyzing 
performance-related data. The goal is to verify whether a web service behaves 
according to expectations [Cotroneo, Natella and Rosiello (2017)]. Most existing 
anomaly detection approaches are focused on intrusion or misuse detection. However, 
our research contributes to detecting performance anomalies and their impact on the 
performance of web services. 
In a similar work, Wang et al. [Wang, Wei, Zhang et al. (2014)] proposed a payload 
anomaly detection approach for web applications. The authors aimed to improve the 
reliability of web applications by detecting behavior that did not conform to the normal 
behavior of web applications. Anomalies occur when resource utilization exceeds a 
specified amount, or when customers rush to perform online purchase transactions on 
special events, including promotions and holidays such as Christmas. Workload patterns, 
which are access patterns and request volume, can be used to detect contextual anomalies. 
Similar to our proposed work, Jin et al. [Jin, Cui, Li et al. (2018)] employed the multiple-
classifier payload-based anomaly detector (McPAD) model to extract features from 
network traffic of web applications. Based on the extracted features, anomalies are detected 
using a feature clustering algorithm. The proposed McPAD model has limitations in 
anomaly detection based on prior anomaly probabilities because certain words (SELECT, 
XSS, and UNION) used for web attacks are given less priority than other words. Jin et al. 
[Jin, Cui, Li et al. (2018)] extended this model and built a prior knowledge concerning the 
collection of common words that are widely used during anomalies.   
Rodriguez et al. [Rodriguez, Kotagiri and Buyya (2018)] discussed performance 
anomalies in the context of the increasing size of scientific applications and their 
performance. Both resource contention and failures have been considered leading causes 
of delay in the workflow runtime. To address this delay, the researchers proposed a 
hierarchical temporal memory (HTM) metric-based infrastructure model for the early 
detection of anomalies. Based on timestamp t, task start time e, and measure of resource 
consumption c, the proposed HTM model provides an anomaly output score. The 
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proposed HTM model has been evaluated in biological applications, such as BLAST and 
1000 Genome. The results demonstrated that the performance of the HTM model is 
superior to that of other approaches in anomaly detection. The application of the HTM 
model can also be applied to web service information. Therefore, the current study is 
aimed at the detection of anomalies while web services receive dynamically changing 
workloads from users.  
In a recently published work, Jayathilaka et al. [Jayathilaka, Krintz and Wolski (2019)] 
detected performance anomalies by observing the workload data in cloud services. 
Sudden changes in users’ requests and slow database queries were identified as the 
leading causes of performance anomalies. In addition, Ghaith et al. [Ghaith, Wang, Perry 
et al. (2016)] proposed a performance testing method for detecting regression anomalies 
caused by software updates. Existing methods perform various performance regression 
testing in the context of applied workloads. This can become a lengthy process that 
requires extra effort for performance testing. The authors’ proposed approach has been 
evaluated on two systems to identify performance regression anomalies. Real anomalies 
are isolated from other anomalies that emerge from workload changes. 
Kim et al. [Kim and Cho (2018)] proposed the C-LSTM model to detect anomalies in 
traffic data of online web systems. C-LSTM combines a convolutional neural network 
(CNN), deep neural network (DNN), and LSTM. The proposed method extracted spatial 
and temporal information from complex raw data. The CNN layer was used to reduce the 
frequency variation in the spatial data. The main limitation of this approach is that many 
point anomalies, contextual anomalies, and collective anomalies were not detected. The 
second problem that remains unaddressed by this approach is the large delay in detecting 
anomalies in real data. In a more recent work, Li et al. [Li and Niggeman (2020)] 
proposed a geometric method for anomaly detection in complex industrial automation 
systems. The proposed method is effective for one-class classification by developing a 
boundary, such as non-convex hulls. Convex-hull-based methods provide an intuitive 
solution to the problem of one-class classification for convex data; however, they fail to 
classify non-convex data collected from cyber-physical production systems (CPPSs). 
Data points outside the boundary are considered anomalous data points. This method is 
effective because no prior knowledge is necessary; boundaries are compact and efficient 
representations, and generalization can be adjusted. However, a decision boundary drawn 
from the exact border points by the normal behavior of data may create the overfitting 
problem of the proposed method, which should be addressed in future work.  
A point anomaly is one of the parameters of the univariate category of anomalies that 
occur in several types of data. Other parameters include contextual and collective 
anomalies. In contrast to the latter two anomalies, a point anomaly is easier to detect 
because it corresponds to an excessive value from individual samples [Pilastre, Boussouf, 
D’Escrivan et al. (2020)]. We handle the simulated data of web service performance 
metrics in our proposed framework to detect anomalous points, and consider a point 
anomaly a more appropriate parameter. Prior to our proposed work, Canizo et al. 
[Canizo, Triguero, Conde et al. (2019)] investigated anomaly detection in time series data 
of an industrial case study. The multi-head CNN method proposed in their study detected 
three types of anomalies. A point anomaly is one type that considers peak points in the 
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sensor data. In their study, Canizo et al. referred to peak points that descend from normal 
points as anomalous points. The main difference between our proposed method and the 
multi-head CNN method is that our approach considers all points beyond the normal 
points (i.e., either higher or lower than the normal points). In contrast, the study by 
Canizo et al. was limited in that it only considered points descending beyond the normal 
points to be anomalous, while considering ascending points to be non-anomalous points. 
Jia et al. [Jia, Chen, Gao et al. (2019)] also argued that points or instances near the center 
point have a small anomalous effect, while those far from the center point have a large 
impact. This implies that a point that is far away from the center is an anomalous point. 
Wang et al. [Wang, Jing, Qi et al. (2019)] proposed the adaptive label screening and 
relearning (ALSR) approach, which is aimed at detecting differences between 
anomalous points. Because earlier approaches focus more on individual points rather 
than events, the labels of continuous anomalies and their intervals are not appropriately 
handled, and the predicted performance is not precise in real-world situations. To 
overcome this problem, the ALSR approach uses continuous label screening and 
intervals of anomalies for finer granularity. The ALSR approach is effective with 
mainstream performance indicators. However, the performance of this approach is 
affected by the diversity of performance indicators.  
Ding et al. [Ding, Ma, Gao et al. (2019)] investigated anomaly detection in system 
design, as high-quality anomaly detection can ensure the high performance of various 
applications, such as disaster prevention, system monitoring, and intrusion detection. To 
overcome the above-stated anomaly detection issue, the researchers proposed an anomaly 
detection approach of time series information by combining LSTM and the Gaussian 
matrix model (GMM). The former model best evaluates real-time anomalies in time 
series information, while the latter model detects possible point anomalies. The method 
proposed by Ding et al. performs better than state-of-the-art methods in univariate time 
series with the best convergence; however, it displays performance degradation when 
applied to multivariate (high-dimensional) time series data for anomaly detection.  
In summary, existing research on anomaly detection identifies point anomalies, 
contextual anomalies, collection anomalies, and pattern anomalies in different types of 
software systems. For each type of anomaly detection, several methods have been 
proposed. The proposed anomaly detection methods focus on the univariate and 
multivariate features of datasets. However, research is necessary for handling anomaly 
detection in multivariate datasets because complexity increases with a high-dimensional 
dataset. None of the aforementioned studies considers performance anomaly detection in 
a dynamic QoS dataset collected in a simulated environment. However, the existing 
approaches inspire us to locate the performance points that surpass the normal points.  

3 Proposed anomaly detection approach 
In this section, we describe the proposed anomaly detection framework, which is 
illustrated in Fig. 1. 
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Figure 1: Proposed anomaly detection framework 

To predict performance anomalies in web services, variants of the recurrent neural 
network (RNN) model, such as GRU, LSTM, and SimpleRNN, have been proposed. 
Before this, the aforementioned sequential models including GRU, LSTM, and 
SimpleRNN were successfully applied to estimate the performance of web services from 
time series data [Hasnain, Fermi, Lim et al. (2019)]. The proposed GRU model is the 
most effective of the approaches when there are large fluctuations in the performance of 
web services. The problem of performance prediction and anomaly detection has long 
been unresolved; therefore, we implemented deep learning methods to detect point 
anomalies in web services. The proposed anomaly detection framework is based on two 
phases and several sub-phases, as illustrated in Fig. 1. 
We have proposed to use training and testing phases, as shown in Fig. 1. The training 
phase of the proposed anomaly detection framework involves further steps, including 
simulated dataset collection, data pre-processing, and time-series data. Once these steps 
are completed, we train the sequential model (GRU, LSTM, and SimpleRNN) by using 
the time series data of web services. Upon the completion of the training of sequential 
models, we evaluate the sequential model at the testing phase of the proposed framework. 
An appropriate portion of the same simulated dataset is used to test the sequential models. 
Performance prediction results, as well as anomaly detection results, are reported in this 
phase of the proposed framework. Both web services users and web service managers get 
alarmed when performance anomalies are detected.   

3.1 Overview of anomaly detection approach 
In this subsection, we present an overview of the anomaly detection framework. Anomaly 
detection approaches require benchmark datasets to evaluate and compare their 
performance with other detection methods. We used a benchmark QoS dataset with a 
large number of performance instances of web services [Zheng, Zhang and Lyu (2010, 
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2012)]. The dataset contained outdated information regarding throughput and response 
time quality metrics. Moreover, aforementioned dataset does not contain the workload 
information regarding web services users. In this paper, we aim to bridge this gap by 
describing time series data collection in a simulated environment and analyze the data to 
identify performance problems in web services. 
Simulation dataset collection is the first step in the training phase of the proposed 
framework. The procedure for dataset collection is as follows. First, we created a 
simulation environment to collect quality features of web services. The purpose was to 
collect the time series data of web services for different workloads. The WSDream 
dataset has been widely used in published works [Ma, Wang, Hung et al. (2015); Raj, 
Mahajan, Singh et al. (2019)]. Because this dataset consists of historical information 
about web service quality attributes, we were unable to use the collected information 
because it was outdated and less feasible for the proposed framework. Instead, we used 
concurrent workloads from 100 users and 200 users during the simulation with the help 
of Apache Jmeter 5.1.1. Our previous work outlines the proposed strategy of workloads 
(concurrent users) and other requirements [Hasnain, Pasha and Ghani (2020)]. Once the 
Apache Jmeter node was established on the computer system, we collected web service 
information. From the simulation environment, we collected time series data for 40 days 
and stored the data in a CSV file for further data preprocessing. We then fed the 
preprocessed data into our RNN methods for training. It is worth noting that no 
anomalous signal filtering process was used during the training phase in this method. We 
simultaneously trained the prediction and detection modules of the selected RNN 
methods. The proposed framework detects anomalous signals (performance) in advance, 
which allows the web service manager to examine the abnormal data points and modify 
the actions of web services developers and testers to correct them.   

3.2 Prediction  
The proposed prediction method module is intended to forecast the performance of web 
services as well as abnormal signals of web services. The prediction of abnormal and 
normal sequences of information has not been performed in previous studies. Therefore, 
our proposed anomaly detection framework is the first to both evaluate the performance 
of web service information from time series simulated data and detect unusual behavior 
of web services. This enables web service managers to obtain forecasted information on 
performance and abnormalities in web services. Because web service managers receive 
information in advance about anomalous behavior of the web service, they can correct 
this behavior to avoid performance degradation. 
Suppose that we have sequential simulated data with an input d0: t [a0, a1…at] in web 
services such as throughput, where a represents univariate data and t represents the time 
step. We perform data transmission proposed in a paper by Wang et al. [Wang, Li, Fu et al. 
(2019)], in which the authors predicted wind power to address fluctuations in its features.  

3.2.1 Gated recurrent unit 
The GRU with the forward pass is expressed as follows: 
𝑧𝑧𝑡𝑡 = σ (𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥)                                                                                       (1) 
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𝑟𝑟𝑡𝑡 = σ (𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥)                                                                                       (2) 
ℎ′𝑡𝑡 = tanh (𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑈𝑈ℎ𝑥𝑥(𝑟𝑟𝑡𝑡ℎ𝑡𝑡−1) + 𝑏𝑏𝑥𝑥)                                                                      (3)     
ℎ𝑡𝑡 = (𝑧𝑧𝑡𝑡)(ℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡) ℎ′𝑡𝑡)                                                                                 (4) 
tanh(𝑡𝑡) = (𝑒𝑒𝑡𝑡 − 𝑒𝑒−𝑡𝑡)/(𝑒𝑒𝑡𝑡 + 𝑒𝑒−𝑡𝑡)                                                                                               (5) 
σ(𝑡𝑡) = 1/(1 + 𝑒𝑒−𝑡𝑡),                                                                                                                        (6) 
where 𝑧𝑧𝑡𝑡 represents the update gate that aims to ensure that a part of current hidden state 
ℎ𝑡𝑡  updates, and ℎ𝑡𝑡−1  denotes the last time output. In addition, σ  and tanh are two 
different activation functions that are used to represent the gated mechanism and 
normalize the input information, respectively, and  represents the dot 
products. Wxz, Wxc , and Wxr are weight vectors pertaining to the current input. 

 
Figure 2: Overview of gated recurrent unit (GRU) architecture 

For the representation of the GRU model as an RNN model, a neuron is designated as a 
GRU. The new architecture of the RNN-based GRU model is presented in Fig. 2. Simple 
RNN parameters are used to train the method, and can be calculated by following the 
backpropagation network as follows: 
𝑜𝑜𝑡𝑡 = 𝑉𝑉𝑉𝑉(𝑈𝑈𝑋𝑋𝑡𝑡 + 𝑊𝑊𝑉𝑉�𝑈𝑈𝑋𝑋𝑡𝑡−1 + 𝑊𝑊𝑉𝑉(𝑈𝑈𝑋𝑋𝑡𝑡−2 + 𝑊𝑊𝑉𝑉(𝑈𝑈𝑋𝑋𝑡𝑡−3 + ⋯ )))�                                        (7) 
Here, 𝑜𝑜𝑡𝑡 denotes the output of one neural cell. U, V, and W denote the weight matrices of x, 
h, and the output layer, respectively, and f (.) is the representation of the activation function.  
A standard GRU model is capable of handling the time series (sequential) data efficiently 
and eases the vanishing problem of RNNs. Also, the gating structure of the GRU model 
can lead to the omission of important contents in the time series data. As shown in Fig. 2, 
there is the input layer, which is composed of many neurons. Above the input layer, there 
is a middle layer, which is also known as hidden layer. Each neuron in the output layer 
corresponds to the output space, as shown in Fig. 2. The middle layer, which is the one 
where the primary function of the GRU model takes place. So any change in the cell 
status depends on the working of reset and update gates.  

3.2.2 Long short term memory 
LSTM is another derivation of the RNN that is widely used to address sequential 
prediction problems. Like the GRU model, LSTM also aims to overcome the gradient 
vanishing problem that is observed in RNNs [Kim and Chung (2019)]. Due to this 
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problem, the gradient is further reduced when it returns to the early layers. As a result, 
learning in the earlier layers is inadequate, and the performance of the neural network 
decreases [Liu, Li, Chen et al. (2019)]. To overcome this limitation, the LSTM model is 
designed alongside three gates, including the input gate, output gate, and forget gate. 
These gates aid in remembering the results of the input sequences that are computed 
much earlier. The importance of LSTM in prediction is due to its cell state, which 
updates after every time step [Thara, PremaSudha and Xiong (2019)]. The cell state at 
moment t is recorded as 𝑐𝑐𝑡𝑡, which can be regarded as the memory unit of LSTM. Reading 
as well as memory modification can be achieved by controlling the input, output, and 
forget gates. These gates are generally described with tanh or sigmoid functions. The 
structure of the LSTM network is illustrated in Fig. 3.  

 
Figure 3:  Overview of long short term memory (LSTM) unit 

Fig. 3 provides an illustration of the structure and workflow of the LSTM unit. At each 
time, an LSTM unit obtains an input from the current state known as 𝑥𝑥𝑡𝑡 and hidden state 
known as ℎ𝑡𝑡−1 of the LSTM using three gates. In addition, each door obtains the internal 
information input that is the state of memory unit 𝑐𝑐𝑡𝑡−1. Each gate operates on the data 
obtained from various sources, and the logic function defines whether the gate is active 
after it receives the inputs. A nonlinear function transforms the input obtained at the input 
gate. It also superimposes the memory cell's state that is processed by the forget gate to 
construct a new memory cell state, 𝑐𝑐𝑡𝑡. Finally, memory cell state 𝑐𝑐𝑡𝑡 leads the LSTM unit 
to output ℎ𝑡𝑡 from operation of the nonlinear function as well as dynamic control by the 
output gate. Calculation of the above is as follows:   
𝑉𝑉𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 +𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥�                                                                             (8) 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑊𝑊𝑥𝑥𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥)                                                                                (9) 
𝑐𝑐𝑡𝑡 = 𝑉𝑉𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 tanh(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑏𝑏𝑥𝑥)                                                                      (10) 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 +𝑊𝑊𝑥𝑥𝑥𝑥𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑥𝑥)                                                                               (11) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 tanh(𝑐𝑐𝑡𝑡),                                                                                                                           (12) 
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where 𝑊𝑊𝑥𝑥𝑥𝑥, 𝑊𝑊𝑥𝑥𝑥𝑥,  𝑊𝑊𝑥𝑥𝑥𝑥 , and 𝑊𝑊𝑥𝑥𝑥𝑥 represent the weight matrices that connect the input data 
signal  𝑥𝑥𝑡𝑡 ;  𝑊𝑊𝑥𝑥𝑥𝑥 , 𝑊𝑊𝑥𝑥𝑥𝑥 , and 𝑊𝑊𝑥𝑥𝑥𝑥  represent the diagonal matrices that combine the output 
vectors 𝑐𝑐𝑡𝑡  with the gate functions of the neuron activation functions; 𝑊𝑊ℎ𝑥𝑥 , 
𝑊𝑊𝑥𝑥ℎ ,𝑊𝑊ℎ𝑥𝑥 , and 𝑊𝑊ℎ𝑥𝑥 represent the weight matrices that combine the hidden layer output 
signal ℎ𝑡𝑡; 𝜎𝜎 represents the activation function that is usually tanh or a sigmoid function; 
and 𝑏𝑏𝑥𝑥 ,𝑏𝑏𝑥𝑥,𝑏𝑏𝑥𝑥, and 𝑏𝑏𝑥𝑥 represent the offset vectors.  

3.2.3 SimpleRNN 
For the performance prediction of web services, SimpleRNN has the same structure as 
GRU and LSTM for implementation in the Keras framework. To execute SimpleRNN, 
GRU, or LSTM, layers are replaced with SimpleRNN layers (Zhang et al. [Zhang, Xiong, 
He et al. (2018)]. A simple RNN architecture is presented in Fig. 4. 

WWW

Ý 

V

U UU

 
Figure 4: SimpleRNN network 

Fig. 4 illustrates a simple architecture of the SimpleRNN model adopted from an existing 
study [Reddy and Delen (2018)]. Each node in this figure represents a layer of network 
units at each time step. Three meaningful connections, such as an input to a hidden layer, 
a hidden layer to a hidden layer, and a hidden layer to an output layer, are displayed in 
Fig. 4. Here, the U, W, and V matrices represent the weighted connections from an input 
to a hidden layer, a hidden layer to a hidden layer, and a hidden layer to an output layer, 
respectively. A scalar Y value is produced by passing the final weight matrix through the 
sigmoid function that is classified as a binary variable, and it is referred to as Ý. For 
comparison of Y-Predicted and the Y-actual, a loss function is used. It is worth noting 
that the same weights are used at each time step.  
In addition to SimpleRNN, two popular enhancements to SimpleRNN have been 
developed. GRU and LSTM are extensions of SimpleRNN that can store prior 
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information of extracted features in memory. In this study, we use GRU and LSTM along 
with SimpleRNN to compare their performance on a simulated dataset of web services.  

3.3 Detection method 
The GRU method was initially proposed by Cho et al. [Cho, Merriënboer and Gulcehre 
(2014)], and has a more straightforward architecture than the LSTM method. However, 
SimpleRNN and LSTM are still effective in performance prediction and anomaly 
detection for fluctuating behavior of web services [Hasnain, Fermi, Lim et al. (2019)]. 
The GRU method is used to avoid the limitations of the SimpleRNN and LSTM methods. 
A GRU method with its update and reset gate vectors is capable of determining what 
information that is part of the input should be memorized, and what information should 
be forgotten [Kong, Tang, Deng et al. (2020)]. In addition, a GRU method can keep 
performance stable due to fewer parameters that can suppress overfitting. A GRU method 
contains an information modulation process, which is similar to LSTM; however, a GRU 
method does not contain a separate memory cell. The detection method module, as 
illustrated in Fig. 1, is intended to receive input signals (throughput value) and determine 
whether any of the signals are anomalous.  
The presence of anomalies leads to inconsistency in signal reconstruction because RNN 
methods exploit their reconstruction Therefore, an auto-encoder method is trained on the 
data, and a threshold value above the reconstruction is known as an anomaly [Wielgosz, 
Mertik, Skoczeń et al. (2018); Habler and Shabtai (2018)]. Previous papers have dealt 
with different types of signals, and the approach based on the SimpleRNN, LSTM, and 
GRU methods can be effectively used in the domain of web services anomaly detection. 

3.4 Anomaly threshold frequency 
An automated threshold frequency was determined by considering the simulated data of 
the quality metrics of web services, as presented in Tab. 1.  

Table 1: Threshold statistics for two different workloads 

Statistics 
 100 Users 200 Users 
N Valid 40 40 

Missing 0 0 
Mean 11.955 19.015 
Median 12.150 18.350 
Std. Deviation 2.1957 4.0623 
Skewness -0.463 -0.056 
Std. Error of Skewness 0.374 0.374 
Kurtosis 0.799 -1.225 
Std. Error of Kurtosis 0.733 0.733 
Minimum 5.9 11.6 
Maximum 15.7 25.3 
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Tab. 1 provides an illustration of the statistics extracted on the collected simulated dataset 
over 40 days. We verified all errors in the collected data and performed preprocessing to 
clean the data. The statistics in Tab. 1 indicate that no values were missing, and the mean 
and standard deviation (SD) values for two workloads were calculated.    
Prior to the execution of the RNN anomaly detection methods, we determined the 
threshold values for the simulated workloads. Therefore, a threshold value is arbitrary 
because it is difficult to discern, agreeing for the detection of all anomalies, and would be 
adequate relying on the results achieved from the simulated data. A possible combination 
of threshold frequency might be the mean and SD, which can be used to filter out the 
anomalous points from time series information of web services. This representation 
allows us to compute the mean and SD values of any type of data equivalent with a 
number of week’s information. However, the mean value and SD value can be updated to 
increase the size of the data for many weeks and keep the proposed method up to date 
while changes occur in time series information [Guigou, Collet and Parrend (2019)]. 
This method is robust and lightweight because the mean and SD values of time series 
information over a long period of time can be easily maintained. Therefore, this method 
can handle changes in time series information in web services. First, a threshold was 
applied to simulated data to mark the information contained in the training dataset [Tian, 
Azarian and Pecht (2014)]. This was because the training data contained both anomalous 
and normal values of web services. For instance, we used 11.955 and 19.015 as 
thresholds for a 100-user workload and 200-user workload, respectively. We proposed 
adding ±1.00 to the threshold value to represent the normal behavior of web services. 
Therefore, any predicted value that exceeded 11.955±1.00 was represented as an 
abnormal value and was also considered a performance anomaly in the case of the 100-
user workload. Similarly, a value that was above and below 19.015±1.00 was considered 
an anomaly in the case of the 200-user workload. Traditional methods use mean and SD 
with the mean plus two SDs [Zuo, Wang and Chen (2015)]. We reduced the mean 
positive and negative values to 1 because web service users are not satisfied with web 
services with high performance fluctuations.   

4 Experiments 
4.1 Dataset 
To test our proposed performance prediction and anomaly detection, we used the simulated 
dataset of web services with throughput as a quality attribute. The dataset consisted of both 
abnormal and normal behavior of web services in terms of the quality attributes. The value 
of the quality attribute was obtained from the installed software, which enabled the 
simulation environment in the lab. Each point in the dataset was obtained using a uniform 
environment for 40 consecutive days. Web service (WS1) data collected from the 
simulation environment with two different workloads is plotted in Fig. 5.  
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Figure 5: Example of simulation information in which two workloads are represented by 
different colors in terms of the throughput of web service 1 (WS1) 

Fig. 5 provides a representation of the actual data obtained from simulation using two 
workloads of 100 users and 200 users, respectively. To visualize normal states in the 
actual simulated dataset, we changed the number of users. When the number of users was 
changed from 100 to 200, the average throughput value decreased, and consequently, 
web service performance degraded. Thus, for the 200-user workload, the throughput of 
the web service demonstrated more fluctuations than for the 100-user workload. 
 
4.2 Evaluation metric 
To evaluate the performance of our proposed GRU method and baseline (SimpleRNN 
and LSTM) methods, the mean absolute error (MAE) was employed as the criteria. 
Within the MAE (%), a smaller MAE represents superior performance of the method. 
The MAE equation is expressed as follows:  
(MAE)  = 1

n
∑ absn
i=1 �yi − λ(xi)�,                                                                                             (13) 

where yi and n represent the predicted value and a total number of predicted values at 
any given time, respectively. In conjunction with MAE, the mean absolute percent error 
(MAPE) metric can be used to demonstrate the proportional relationship between the 
predicted value and actual value. In addition to these metrics, the mean square error 
(MSE) and root mean square error (RMSE) metrics are sensitive to outliers that can limit 
their efficacy [Jackson, Roberts, Nelsen et al. (2019)]. Thus, we selected the simplest 
metric, MAE that is widely used to measure absolute error. In addition, the MAE metric 
avoids the problem of errors canceling each other out, and can accurately reflect actual 
error prediction. 

4.3 Results and analysis 
In this subsection, we present the performance prediction and anomaly detection results 
and their analysis. 
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4.3.1 Performance prediction results 
Here, we are interested in predicting the performance of a web service before the 
detection of anomalies. GRU, SimpleRNN, and LSTM were compiled, and the 
comparison results are provided in Figs. 6 and 8 for two different workloads.   

 
Figure 6: Performance prediction results from 100-user workload data 

Fig. 6 illustrates the results from 100-user workload simulated data that were calculated 
to predict the performance of a web service for the next seven timestamps (days). 

Table 2: Parameters and epochs 
Prediction 
Method 

Number of total 
params 

Number of trainable 
params 

Number of 
epochs 

Neuron at dense 
layer 

SimpleRNN 30,401 30,401 800 100 
LSTM 121,301 121,301 800 100 
GRU 91,001 91,001 800 100 

Each performance prediction method was compiled on 800 epochs with 100 neurons in 
the dense layers. In our experiments on simulated data of 100-user and 200-user 
workloads, the total trainable parameters, biases, and weights combined were 30,401, 
121,301, and 91,001 for the SimpleRNN, LSTM, and GRU methods, respectively. The 
total number of parameters was equal to the sum of the trainable parameters for each 
method. Our selected prediction methods (SimpleRNN, LSTM, and GRU) displayed 
better prediction accuracy at 800 epochs, as illustrated in Tab. 4.  
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Figure 7: SimpleRNN, LSTM, and GRU methods error loss on prediction from 
simulation data of 100-users. Line in plot (a) represents the SimpleRNN method loss 
during the performance prediction. Line in plot (b) represents the LSTM method loss 
during the performance prediction, while line in plot (c) represents the GRU method loss 
of 6.0×102  

The number of epochs influences the performance of a prediction method. Each method 
has a fixed architecture, and the loss function varies with the prediction process. As 
illustrated in Fig. 7(a), prediction results are apparent with errors although the loss 
decreases without stabilizing. In comparison with the SimpleRNN and GRU prediction 
methods, the LSTM method is less stable as it reaches the end of the epochs. Therefore, 
both SimpleRNN and LSTM are less stable and have a larger number of prediction errors. 
In contrast, the GRU method, as illustrated in Fig. 7(c), is more stable with a fixed 
number of epochs. This indicates that the GRU model is more effective in predicting the 
performance of web services. 
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Figure 8: Performance prediction results from 200-user workload data 

Fig. 8 presents the prediction results of 200-user workload data using RNN methods. In 
comparison to the SimpleRNN and LSTM methods, GRU exhibits performance 
prediction that is similar to neighboring results for the next seven timestamps (days).  

 
Figure 9: SimpleRNN, LSTM, and GRU methods error loss on prediction from 
simulation data of 200-users. Line in plot (a) represents the SimpleRNN method loss 
during the performance prediction. Line in plot (b) represents the LSTM method loss 
during the performance prediction, while line in plot (c) represents the GRU method loss 
of 6.0×102  



746                                                                             CMC, vol.64, no.2, pp.729-752, 2020 

Fig. 9 demonstrates that the error loss of the three performance prediction models 
decreases with an increase in the number of epochs from 200-user simulated data. 
However, the GRU method becomes more stable than the SimpleRNN and LSTM 
methods, and therefore, performance prediction by GRU is more effective than by the 
latter two methods. 

4.3.2 Anomaly detection results 
To determine whether an anomaly has occurred as a detection, a threshold is used in our 
proposed detection method. Anomalous points, along with their frequency for each 
detection method, are provided in Tab. 3. By using these anomalous points, we calculated 
the overall percent of anomalies. We used our proposed threshold values for each detection 
method to determine the total anomalous points for the data of two different workloads.  
We observed a total of 47 points. Of these, 40 points represent the actual data, and the 
remaining seven points are the predicted points. The upper bound and lower bound define 
the space in which normal performance information lies. Our proposed anomaly detection 
framework sets the values of the upper bounds and lower bounds in Section 3.4 for two 
different workloads. An anomalous threshold value (11.955±1.00) is used to observe the 
upper bound (12.955) and lower bound (10.955) for the 100-user workload. Similarly, 
anomaly threshold frequency (19.015±1.00) statistics were further elaborated by specifying 
the upper bound (20.015) and lower bound (18.015) values for the 200-user workload. 
Points emerging far from the upper bound and lower bound are considered abnormal or 
anomalous points. The false alarm rate can be determined by calculating data points beyond 
the upper bound and lower bound to avoid the risk of performance degradation. Although 
mitigating the effects of the detected point anomalies is outside of the scope of this study, it 
is advised to keep web services in the region between the two bounds.  
Based on the actual and predicted performance points, we employed anomaly detection to 
calculate the anomalous points for both actual and predicted points. Based on the 
proposed criteria of anomalous point detection, we used the statistics provided in Tab. 1. 
The proposed measures are helpful for determining anomalous points, which are beyond 
11.955±1.00 and 19.015±1.00 for two different workloads. Using these statistics, we 
determined point anomalies from two different workloads, as presented in Tab. 3.  

Table 3: Point anomalies detected by RNN methods 
Detection 
method 

Workload Actual 
points 

Predicted 
points 

Anomalous 
points in the 
actual data 

Anomalous 
points in 
predicted data 

Total 
anomalous 
points 

Percent of 
anomalies 
(%) 

Simple 
RNN 

  100-user 40 07 20 01 21 44.68 
  200-user 40 07 35 07 42 89.36 

LSTM   100-user 40 07 20 06 26 55.32 
  200-user 40 07 35 05 40 85.11 

GRU   100-user 40 07 20 06 26 55.32 
  200-user 40 07 35 00 35 74.47 
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Tab. 3 presents detailed information about point anomalies and their detection in the 
actual data and predicted data by the proposed anomaly detection framework. We 
collected simulated data of 40 points (timestamps), and out of these points, we detected 
20 and 35 anomalous points in the 100-user and 200-user workloads, respectively. A 100-
user workload is more favorable for a web service manager, as it has a smaller number of 
points beyond the threshold performance values. Upon increasing the workload, the 
actual data collected from the simulation demonstrated a large number of points beyond 
the upper and lower bounds of the threshold, as indicated in Tab. 3.  
We observed variation in the predicted anomalous points for three prediction methods. 
All methods were implemented in the Colab environment with Keras layers. The GRU 
method and other two methods were composed of one method layer and one dense layer. 
The number of epochs was set to 800 because the GRU method displayed better 
performance for this number of epochs. To compare the efficiency of the different 
prediction methods, we performed anomaly detection. LSTM and GRU were more 
effective than the SimpleRNN method in the detection of point anomalies for the 100-
user workload. However, SimpleRNN was more effective than GRU and LSTM in the 
detection of point anomalies for the 200-user workload. This indicates that SimpleRNN is 
effective in detecting abnormal points in a simulated dataset.  

4.3.3 Comparison of performance of RNN methods  
To verify the effectiveness of the proposed RNN methods, we conducted experiments on 
time series simulated data from two different workloads. As stated earlier in Section 4.3, 
for all simulations (including data collection, prediction, and detection), we used the 
same settings for software and hardware. However, for the performance prediction of 
web services, we adjusted the parameters of the RNN methods, including the 
SimpleRNN, LSTM, and GRU methods. We used the MAE metric to evaluate the 
prediction performance of web services. The comparison results are provided in Tab. 4. 

Table 4: Performance accuracy comparison 
Workload Feature MAE% 

Throughput Simple RNN LSTM GRU 
100-user 0.96 0.93 1.02 
200-user 1.08 0.93 1.56 

Tab. 4 presents a comparison of the performance of the three RNN methods. The 
SimpleRNN and LSTM methods were used as baseline methods, while the GRU method 
was used as the main contender. The results in Tab. 4 indicate that LSTM is superior to the 
SimpleRNN and GRU methods, as it achieves a lower MAE% for both 100-user and 200-
user workloads. The comparison results demonstrate that all three prediction methods have 
a high prediction accuracy in web services performance prediction and anomaly detection. 
A smaller value of MAE (%) for a method indicates better prediction quality.  
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4.3.4 Comparison between proposed point anomaly detection framework and other 
approaches 
Existing point anomaly detection approaches have been evaluated on datasets other than 
web service dynamic quality features, and our proposed framework is the first to employ 
the dynamic features of web services. To demonstrate the effectiveness of the proposed 
framework, we performed evaluation using the detection rate (DR) and maximum 
accuracy metrics. 

Table 5: Performance comparison of our proposed framework 
Study Approach Detection 

rate 
Maximum 
accuracy (%) 

[Hundman, Constantinou, 
Laporte et al. (2018)] 

LSTM 59% -- 

[Poornima and Paramasivan 
(2020)] 

Principal component 
analysis (PCA) 

-- 91.00 

Support vector machine 
(SVM) 

-- 89.00 

Decision Tree -- 82.00 
[Garg, Kaur, Batra et al. 
(2020)] 

Boruta Firefly Aided 
Partitioning DBSCAN 
(BFA- DBSCAN) 

-- 98.90 

Our study SimpleRNN 89.36 99.04 
LSTM 85.11 99.07 
GRU 74.47 98.98 

Tab. 5 presents the performance evaluation results of the proposed framework and state-
of-the-art anomaly detection approaches. The performance comparison results in Tab. 5 
indicate that our proposed framework achieved a higher DR than existing approaches. 
Moreover, maximum accuracy values such as 99.07, 99.04, and 98.98 indicate that the 
proposed framework is superior in point anomaly detection in web services.  

5 Conclusion and future work 
In this paper, we proposed an application of RNN prediction and anomaly detection 
methods. Our target was the GRU method along with SimpleRNN and LSTM variants to 
analyze simulated data of throughput as a quality metric of web services. We used a 
simulated dataset of web services that contained throughput quality data from 100 and 
200 users for 40 days. We preprocessed the data to prepare it for RNN variant structures. 
Three RNN variants were used for performance prediction and anomaly detection. In this 
paper, we present a performance prediction and anomaly detection framework that 
employs threshold frequency. This anomaly detection framework, which is inspired by 
the paradigm of deep learning methods, forecasts the seven-step performance of web 
services. Then, anomalous points are determined from the behavior of web services. We 
performed a theoretical performance comparison of the proposed GRU method with other 
RNN variants. Our proposed GRU method and other methods including LSTM and 
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SimpleRNN were able to effectively predict the performance of web services. Based on 
the simulated information and predicted performance, the proposed framework can be 
used to detect anomalies in web service quality metrics information. 
In future work, we plan to extend our proposed anomaly detection framework from the 
perspective of design and application. Regarding design, we plan to use deep learning for 
the detection of high dimensionality in the sample data, which has been rarely undertaken 
in the literature. Second, we plan to extend the proposed framework in its applications for 
multivariate datasets with the aim of improving the quality of the framework. 
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