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Abstract: In this study, a novel hybrid Water Cycle Moth-Flame Optimization (WCMFO) 
algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic 
Resonance (MR) image slices. WCMFO constitutes a hybrid between the two techniques, 
comprising the water cycle and moth-flame optimization algorithms. The optimal 
thresholds are obtained by maximizing the between class variance (Otsu’s function) of the 
image. To test the  performance of threshold searching process, the proposed algorithm has 
been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image 
segmentation. The experimental outcomes infer that it produces better optimal threshold 
values at a greater and quicker convergence rate. In contrast to other state-of-the-art 
methods, namely Adaptive Wind Driven Optimization (AWDO), Adaptive Bacterial 
Foraging (ABF) and Particle Swarm Optimization (PSO), the proposed algorithm has been 
found to be better at producing the best objective function, Peak Signal-to-Noise Ratio 
(PSNR), Standard Deviation (STD) and lower computational time values. Further, it was 
observed thatthe segmented image gives greater detail when the threshold level increases. 
Moreover, the statistical test result confirms that the best and mean values are almost zero 
and the average difference between best and mean value 1.86 is obtained through the 30 
executions of the  proposed algorithm.Thus, these images will lead to better segments of 
gray, white and cerebrospinal fluid that enable better clinical choices and diagnoses using a 
proposed algorithm. 

Keywords: Hybrid WCMFO algorithm, Otsu’s function, multilevel thresholding, image 
segmentation, brain MR image. 

1 Introduction 
In recent years, significant progress has been made in the field of medical imaging and 
computer-aided medical image analysis [Zhang, Ye, Guo et al. (2016)]. The improvements 
in medical imaging lead to better planning and accuracy of operations using a human 
machine intervention [Nilakant, Menon and Vikram (2017)]. Segmentation is important in 
medical imaging for extraction of features, image measurements, and display of images 
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[Yazdani, Yusof, Karimian et al. (2015)]. Numerous medical imaging technologies, such as 
computed tomography, magnetic resonance imaging, positron emission tomography, and 
ultrasound scanning are widely used in medical diagnosis [Balafar, Ramli, Saripan et al. 
(2010)]. Currently, the segmentation of brain magnetic resonance imaging achieves 
significant theoretical and application value in the analysis of medical images 
[Bhuvaneswari and  Geetha (2014)]. Precise brain tissue segmentation can improve the 
reliability of brain disease diagnosis and efficacy of treatment. However, noise, gray overlap, 
partial volume effect, and the characteristic of different anatomic structure often affects the 
MR images. Since, brain images are still being studied in certain medical studies, which are 
labor-intensive and time consuming, by medical experts on an individual basis [Despotović, 
Goossens and Philips (2015)]. Therefore, anautomatic segmentation can be extremely more 
beneficial as it can enable the large-scale studies needed to detect subtle changes and effects 
of disease. Developing of fully automatic algorithms for the efficient and accurate 
segmentation of medical images are becoming a major medical issue [Khorram and Yazdi 
(2018)]. An extensive research has been carried out and several approaches have been 
proposed, such as clustering algorithms, threshold methods, entropy-based segmentations, 
etc., [Jalab and Hasan (2019); Ganesh, Naresh and Arvind (2017); Bhuvaneswari and  
Geetha (2016); Hosseini (2012)]. 

2 State-of-the-art research and proposed work 
Brain image segmentation is a highly popular subject for research and numerous methods 
are developed. The state-of-the-art research as follows: Taherdangkoo et al. 
[Taherdangkoo, Bagheri, Yazdi et al. (2013)] proposed a new Ant Colony Optimization 
(ACO) algorithm  to achieve computationally efficient results for the segmentation of 
medical MR images. The proposed approach utilized for four image types and showed 
ACO algorithm’s results in segmentation and computational efficiency in comparison 
with other algorithms, which include Genetic Algorithm (GA) and PSO. Oliva et al. 
[Oliva, Hinojosa, Cuevas et al. (2017)] implemented the minimum cross entropy based 
thresholding criterion using a crow search algorithm. Two sets of benchmark images 
have been validated; the first set consists of standard images widely used in the literature 
for image processing while the second set refers to the MR brain images. After 
segmenting the brain images in various depths, qualitative analysis shows clearly defined 
regions which are easier to distinguish compared to other techniques such as differential 
evolution and harmony search algorithms. Kotte et al. [Kotte, Pullakura and Injeti (2018)] 
demonstrated the adaptive wind driven optimization algorithm for the optimal selection 
of threshold levels for brain MR image segmentation using Otsu-AWDO, Otsu-WDO, 
Kapur-AWDO and Kapur-WDO methods. The parametric study led to a better output of 
Otsu-AWDO and Kapur-AWDO approaches to all images at all threshold levels. The 
visibility and knowledge of the segmented images improved with increasing thresholds 
were observed. Manikandan et al. [Manikandan, Ramar, Iruthayarajan et al. (2014)] 
Proposed  Real Coded Genetic Algorithm with Simulated Binary crossover (RGA with 
SBX) for T2 -weighted axial brain MR images based on multilevel thresholding using 
Kapur entropy method. In terms of higher entropy and lower standard deviation for all 
images, the proposed algorithm provides better and consistent performance with the 
results of the existing algorithms like Nelder-Mead simplex, PSO, BF and ABF. Priya  et 
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al. [Priya, Thangaraj, Kesavadas et al. (2013)] introduced fuzzy entropy based Modified 
Particle Swarm Optimization (MPSO) for  MR brain image segmentation. The proposed 
Fuzzy entropy-based segmentation technique, optimized using a MPSO, achieves 
maximum entropy with proper segmentation of infected areas and a minimum time for 
computation, was implemented to provide successful exploration and exploitation. Maitra 
et al. [Maitra and Chatterjee (2008)] adopted a novel method of multilevel optimal MR 
brain image thresholding using bacterial foraging algorithm (BACTFOR). In the context 
of a number of benchmark MR brain images, the segmentation results showed that 
BACTFOR could overperform the PSO algorithm comprehensively. Sathya et al. [Sathya 
and Kayalvizhi (2011a)] applied multilevel thresholding based Adaptive Bacterial 
Foraging(ABF) algorithm in axial, T2-weighted brain MRI slices to segment the white 
matter, gray matter and cerebrospinal fluids. The results are compared with the BF, PSO 
and GA algorithms in terms of solution quality, robustness and computational 
efficiency.The qualitative analysis showed that the 5-level threshold segments exactly 
than the other levels in the proposed ABF algorithm. The same authors obtained optimal 
thresholds by maximizing Kapur’s and Otsu’s thresholding functions using amended 
bacterial foraging algorithm [Sathya and Kayalvizhi (2011c)]. Experimental results 
showed that the proposed algorithm being more computationally efficient, more accurate 
predictions and faster converging than BF, PSO and GA. For its lowest standard 
deviation and highest PSNR value, the Kapur-ABF algorithm is better, whereas the Otsu-
ABF algorithm gives minimal error in misclassification and converges easily. The quality 
of the segmentation is improved with the increased threshold level that provides the best 
possible threshold for the segmentation of gray matter, white matter, and cerebrospinal 
fluid was observed. 
It is therefore evident that significant research on multi-level brain threshold MR image 
segmentation utilizing metaheuristic algorithms has attracted the attention of many 
researchers. The correct choice of the segmentation algorithm is however a difficult task 
in the segmentation of the brain images.In recent years, in a field called metaheuristics 
hybridization, the concept of efficiently combining metaheuristics has emerged. The 
hybrid metaheuristics main objective is to exploit the complementary characteristics of 
different optimization strategies [Ting, Yang, Cheng et al. (2015)]. Such hybrid 
algorithms have been widely used to solve problems of global optimization and examples 
of applications can be found in Zhang et al. [Zhang, Wang and Tong (2019); Kaveh and 
Ghazaan (2017); Das and Parouha (2014)]. Related to the image segmentation field, some 
researchers have proposed a new method of hybrid image segmentation algorithm [Bao, 
Jia and Lang (2019); Ewees, Elaziz and Oliva (2018)]. In the case of brain MR image 
segmentation, there has been less research work were found using hybridized algorithms  
in the literature. It is well-known that in realistic situations, majority of MR images are 
gray images, mostly complex with lots of information. Hence, brain MR image 
segmentation is still a very challenging research topic. The motivation behind this study 
is therefore to improve the performance of brain MR image segmentation using a newly 
developed hybrid algorithm. 
A new hybridized Otsu-based WCMFO algorithm was therefore proposed for multi-level 
thresholding of brain MR image segmentation. The hybrid WCMFO algorithm is a 
combination of two well-known natures inspired algorithms, namely Water Cycle (WC) 
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and Moth-Flame Optimization (MFO) algorithms. It combines the general operators of 
each algorithm on a recursive basis, achieving good exploration and exploitation in 
WCMFO without changing their individual features.The proposed approach was 
compared with existing findings from AWDO [Kotte, Pullakura and Injeti (2008)], ABF 
[Sathya and Kayalvizhi (2011c)]  and PSO [Sathya and Kayalvizhi (2011c)], which are 
available in the literature on ten standard benchmark T2-weighted brain MR images based 
on thresholds, objective function value, PSNR and CPU time. 

3 Multilevel thresholding by Otsu’s function 
Multilevel thresholding describes the gray levels of the image pixels of the same class 
within a specific range defined by multiple thresholds [Oliva, Cuevas, Pajares et al. 
(2013)]. This is justified by the fact that the intensity values are usually grouped in a 
relatively separate valley within an image histogram [Oliva, Cuevas, Pajares et al. 
(2013)]. Therefore, the objective is to search for the set of intensity values that would 
separate the image histogram into independent valleys where each valley would present 
an object. In the present study, the best thresholding strategies of the Otsu’s method (i.e., 
between class variance) were taken for the proposed algorithm [Otsu (1979)].  
Considering a digital image (i) having the size H×W, where H is the height and W is the 
width. The image given can be represented by L numbers of gray levels and is considered 
to be {0, 1, 2, 3, ... , (L-1)}. Let N be the total number of pixels in the range which is 

equal to
1

0
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=∑ . Here h(i) refers to the number of pixels with gray level I. Then, the 
probability occurrence of gray level i in the image I is defined by the following equation: 
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The thresholding based Otsu’s method  that divides the whole image into classes so that 
the variance of the different classes in maximum [Otsu (1979)] and the formalized 
method can be described as follows [Sathya and Kayalvizhi (2011b)]. In bi-level 
thresholding, the input image is divided into two classes, namely C0 and C1 (objects and 
background or vice-versa) for a threshold at a level ‘t’. The class C0 contains gray levels 
from 0 to t-1. And, the class C1 encloses the gray levels from t to L-1. Then, the gray 
level probabilities (w0 (t) and w1 (t)) of distributions for the gray level C0 and C1 of two 
classes as follows [Sathya and Kayalvizhi (2011b)]: 
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Follows that, the mean levels of μ0 and μ1 for classes C0 and C1 can be described as 
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Then, the mean intensity (μT) of the whole image can be represented as follows 
,T 0 0 1 1μ = w μ + w μ  and 0 1 1w w+ =                 (5) 

Therefore, the below objective function of the bi-level thresholding problem the objective 
can be expressed as  
Maximize J(t)= σ0+σ1,                  (6) 

where,  

σ0=w0(μ0-μT)2 and σ1=w1(μ1-μT)2                (7) 
The bi-level thresholding is further extended to solve a multilevel thresholding problem 
for the various ‘m’ values and as follows. Let there be m number of thresholds (t1, t2, t3, ..., 
tm) to be selected, which divide the input or original into ‘m’ classes: C0 with gray level in 
the range 0 to t-1, C1 with the enclosed gray levels in the range t1 to t2-1,... and Cm with 
gray levels from tm to L-1. The selected optimal thresholds are chosen by maximizing the 
following objective function and expressed as Sathya et al. [Sathya and Kayalvizhi 
(2011b)]: 
Maximize J (t1,t2,t3,.......,tm)= 0 1 2 3 ...... ,mσ σ σ σ σ+ + + + +              (8) 
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4 Background of WCMFO algorithm 
Khalilpourazari et al. [Khalilpourazari and Khalilpourazary (2017)] proposed the hybrid 
water cycle moth-flame optimization (WCMFO) algorithm, which mimics the behavior 
of the natural flow of the water cycle and navigation of moth in nature. The proposed 
approach hybridizes the algorithm of WCA and MFO and named as WCMFO algorithm. 
The aim of developing a hybrid algorithm is to improve the performance of the optimal 
solution. The WCA is more capable of exploring the solution space of the problem. The 
streams and rivers are updating their location towards the sea, and this procedure is 
helping search agents to update their position on the best solution. The WCA, on the 
other hand, suffers from the absence of an efficient operator capable of performing 
exploitation [Khalilpourazari and Khalilpourazary (2017)]. While, MFO performs very 
well in exploitation using its spiral motion capability, but cannot efficiently explore the 
solution space. This is because each moth is updating their location towards their 
corresponding flame. Consequently, the search agents do not share the information about 
the best solution obtained by the MFO so far. The motivation behind to develop an 
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efficient WCA and MFO hybridization that can benefit from both algorithms advantages 
[Khalilpourazari and Khalilpourazary (2017)].  
In the proposed WCMFO algorithm, the WCA is considered the basic algorithm. The 
WCAs first improvement is to use the moths spiral movement to update the stream and 
river position. The standard WCAs update procedure only takes into account the space 
between the stream and a river when updating a stream’s position [Khalilpourazari and 
Khalilpourazary (2017)]. In other words, the next position of the stream would be in the 
space between the stream and its corresponding river. By contrast, the MFO algorithm’s 
updating procedure allows moths to update their position around their corresponding 
flame anywhere. Allowing streams and rivers to update their position using the 
mothsspiral movement increases the hybrid WCMFO’s ability to exploit significantly. 
The second improvement in the basic WCA enhances the raining process. In all 
metaheuristic algorithms, randomization plays a major role. Two processes are 
considered to increase randomization in the WCMFO algorithm. As in the basic WCA, 
the first is the raining process. The WCMFO performs raining process to create new 
solutions where the distance between a river or stream and the sea is less than dmax (i.e., 
distance between each river or stream and the sea). The second one uses a random walk 
or levy flight to allow the streams to flow randomly into the solution space. If the streams 
update their positions and cannot find a better solution, consider a WCA iteration, then 
the position of the rivers and the sea would not change until the next iteration. In the 
WCMFO, streams are allowed to update their position by using the following equation to 
increase the randomness of the algorithm [Khalilpourazari and Khalilpourazary (2017)]. 

1 (dim)i i ix x Levy x+ = + ⊗                (10) 
where xi+1 is the next stream position, xi is the current stream position and dim is the 
problem dimension or number of the decision variables [Khalilpourazari and 
Khalilpourazary (2017)]. 
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where r1 and r2 random numbers range from 0 to 1. 
The parameter σ is calculated as follows based on the above formulation. 
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5 Proposed WCMFO algorithm for multilevel thresholdingof brain MR image 
segmentation 
As described in the previous section, the selected WCMFO algorithm for multilevel 
thresholding. Here, theproposed algorithm is developed to determine the position in the 
search space (i.e., optimal threshold values) that maximizes the Otsu’s objective function. 
The proposed WCMFO considers a slice image of the brain MR to be processed as the test 
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images. This implements a multilevel thresholding process to segment white matter, gray 
matter, and cerebrospinal fluid of Axial, T2-weighted brain MR image slices. This stage 
implements the WCMFO algorithm assisted Otsu’s procedure for different threshold levels 
(m=2, 3, 4, 5) on the chosen test image. Later, the image quality metrics are computed for 
these images to discover the best threshold for segmenting the selected brain image slice. 
The implementation of algorithm can be summarized into the following steps: 

Otsu’s based hybridized WCMFO algorithm for brain MR image segmentation 
Input: Brain MR image slice 
Output: Optimal thresholds, segmented image, objective function, PSNR, CPU time 
Step 1: Read the MR slice brain image I and obtain the histogram, h(i). 
Step 2: Calculate the probability distribution function using Equation (1) and obtain 

the histogram 
Step 3: Initialize the WCMFO control parameters 
Step 4: Create initial population and form sea, rivers, and streams 
Step 5: Evaluate the fitness using Otsu’s function using equation (8) and sort of   

selection of sea and rivers 
Step 6: Forming the sea, river, streams and designates streams to river and the sea 
Step 7: While i<maximum number of iterations 

i=i+1; 
Step 8:  for streams 

Update the position of stream using spiral movement 
Stream objective=objective function value of the new stream 
if stream objective < river objective 
river position= the new stream 
ifstream objective < sea objective 
sea position= the new stream 
end if 
end if 
if river objective < sea objective 
Sea position =River position 
end if 
end for 

Step 9:  for rivers 
Update the position of rivers using spiral movement 
river objective =objective function value of the new river 
if river objective < sea objective 
sea position =river position 
end if 
end for 

Step 10:  for streams 
Update the position of the streams using Levy flightby Equation (11) 
     end for 
     for rivers and streams 
calculate the distance(d) between each river or stream and the sea 
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if  d<dmax 
raining process (for both rivers and streams) 
end if 
end for 
Linearly decrease the parameter max d 
Linearly decrease the parameter a 
end while 

Step 11: Keep the best solutions, rank the solutions and find the current best. 
Step 12: Stopping criterion, if the maximum objective function value(fitness) is 

reached, computation is terminated. Otherwise Steps 7 to 11 are repeated. 
Step 13: Obtain thebest thresholds for the brain MR image after computing the best 

objective function value. 
Step 14: Get the Segmented brain MR image and performance metric valuesfor  

theselected threshold value (m). 

The overall execution involved in the proposed Otsu’s based hybridized WCMFO 
Algorithm as shown in Fig. 1 for brain MR image segmentation. 

 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

Figure 1: Execution involved in the proposed algorithm 

 

6 Results and discussion 
Consideration of the proposed WCMFO strategy is applied to the segmentation of 
standard 10 axial T2-weighted brain MR images that are freely available in the Harvard 
medical school web-based repository of medical images. Fig. 2 illustrates a 
representation of the test images and each image has an 8-bit gray level of size 256×256.  
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Figure 2: Standard test T2-weighted brain MR image data set 
All simulation work is performed on MATLAB 2014 with an Intel Core i3 processor with 
8 GB of RAM. In proposed WCMFO, a population of the solution is formed at each 
dimension randomly within the limit of [0, L-1]m at the initialization stage of the 
algorithm. When a population is produced, a fitness value is assigned to the population’s 
solution. The algorithm then begins to find the optimum threshold values through their 
selection criteria. In this case, the number of thresholds (m) represents the dimension of 
optimization problem. The final selected  control parameters by DOE  are: population 
size, Npop=25; Number of rivers+sea, Nsr=4 and dmax=0.01. In general, the hybrid 
algorithm has randomized behavior. Therefore, for each image and for each m value, all 
experiments were repeated 30 times in order to obtain the best segmented result in terms 
of high fidelity evaluation. The WCMFO results (i.e., best thresholds, objective function 
value, and performance metric values) were compared with other meta-heuristic 
algorithms from the existing literature, namely AWDO, ABF and PSO. The segmented 
results of the proposed algorithm for T2 -weighted axial brain images with different slices 
were illustrated in Figs. 3-4 for the best objective values. From these Figures, it was 
observed that the segmented image visible high quality is better with higher levels of 
threshold (m=5) in assessment with m=4, m=3 and m=2 thresholds.  Also, the results of 
the proposed algorithm are compared to other existing algorithms, as shown in Tab. 1, in 
terms of the obtained threshold values of the best solutions. Tab. 2 demonstrates the 
objective function and PSNR values. In maximization algorithm, higher the value of the 
objective function better is the solution. From Tab. 2, it is noted that for m=2-5 thresholds 
for all images, the obtained objective values of the proposed algorithm are relatively 
higher than existing algorithms were obtained. PSNR is a similarity between the 
reconstructed image and the original image [Janaki (2017)]. A higher PSNR value 
denotes the improved segmented image quality [Manikandan, Ramar, Iruthayarajan et al. 
(2014); Panda, Agrawal, Samantaray et al. (2017)]. Also, Tab. 2 lists the numerical 
results of PSNR for all algorithms, where the PSNR values proposed were higher than 
AWDO, ABF and PSO were reached. In all cases, as well as in all images, the PSNR 
value increases with an increase in threshold values was observed. Then, the CPU time is 
measure of a optimization technique  that varies from different thresholds. Tab. 3 shows 
the CPU time and STD values of the all algorithms at different image thresholds. In 
consideration of CPU time, it is evidently realized that the proposed algorithm CPU time 
is much less than other algorithms. 
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Figure 3: Results of WCMFO algorithm for the slices 22-62 images 
Further, standard deviation (STD) are also computed to analyze the proposed algorithm, 
which measures the accuracy and stability of the objective function values. Because of 
the stochastic nature of metaheuristic algorithms, the solution found on each run may not 
be the same. Tab. 3 shows the STD values for all tested images, the WCMFO algorithm 
has a lower standard deviation value and therefore be concluded that, compared to other 
three algorithms, WCMFO performs better for multilevel thresholding. Furthermore, the 
algorithm statistical analysis is carried out in order to analyze the efficiency of the 
proposed WCMFO algorithm. Accordingly, the best, mean and worst objective function 
values were presented in Tab. 4 for the 30 times executions of algorithm. From the Tab. 4, 
it was observed that the best and mean values are almost zero and the average difference 
between best and mean value 1.86 is obtained through the statistical test of the proposed 
hybrid algorithm. Furthermore, the comparison of objective function, PSNR, CPU time 
and STD values are shown in Figs. 5-8, for the slice 72 image,  respectively.  In all the 
Figs, WCMFO algorithm has more sensitive to the existing algorithms for the 2-5 
threshold levels. Also, the similar trend was observed for all other tested slice images. 

m=2 m=3 m=4 m=5 

Slice 22 

Slice 32 

Slice 42 

Slice 52 

Slice 62 
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Figure 4: Results of WCMFO algorithm for the slices 72-122 images 

Table 1: Best threshold values 

Image m WCMFO AWDO ABF PSO 

Slice 22 

2 33, 98 35, 99 93, 176 94, 180 

3 23, 68, 118 26, 69, 118 69, 117, 180 72, 118, 188 
4 18, 52, 90, 129 16, 44, 80, 124 50, 110, 154, 181 55, 104, 155, 200 
5 16, 44, 74, 105, 138 16, 40, 68, 101, 128 50, 86, 126, 176, 197 52, 98, 138, 187, 209 

Slice 32 

2 43, 113 44, 111 107, 178 108, 186 

3 24, 70, 124 23, 68, 121 70, 120, 154 73, 123, 176 

4 19, 59, 98, 136 16, 49, 89, 131 56, 96, 133, 198 60, 96, 131, 180 

5 17, 52, 85, 118, 152 14, 43, 77, 107, 144 48, 83, 119, 157, 200 49, 88, 127, 182, 203 

Slice 42 

2 46, 121 48, 123 112, 182 111, 186 

3 32, 81, 136 31, 84, 135 80, 122, 170 81, 125, 197 

4 21, 65, 112, 160 28, 70, 107, 154 59, 108, 144, 188 62, 107, 142, 183 

5 20, 56, 92, 129, 175 18, 58, 87, 130, 162 55, 96, 128, 158, 194 55, 118, 142, 170, 206 

Slice 52 2 46, 115 43, 113 118, 188 117, 189 

m=2 m=3 m=4 m=5 

Slice 72 

Slice 82 

Slice 92 

Slice 102 

Slice 122 
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3 38, 90, 134 38, 89, 132 100, 132, 171 102, 133, 174 

4 20, 60, 98, 138 19, 59, 97, 142 85, 114, 147, 184 85, 123, 172, 214 

5 19, 57, 94, 126, 166 21, 58, 87, 112, 136 60, 96, 125, 172, 197 66, 98, 130, 160, 216 

Slice 62 

2 48, 123 47, 123 118, 183 118, 185 

3 40, 97, 147 41, 95, 144 95, 131, 178 98, 138, 181 

4 32, 79, 119, 162 36, 84, 124, 172 80, 112, 150, 194 80, 128, 156, 193 
5 19, 60, 98, 133, 179 24, 56, 93, 132, 169 75, 106, 136, 172, 212 78, 107, 136, 172, 205 

Slice 72 

2 46, 128 46, 127 111, 173 112, 168 

3 41, 104, 165 44, 103, 167 105, 139, 191 106, 155, 206 

4 37, 88, 126, 183 39, 87, 128, 180 100, 128, 166, 204 101, 133, 170, 208 

5 21, 61, 95, 131, 185 18, 51, 94, 131, 177 75, 103, 132, 164, 202 76, 118, 141, 176, 216 

Slice 82 

2 46, 125 45, 125 115, 167 114, 168 

3 44, 105, 171 46, 99, 166 110, 141, 195 110, 166, 186 

4 35, 83, 119, 181 37, 84, 121, 179 100, 128, 162, 206 101, 134, 155, 203 

5 20, 59, 94, 128, 187 28, 57, 92, 120, 175 87, 111, 140, 185, 215 89, 120, 139, 164, 203 

Slice 92 

2 43, 114 43, 113 100, 182 101, 180 

3 39, 94, 135 48, 89, 129 100, 136, 194 102, 140, 173 

4 32, 76, 108, 149 27, 65, 102, 141 90, 132, 165, 191 92, 120, 148, 178 
5 19, 58, 89, 117, 155 28, 62, 88, 114, 151 90, 107, 129, 158, 196 91, 111, 138, 168, 197 

Slice 102 

2 43, 113 43, 113 100, 158 100, 172 

3 40, 96, 143 39, 93, 143 96, 132, 170 95, 160, 197 
4 21, 62, 101, 148 30, 61, 103, 147 90, 130, 157, 182 92, 122, 162, 199 
5 20, 58, 92, 119, 160 15, 52, 87, 113, 154 86, 108, 133, 170, 205 87, 115, 148, 183, 212 

Slice 112 

2 42, 112 42, 111 93, 170 94, 173 

3 25, 74, 127 27, 75, 129 76, 113, 172 78, 128, 178 

4 23, 65, 103, 147 24, 63, 103, 145 70, 108, 150, 177 70, 119, 177, 200 

5 20, 56, 86, 114, 156 22, 55, 85, 115, 154 60, 97, 140, 170, 208 62, 98, 136, 172, 194 

Table 2: Objective function and PSNR values 

     Image     
m 

Objective function values PSNR values 

WCMFO AWDO ABF PSO WCMFO AWDO ABF PSO 

Slice 22 2 2274.62 2273.70 1808.85 1806.85 42.9934 40.9596 10.0804 9.4896 

 3 2370.33 2369.60 2152.93 2134.69 48.3663 46.3073 13.2461 10.9784 

 4 2409.25 2406.80 2283.98 2260.29 52.3741 49.4198 14.0166 11.4129 

 5 2429.80 2426.70 2316.91 2298.89 55.8343 52.5354 16.3086 11.9047 

Slice 32 2 2607.11 2606.90 1809.34 1805.70 41.4183 39.7763 9.1680 8.4334 
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3 2798.48 2712.10 2550.44 2508.99 47.3643 44.6481 12.0415 9.9919 

4 2752.83 2749.60 2655.99 2638.15 51.0219 47.9352 14.7071 10.8084 

5 2773.86 2772.80 2704.02 2684.58 54.0094 51.2911 15.7517 11.3651 

Slice 42 

2 3056.42 3044.00 2118.49 2115.50 39.8690 38.1730 9.0416 8.3074 

3 3184.91 3143.70 2885.67 2844.73 45.6879 43.2503 12.2214 11.0724 

4 3199.43 3196.80 3117.62 3107.48 48.2982 47.1627 14.8753 11.5079 

5 3284.63 3228.60 3157.28 3127.21 52.0569 49.6585 15.6372 12.0292 

Slice 52 

2 2884.85 2858.50 1569.43 1568.42 39.9112 37.5560 9.1512 8.2262 

3 2946.91 2946.70 2093.42 2043.70 45.5810 43.2432 9.7967 9.2269 

4 2997.41 2996.70 2482.46 2468.60 50.0397 47.0742 11.3122 10.2423 

5 3023.63 3014.70 2932.87 2897.98 51.7949 50.2339 15.2471 14.1602 

Slice 62 

2 3371.23 3369.40 2158.57 2156.84 38.0256 35.9739 9.1676 8.7591 

3 3784.61 3483.30 2769.28 2716.35 42.6387 41.0956 10.4215 9.1557 

4 3536.22 3537.30 3206.05 3190.55 47.0496 44.7081 10.9746 9.8815 

5 3578.05 3574.70 3309.24 3265.68 50.1015 47.6875 13.6217 11.1006 

Slice 72 

2 3206.15 3206.10 2082.92 2081.93 36.9944 35.1494 8.9376 8.8525 

3 3342.15 3341.50 2263.00 2253.36 40.8987 39.4989 10.5680 9.4403 

4 3405.49 3404.30 2434.01 2377.82 45.5180 43.6053 11.0596 9.9724 

5 3441.53 3437.60 3126.95 3112.20 50.1729 45.9075 11.6371 11.3969 

Slice 82 

2 2987.13 2938.10 1653.40 1696.23 37.6451 35.5867 9.4512 9.3187 

3 3061.34 3056.80 1818.42 1802.72 41.4441 40.8167 9.9267 9.4671 

4 3117.07 3116.40 2099.92 2038.87 46.7559 44.9673 10.8434 9.7496 

5 3151.64 3145.50 2502.16 2432.93 51.0198 48.3557 12.1136 11.9167 

Slice 92 

2 2653.99 2654.00 1612.49 1567.75 40.1661 38.1608 9.2776 9.2578 

3 2744.95 2709.80 1658.76 1610.44 44.3374 45.2343 9.5888 9.3256 

4 2784.96 2749.10 1961.82 1906.44 51.2062 49.0439 10.3402 9.4954 

5 2775.54 2772.20 1980.68 1911.58 53.7791 53.0766 10.6470 10.4471 

Slice 102 

2 2598.57 2571.60 1732.17 1719.82 41.5038 39.5085 9.3085 8.9941 

3 2657.61 2643.00 1842.97 1820.05 45.6617 43.3470 10.1409 9.3550 

4 2682.75 2679.10 1992.94 1946.94 51.6207 48.9382 11.1441 9.9774 

5 2703.98 2702.50 2111.31 2054.13 54.6993 50.8721 11.6172 10.0065 

Slice 112 

2 2087.61 2016.60 1843.80 1837.93 44.3057 42.0962 9.0078 8.7990 

3 2099.17 2090.20 1896.92 1861.21 50.1450 47.6989 11.9058 8.9684 

4  2185.67 2126.30 1971.23 1954.92 53.8331 51.1259 12.6892 12.4106 

5 2141.14 2140.80 2035.33 2027.20 58.0977 55.0143 14.0649 13.7907 
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Figure 5:Comparison of objective function values for Slice 72 

 
 
 
 
 
 
 
 
 

 

Figure 6: Comparison of PSNR values for Slice 72 

 
 
 
 

 
 

 

 

 

 

Figure 7: Comparison of CPU time for Slice 72 
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Figure 8: Comparison of STD value for Slice 72 

Table 3: CPU time and STD values 

Image m 
CPU time STD values 

WCMFO AWDO ABF PSO WCMFO AWDO ABF PSO 

Slice 22 

2 2.3496 4.4142 3.0781 3.3438 0.0461 0.022 0.0021 0.2663 

3 2.4176 4.6911 3.2344 4.2344 0.0346 1.2601 0.9785 1.9609 

4 3.5210 5.2739 3.7813 4.7813 0.0075 0.1199 0.9719 3.2016 

5 3.4060 6.0944 3.8906 5.6969 0.0327 1.037 1.0811 5.5947 

Slice 32 

2 2.2926 3.6041 2.7969 3.1563 0.0721 1.8353 0.3119 1.5329 

3 2.4176 4.4761 3.2344 3.9063 0.0579 0.1157 0.6319 5.9255 

4 3.2074 5.2704 3.9531 4.3438 0.0415 0.4411 0.6323 6.0875 

5 4.8324 6.0995 4.6406 5.9656 0.0393 0.7957 0.5234 8.1013 

Slice 42 

2 2.3352 3.5875 2.7188 3.0313 0.1471 1.1012 0.2877 1.1383 

3 2.7074 4.3798 3.2031 3.9219 0.0912 0.1011 0.6169 5.2362 

4 3.2926 5.2803 3.7969 4.8594 0.0378 0.2117 0.8095 7.2116 

5 3.2074 6.8108 4.4531 5.3438 0.0407 0.1753 1.4592 9.492 

Slice 52 

2 2.1555 3.6388 2.7656 3.0781 0.0346 0.0388 0.1278 0.6005 

3 2.4292 4.4708 3.2969 3.9306 0.0200 0.0397 0.6771 6.1261 

4 3.1666 5.2751 3.6094 4.7656 0.0140 0.2652 1.0087 8.4673 

5 3.8960 6.0780 4.4063 5.1406 0.0376 0.3302 1.8026 9.8968 

Slice 62 

2 2.5304 3.5487 2.9531 3.1719 0.0021 0.2439 0.1474 1.0589 

3 2.7460 4.4317 3.1563 3.8281 0.0331 0.9368 1.0727 6.2764 

4 2.4176 5.2281 3.2344 4.1563 0.0810 0.1022 1.3146 7.0454 

5 4.1824 6.1425 4.7656 5.9063 0.0680 0.0829 1.9567 9.4338 

Slice 72 2 2.3707 3.5579 2.7031 3.0781 0.0576 0.1059 0.2594 1.3353 
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3 2.6532 4.4686 3.0313 3.5156 0.0735 0.1616 0.6032 4.2687 

4 3.0852 5.5906 3.8438 4.5313 0.0641 0.2632 0.8303 6.4258 

5 3.9395 6.1703 4.5000 5.6494 0.0188 0.0325 1.1771 8.926 

Slice 82 

2 2.4926 3.6443 2.7969 3.1406 0.0647 0.1125 0.2731 1.553 

3 2.7052 4.4164 3.0938 3.9688 0.0223 0.0378 1.1472 4.8403 

4 3.1452 5.3712 3.5938 4.6250 0.0467 0.3407 0.5419 1.4823 

5 3.6602 6.0663 4.1563 5.2969 0.0649 0.3521 1.6522 5.0545 

Slice 92 

2 2.3352 3.5829 2.7188 3.0156 0.0374 0.0292 2.1028 7.0537 

3 2.4892 4.4384 2.8438 3.6406 0.0106 0.0503 1.7586 2.2252 

4 3.2102 5.2651 3.7813 4.7813 0.0509 0.367 2.3913 7.211 

5 3.1125 5.9955 4.3750 5.1052 0.0754 0.125 2.659 11.568 

Slice 102 

2 2.5426 3.6140 2.6719 3.0313 0.0592 0.0085 0.2828 1.2226 

3 2.7875 4.4216 3.0625 4.0313 0.0333 0.0544 1.096 5.8143 

4 3.3656 5.2372 3.4964 4.6719 0.0179 0.328 1.1994 6.5418 

5 3.0426 6.0844 4.4219 5.0625 0.0160 0.1822 1.269 7.3724 

Slice 112 

2 2.2926 3.6196 2.7969 3.1406 0.0579 0.3982 0.292 2.4152 

3 2.4125 4.4585 2.9375 3.7969 0.0856 0.163 0.8327 4.4064 

4 3.4574 5.2713 3.8281 4.9688 0.0564 0.4441 1.6267 5.6559 

5 4.5852 6.1311 4.5938 5.6344 0.0589 0.2653 1.8955 6.8095 

Table 4: Comparison of  best,  mean and worst objective function values for 30 Executions 

Image m Best Mean Worst 

Slice 22 

2 2274.62 2273.23 2270.58 

3 2370.33 2369.36 2368.24 

4 2409.25 2408.84 2407.58 

5 2429.80 2428.44 2427.54 

Slice 32 

2 2607.11 2606.13 2604.87 

3 2798.48 2792.73 2790.94 

4 2752.83 2750.65 2749.33 

5 2773.86 2772.27 2771.78 

Slice 42 

2 3056.42 3054.96 3040.03 

3 3184.91 3181.38 3178.78 

4 3199.43 3198.61 3197.55 

5 3284.63 3283.96 3282.21 

Slice 52 2 2884.85 2882.34 2881.84 
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3 2946.91 2946.50 2945.28 

4 2997.41 2997.78 2996.88 

5 3023.63 3022.44 3021.78 

Slice 62 

2 3371.23 3369.49 3369.54 

3 3784.61 3783.84 3482.22 

4 3536.22 3533.92 3532.47 

5 3578.05 3576.43 3575.98 

Slice 72 

2 3206.15 3204.63 3203.45 

3 3342.15 3340.97 3339.25 

4 3405.49 3403.75 3402.87 

5 3441.53 3441.29 3440.54 

Slice 82 

2 2987.13 2985.98 2982.69 

3 3061.34 3060.93 3059.58 

4 3117.07 3116.27 3115.33 

5 3151.64 3150.16 3150.25 

Slice 92 

2 2653.99 2653.57 2652.44 

3 2744.95 2745.65 2741.98 

4 2784.96 2781.67 2779.64 

5 2775.54 2774.22 2773.86 

Slice 102 

2 2598.57 2591.13 2589.32 

3 2657.61 2652.89 2651.54 

4 2682.75 2682.24 2681.36 

5 2703.98 2702.96 2701.87 

Slice 112 

2 2087.61 2081.82 2089.63 

3 2099.17 2092.46 2088.24 

4 2185.67 2182.34 2181.21 

5 2141.14 2140.32 2139.78 

7 Conclusion 
In this paper, a novel hybrid WCMFO algorithm is implemented with selection best 
threshold values on various axial, T2-weighted brain MR image slices for image 
segmentation by maximizing the Otsu’s objective function. The finding were compared 
to those of the existing algorithms such as AWDO, ABF and PSO algorithms for 
analyzing the performance of the proposed algorithm. The algorithm performance was 
evaluated on the basis of four measures, best objective values, PSNR, STD and CPU 
time. Results showed that the proposed approach achieved performance for different 
brain MR images in the segmentation experiments. The statistical test results reveal that 
the average difference between best and mean value 1.86 is obtained. Conclusively, 
segmentation quality of the all brain MR images are better with the increase in threshold 
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levels that yield the best threshold in the segmentation of white and gray matters, and 
cerebrospinal fluid, offering the possibility of improved clinical decision-making and 
diagnosis. 
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