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Abstract: The crack is a common pavement failure problem. A lack of periodic 
maintenance will result in extending the cracks and damage the pavement, which will 
affect the normal use of the road. Therefore, it is significant to establish an efficient 
intelligent identification model for pavement cracks. The neural network is a method of 
simulating animal nervous systems using gradient descent to predict results by learning a 
weight matrix. It has been widely used in geotechnical engineering, computer vision, 
medicine, and other fields. However, there are three major problems in the application of 
neural networks to crack identification. There are too few layers, extracted crack features 
are not complete, and the method lacks the efficiency to calculate the whole picture. In 
this study, a fully convolutional neural network based on ResNet-101 is used to establish 
an intelligent identification model of pavement crack regions. This method, using a 
convolutional layer instead of a fully connected layer, realizes full convolution and 
accelerates calculation. The region proposals come from the feature map at the end of the 
base network, which avoids multiple computations of the same picture. Online hard 
example mining and data-augmentation techniques are adopted to improve the model’s 
recognition accuracy. We trained and tested Concrete Crack Images for Classification 
(CCIC), which is a public dataset collected using smartphones, and the Crack Image 
Database (CIDB), which was automatically collected using vehicle-mounted 
charge-coupled device cameras, with identification accuracy reaching 91.4% and 86.4%, 
respectively. The proposed model has a higher recognition accuracy and recall rate than 
Faster RCNN and different depth models, and can extract more complete and accurate 
crack features in CIDB. We also analyzed translation processing, fuzzy, scaling, and 
distorted images. The proposed model shows a strong robustness and stability, and can 
automatically identify image cracks of different forms. It has broad application prospects 
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in practical engineering problems. 

Keywords: Fully convolutional neural network, pavement crack, intelligent detection, 
crack image database. 

1 Introduction 
Pavement plays an important role in transportation. However, whether it is cement or 
asphalt, cracks, ruts, or other diseases will appear after a period of use, among which 
cracks are the most common. Pavement cracks not only affect ride comfort but also 
facilitate the deterioration of pavement function. With the aggravation of vehicle traffic 
and freeze-thaw cycles, cracks easily expand, causing structural damage to the pavement 
and reducing its service life. Therefore, once cracked, pavement should be promptly 
repaired. Preventive maintenance can effectively slow cracks propagation and reduce the 
maintenance cost of pavement [DonaldN (1996)]. Therefore, a large amount of pavement 
crack information should be collected to effectively detect its condition and provide a 
basis for preventive repair [Zhang, Zhao and Rabczuk (2018)]. 
Crack detection currently relies on subjective judgment. Manual inspection is limited by 
practical factors and fatigue, while a computer can work steadily for a long time without 
rest [Zhang, Wang, Lahmer et al. (2016)]. And a computer can detect sub-domains of 
different materials at high noise levels [Nanthakumar, Lahmer, Zhuang et al. (2016)]. 
Moreover, a computer’s detection speed is fast. Because of its obvious advantages in 
accuracy, efficiency, and cost, computer vision can come into play [Szeliski (2010); 
Zhang, Nanthakumar, Lahmer et al. (2017)]. 
Traditional pavement crack-detection methods can be roughly divided into three 
categories: 1. The gray value of cracks is lower than that of the background, such as 
threshold segmentation [Christian, Kristina, Varun et al. (2015); Oliveira and Correia 
(2009)], histogram segmentation [Kirschke and Velinsky (1992)], color difference 
[Premachandra, Premachandra, Parape et al. (2015)], minimum path [Avila, Begot, 
Duculty et al. (2014)], anisotropy [Shabalov, Feldman and Bashirov (2012)], filter 
[Salman, Mathavan, Kamal et al. (2013); Haris, Muhammad and Khurram (2016); 
Eduardo, Jaime, Roberto et al. (2014); Zhang, Li, Wang et al. (2013)], and CrackTree 
[Zou, Cao, Li et al. (2012)]. 2. The gray value at the crack edge changes greatly so 
complex artificial edge detectors [Albert and Nii (2008); Gunawan, Nuriyanto, Sriadhi et 
al. (2018); Cubero-Fernandez (2017)] or wavelet analysis [Slamet, Fiddin, Chayadi et al. 
(2016); Tomiyama and Kawamura (2016); Jian, Huang and Chiang (2006); Wang, Li 
and Gong (2007)] are adopted for feature extraction. 3. A feature extractor is based on 
early machine learning methods like random forest [Shi, Cui, Qi et al. (2016)], Adaboost 
[Wang, Yang, Cheng et al. (2018)], and support vector machine (SVM) [Ai, Jiang, Kei et 
al. (2018)]. 
Due to inconsistent directions, irregular textures, and uneven shapes, cracks are difficult 
to identify. In addition, pavement images contain much noise. Changes in light and shade, 
dust, and driving speed all have a great impact on detection results. Hence, these 
traditional methods are incapable of analyzing all the features of the cracks. These 
methods compare favorably with convolutional neural network (CNN) when using 
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small-scale data, but have low recognition accuracy and poor generalization ability when 
dealing with large-scale data. 
The continual improvement of computer performance and the popularization of the 
Internet have produced a large amount of data and provided strong support for deep 
learning. CNNs are artificial neural networks based on deep learning [Lecun, Bengio and 
Hinton (2015)]. This network model repeatedly learns image data to obtain 
comprehensive crack characteristics. Furthermore, it is robust for scaling, translation, 
rotation, mirroring, contrast enhancement, and other deformation operations of cracks. 
CNNs have enabled great achievements in the fields of automatic driving [Zhao (2018)] 
and biometric traits [Rajalakshmi, Rengaraj, Mukund et al. (2018)], including crack 
identification. Anitescu et al. [Anitescu, Atroshchenko, Alajlan et al. (2019)] proposed a 
method to solve the second order boundary value problem using artificial neural network, 
which improved the robustness, saved a lot of computation and had the characteristic of 
high accuracy. To solve the problem of sheet bending, Guo et al. [Guo, Zhuang and 
Rabczuk (2019)] proposed a depth configuration method based on deep neural network. 
This method proves that increasing the number of layers can improve the accuracy and 
convergence. Chen et al. [Chen and Jahanshahi (2017)] recently used an underwater 
camera to collect crack videos of nuclear power plant components, and made an 
eight-layer model to classify tubelets of each frame. A similar method was adopted by 
Wang et al. [Wang and Zhang (2017)] to segment road images into image cells with a 
resolution of 64×64 pixels, which were detected by a CNN of three convolutional layers 
and two full-connection layers. Zhang et al. [Zhang, Wang, Li et al. (2017)] preprocessed 
images using 360 artificial feature extractors and trained a four-layer neural network for 
classification. Park et al. [Park and Bang (2019)] used dash-cam data to train a fully 
convolutional network (FCN) to segment road pixels, and trained sub-patches with a 
resolution of 40×40 pixels from the central area. Feng et al. [Feng, Xu and Guo (2019)] 
used multi-scale feature maps from different positions of a residual network to train a 
classification network. Zhang et al. [Zhang, Yang, Zhang et al. (2016)] trained a 
ConvNets classifier with pavement images collected by a mobile phone. Cha et al. [Cha, 
Choi and Oral (2017)] proposed a seven-layer classification network to detect concrete 
crack sub-regions. These CNNs have achieved excellent results, but the methods still 
have the drawback that the relationship between patches and surrounding pixels cannot 
be considered, so the overall features of cracks cannot be learned. They are just 
image-level classifications rather than regional-level detection. In addition, the extraction 
of sub-regions cannot be integrated into CNN, so a picture must be repeatedly calculated. 
Moreover, pictures collected by mobile phone mainly rely on manual work, which is slow 
and subjective. Pictures collected by dash-cam have too many redundant targets, and 
distant and lateral cracks are blurred. Finally, the number of the layers is few, which 
limits extraction of crack features. 
With the continuous development of deep learning, a large number of region-level 
object-detection methods have been proposed. Those based on CNN can be roughly 
segmented into two categories: two-stage algorithms based on sliding windows, such as 
R-CNN [Girshick, Donahue, Darrelland et al. (2014)], SPP Net [He, Zhang, Ren et al. 
(2014)], Fast R-CNN [Girshick (2015)], and Faster R-CNN [Ren, He, Girshick et al. 
(2015)], and regression-based one-stage algorithms, such as YOLO [Redmon, Divvala, 
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Girshick et al. (2015)] and SSD [Liu, Anguelov, Erhan et al. (2015)]. 
Aiming at the large data volume and complex background environment of 
pavement-crack images, the proposed method detects the pavement cracks based on a 
fully convolutional neural network by combining the 100-layer basic residual network 
and R-FCN [Dai, Li, He et al. (2016)] framework. This improves Faster RCNN by 
canceling the fully connected sub-network, replacing RoI (Region of Interest) pooling 
with position-sensitive RoI pooling, which solves the problem of translatability 
invariance. The work incorporates region proposal network (RPN) to extract the crack 
region of the feature map, which integrates the sub-region extraction task into the 
network and greatly improves the computing efficiency. Online hard example mining 
(OHEM) and data augmentation are used to improve accuracy. The proposed model is 
trained on the public dataset CCIC and the Crack Image Database (CIDB) collected by 
vehicle-mounted charge-coupled device (CCD) cameras. The fully convolutional neural 
network shows higher accuracy and faster processing speed than state-of-the-art methods, 
and can extract more abstract features. It achieves region-level detection and has a strong 
generalization ability. 

2 Methodology 
The fully convolutional neural network model adopted in this study includes the basic 
residual network, RPN, position-sensitive RoI pooling, and an output layer. To reduce the 
error between the predicted and ground-truth values, gradient descent [Lecun, Bottou, 
Bengio et al. (1998)] and backpropagation [Lecun, Bottou, Orr et al. (1998)] algorithms 
are used to update the network’s parameters. Fig. 1 shows the structure of this model. The 
images are input to shared basic CNN to obtain the feature map, which is calculated 
twice, first to get the region proposal through RPN, and then to get the position-sensitive 
score map by 1×1 convolution kernel. The region proposal and position-sensitive score 
map is matched, and the final identification result is obtained through position-sensitive 
RoI pooling and voting. 

Basic CNN

RPN

Backbone architecture
Position-sensitive RoI 

pooling  
Figure 1: Schematic of proposed model 

2.1 Basic residual network 
As the depth increases, it becomes more difficult to train and optimize the network. 
Simply stacking convolutional layers and pooling layers cannot upgrade the model, but 
will cause gradient disappearance, which is a degradation problem [He, Zhang, Ren et al. 
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(2015)]. We propose ResNet to solve this problem. Fig. 2 shows a residual block of the 
basic network. Res a and res b represent two residual nodes. Between res a and res b are 
three branches, which are branch layers a, b, and c. Each branch includes a convolution 
layer, batch normalization layer, and activation function layer. Convolution has two 
advantages: parameter sharing and sparse connection. Convolution calculation greatly 
reduces storage and computation requirements. Batch normalization not only speeds up 
the convergence of the model but also alleviates the problem of gradient disappearance in 
the deep network to some extent, making it easier and more stable to train the deep 
network model [Ioffe and Szegedy (2015)]. The activation function is the rectified linear 
unit (ReLU), which compared with the early activation function sigmoid and tanh, 
converges faster and avoids gradient explosion and gradient vanishing [Maas, Hannun 
and Ng (2013)]. In addition, ResNet directly connects two residual nodes through a 
shortcut connection. Through this connection mode, ResNet solves the degradation 
problem and improves network performance while increasing network depth. 

branch 
layer b

branch 
layer ares a res bbranch 

layer c +
 

Figure 2: Residual block 

2.2 Region proposal network 
The main idea of two-stage CNN based on region proposal is to generate a sparse region 
of interest (RoI) by a candidate region algorithm, and then to classify the candidate 
regions. Traditional methods to extract candidate regions are selective search (SS) and 
edge boxes (EB). Efficient CNN fully exploits the advantages of a graphics processing 
unit (GPU), but these early candidate-region extraction algorithms can only be carried out 
on a central processing unit (CPU). These algorithms cannot be integrated into CNN, and 
the convolution features cannot be shared. This reduces the computational efficiency and 
accuracy of candidate-region extraction. 
As shown in Fig. 3, shared basic CNN outputs a feature map and slides a small 3×3 
window on it. Anchor points are located in the center of the sliding window. Three scales 
of 8, 16, and 32, and three aspect ratios of 0.5, 1, and 2 were considered to obtain nine 
anchor boxes. A convolutional feature map of size W×H has a total of 9×W×H anchor 
boxes. When training RPN, Intersection-over-union (IoU) was used to assign two kinds 
of anchor boxes to positive labels: the anchor box with the highest IoU value with a truth 
box, or the anchor box with an IoU value greater than 0.7 with any truth box; assign a 
type of anchor boxes to a negative label: the anchor box with an IoU value less than 0.3 
with all truth boxes. Most images have more negative anchor box frames than positive 
anchor boxes. Training all anchor boxes at the same time will bias the results toward 
negative anchor boxes. In this study, 256 anchor boxes are extracted from an image to 
calculate the loss function of a small batch, where the ratio of positive and negative 
anchor boxes is 1:1. If the number of positive anchor boxes in an image is less than 128, 
we fill it with negative anchor boxes. The purpose of RPN learning is to cause the offset 
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of the predicted box relative to the anchor box close to the offset of the ground-truth box 
relative to the anchor box, so as to accurately predict the position of the region proposals 
according to the position of the anchor box. In the test, the scores of predicted boxes were 
ranked from high to low. The 300 predicted boxes with the highest scores above a fixed 
threshold were selected as the region proposals. 

1:2 2:11:1

Large

Middle

Small

Sliding 
window

Feature map

Shared basic CNN Anchor
box

Predicted 
box

Training

Testing

Feature map

Ground truth box

 

Figure 3: Region proposal network 

2.3 Position-sensitive RoI pooling 
The appearance of fully convolutional neural networks, such as GoogLeNet [Szegedy, 
Vanhoucke, Ioffe et al. (2016)] and ResNet [He, Zhang, Ren et al. (2015)], proves that 
the use of convolution instead of the full connection not only has better effects but also 
can adapt to inputs of different sizes. However, if the full connection layer is discarded 
directly and the feature map is connected to the final classification layer and regression 
layer, then the effect is poor. This is mainly because these fully convolutional neural 
networks are image-level classification networks, which prefer position invariance. 
Position-sensitive RoI pooling can effectively solve this problem. 
As shown in Fig. 4, in the last feature map of the shared CNN, RPN and 
position-sensitive RoI pooling are respectively employed to extract region proposals and 
solve the problem of translational invariance. First, the 1024-d convolutional kernels of 
size 1×1 are used to generate the position-sensitive score map of depth 4×k2×(C+1) by 
the convolution calculation of the 2048-d feature map. Similar to the idea of dropout, this 
reduces dimensions and avoids overfitting to some extent. Then the region proposals are 
mapped to the position-sensitive score map. The depth of all region proposals on the 
position-sensitive score map is 4×k2×(C+1), where C is the number of object types (C=1 
in this example), +1 corresponds to the background, 4 corresponds to the four position 
coordinates required by regression, and k2 represents the division of the region proposals 
into k×k bins (k=3 in this example). Next, position-sensitive RoI pooling is carried out to 
divide region proposals with the size w×h into k×k bins, each with size (w/k)×(h/k). 
Finally, average pooling is conducted for each region proposal to obtain 
(C+1)-dimensional vectors used for classification and regression. The fully convolutional 
neural network is completely shared and greatly improves the efficiency. 
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Figure 4: Schematic diagram of position-sensitive RoI pooling 

2.4 Output layer 
Traditional neural network classification uses SVM. When the data dimension is low and 
the data volume is small, it does not show shortcomings. However, in object detection, 
due to the huge amount of data, the SVM is gradually replaced by the softmax function. 
A multitask function is proposed by combining softmax with a bounding box regression 
function to reduce the computational complexity and improve accuracy. The cost 
function in this work is the sum of cross-entropy loss and boundary box regression loss 

( ) ( ) [ ] ( ), , 0 ,cls bbregL p t L p c c L y vλ= + >                                  (1) 

where, when 0c > , 𝜆𝜆 is equal to 1, and when 0c = , 𝜆𝜆 is equal to 0, and 

( ), logcls cL p c p= −                                                    (2) 

Eq. (2) is the cross-entropy loss, that avoids the problem of slow convergence of sigmoid 
units. Moreover, the greater the difference between the predicted and ground-truth values 
the greater the cross-entropy loss. The advantage is that the model tends to bring the 
predicted value closer to the ground-truth value. The softmax function is defined by 
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where rc is a c-dimensional vector generated by position-sensitive RoI pooling, and i and 
j represent a block (bin) in row i and column j. The bounding box regression function is 
defined by 
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where t=(tx, ty, tw, th) and v=(vx, vy, vw, vh) represent the position coordinates of the 
prediction box and ground-truth box, respectively. 

3 Experiment and result 
To train CNN requires much marked image data. A variety of publicly available datasets 
are available, among which ImageNet [Deng, Dong, Socher et al. (2009)], COCO [Lin, 
Maire, Belongie et al. (2014)], PASCAL VOC [Everingham and Winn (2006)], and 
CIFAR-10 are the most commonly used. However, few datasets are available with 
images of pavement cracks. A public pavement crack dataset, Concrete Crack Images for 
Classification (CCIC), was trained to compare our model with ConvNet [Zhang, Yang, 
Zhang et al. (2016)]. The dataset has 1595 images of 227×227 pixels. CCIC was labeled 
artificially to make it conform to the object-detection task. In this work, the sample set 
was randomly divided into training and test sets at 9:1 ratio. There were 1435 pictures in 
the training set and 160 in the test set. 
A high-performance computer is indispensable for large-scale image-data processing. We 
used an Intel Core i7-7800 CPU with 64 GB RAM and an NVIDIA Titan V GPU. The 
model was based on the Ubuntu 16.04 operating system, using the Caffe 1.0 architecture. 
The computer language was Python 2.7. CUDA 8.0 and CUDNN 9.0 were used to 
improve computing performance. 

3.1 Experiment on CCIC 
3.1.1 Hyperparameters 
CNN must set many hyperparameters that affect the model’s convergence. Most 
important are the number of iterations and the learning rate. Too few iterations lead to 
underfitting, and too many iterations lead to overfitting. With too high a learning rate, the 
loss function will increase and prevent convergence, and if it is too low, the learning 
speed is slow and the loss function may not change at all. Hence it is important to set a 
reasonable number of iterations and an appropriate learning rate. The selection of the 
iteration number and the learning rate mainly depends on observing the variation graph of 
the loss function. When the loss function converges, the iteration is stopped. And the 
learning rate is mainly dependent on the convergence rate of the loss function. The initial 
learning and the total number of iterations is set to 0.001 and 20000, respectively. The 
step method is used to adjust the learning rate to make the model converge as fast as 
possible. The learning rate drops by an order of magnitude after 12000 iterations, as 
shown in Fig. 5. To accelerate training, the backpropagation method was a mini-batch 
gradient descent algorithm with simple momentum. As Tab. 1 shown, mini-batch size, 
weight decay value and momentum coefficient have slight influence on the accuracy of 
the model. Weight decay value of 0.0005 and momentum coefficient of 0.90 are used. 
Due to the limitation of computer memory capacity, mini-batch size should be selected 
the maximum one. In this paper, mini-batch size is 2. 
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Table 1: Models with different hyperparameters 

Learning rate Mini-batch size Weight decay Momentum coefficient Accuracy 
0.0010 2 0.0005 0.90 91.40% 
0.0010 2 0.0005 0.99 90.91% 
0.0010 2 0.0005 0.50 90.85% 
0.0010 2 0.0001 0.90 90.91% 
0.0010 2 0.0010 0.90 90.80% 
0.0010 1 0.0005 0.90 90.91% 
0.0050 2 0.0005 0.90 90.80% 
0.0005 2 0.0005 0.90 90.91% 

 

 

Figure 5: Learning-rate curve 

3.1.2 Training and transfer learning 
Unlike a traditional crack-detection algorithm, CNN does not need to manually extract 
the crack features. Instead, it can automatically learn features by updating the weight of 
the convolutional kernel. The model is initialized according to the above 
hyperparameters. The transfer learning instead of randomly initializing network 
parameters is adopted as a starting point for the training model. Transfer learning uses a 
network that was pre-trained by others and applied to other fields. This can accelerate 
convergence and improve the accuracy. The loss values were output at the terminal every 
20 iterations to draw the loss-value decline curve, as shown in Fig. 6. This could better 
control the number of iterations and enable us to grasp the convergence rate. After 20000 
iterations, the loss value was below 0.1, and hence, the model had converged. 
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Figure 6: Loss function decline 

3.1.3 Testing and assessment 
To show the training effect of the proposed model, 160 images were tested. The testing 
standard was that a predicted bounding box with an IoU overlap higher than 0.5 with the 
ground-truth box was correct detection. Fig. 7 shows an example of a testing result. The 
red box in the figure is the location and marking of cracks, and the label on the top is the 
red box. The value of 1.000 represents the probability of cracks in the red box. It can be 
seen that our proposed model can not only distinguish the cracks but also identify their 
location with a rectangular prediction box. Our model achieved 91.4% accuracy, which 
exceeded that of ConvNet designed by Zhang et al. [Zhang, Yang, Zhang et al. (2016)]. 
Counting the load time, it took only 1.5 s to test an image on average. This is because it 
uses one network calculation to detect the whole image, instead of feeding each 
sub-region into the network, which saved the computing time. 

 

Figure 7: Example of testing result 
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3.1.4 PR curve 
Accuracy refers to the prediction result, indicating the ratio of correctly predicted 
samples (the summation of true positive and false positive) to all samples, 

TP TNaccuracy
TP FP FN TN

+
=

+ + +
                                          (7) 

Here, TP, FP, FN, and TN are the numbers of true positive, false positive, false negative, 
and true negative, respectively. However, when the categories are unbalanced, accuracy 
is not a comprehensive evaluation of the model, and a precision-recall curve should be 
used as the numerical evaluation index. Recall refers to the ratio of true positive samples 
to actual positive (true positive and false negative) samples. Precision is the ratio of true 
positive samples to predicted positive (true positive and false positive) samples. The 
recall rate and accuracy rate are defined as 

TPrecall
TP FN

=
+

                                                     (8) 

TPprecision
TP FP

=
+

                                                   (9) 

We can adjust the confidence threshold to obtain different precision and recall values, 
and we can derive a curve, such as that in Fig. 8. As the confidence threshold decreases, 
the precision decreases and the recall rate increases. For object detection, the PR curve 
near the upper-right corner represents accurate and complete recognition. The recall rate 
and precision of ConvNet, Boosting, and SVM [Zhang, Yang, Zhang et al. (2016)] are 
marked in the PR curve. The precision and recall rate of ConvNet were 86.96% and 
92.51%, respectively. When the precision was the same, the proposed model had a recall 
rate of 98.27%. This means that 5.76% of cracks would be missed by ConvNet. The 
curve of the proposed model is closer to the upper-right corner, indicating that this model 
is not only accurate but more comprehensive, and it can effectively distinguish between 
cracks and non-cracks. 

 
Figure 8: Precision-recall curve 
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3.2 Experiment on CIDB 
The proposed model has shown excellent results in the public dataset CCIC. However, 
those images were shot with a mobile phone. This collection method is time-consuming 
and hard sledding. In actual collection, inspection is conducted with a vehicle camera. In 
addition, the cracks in CCIC are too obvious. In practice, cracks are often small. And 
when a crack is obvious enough, the pavement is already damaged, which is contrary to 
the concept of preventive repair. Furthermore, after excessive cutting, each picture only 
retains local information about cracks. Hence, it is important to establish a labeled 
pavement-crack image dataset with high definition and a sufficient quantity of images. 

3.2.1 Data collection 
Many countries have carried out this research work, such as PAVUE in Sweden, 
Komatsu in Japan, the PCES system of the ETC Company in the United States, the 
PAVUE system of the IMS Company, the CREHOS system of the Swiss Federal 
Technical Research Institute, and the road-crack detection car developed by WDM in the 
United Kingdom. Image-acquisition devices using computer vision are generally divided 
into CMOS (Complementary Metal-oxide Semiconductor) and CCD, which take the 
subject as the image signal and transmit it to the image-processing system. Although the 
CCD camera is relatively expensive, its sensitivity and resolution exceed those of the 
CMOS camera. The CMOS camera is also noisy, which will affect the image quality. A 
CCD camera robot has been applied to bridge monitoring [Yu, Guo, Wang et al. (2012)], 
and it can also be used to collect pavement-crack images. To obtain real crack images 
under different lighting conditions, a vehicle-mounted CCD camera was used to take 
photos of pavement under natural light in sunny and cloudy weather. High-resolution 
road images with 2048×2048 pixels were recorded. The collecting method used for this 
work has three advantages over CICC: 1. Automatic collection saves manpower and 
financial resources. 2. There will be light and dark changes under natural conditions, 
which better conforms to reality. 3. A CCD camera has high sensitivity and resolution, 
and can store a large amount of image data, which fits the demands of deep learning and 
image resolution. The pavement images used in this paper were taken from 10 
expressways in Guangdong province between 2016 and 2018. 

3.2.2 Image processing and labeling 
The original images were divided into images of 512×512 pixels. The positions and 
ranges of cracks (coordinates of the upper-left and lower right corners) were marked with 
rectangular boxes. The data layer of Caffe only supports input data in the LevelDB, 
LMDB, and HDF5 formats. Image datasets must be processed into data types that can be 
recognized by the network model. Images were converted to the LMDB format. 
Pavement-crack images were randomly divided, with 90% used as a training set and 10% 
for testing. The data were augmented to generate new images with a 90-degree rotation. 
After preprocessing, labeling, and data-augmentation, 6295 images were integrated into 
the Crack Image Database (CIDB). 
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3.2.3 Training 
The transfer learning method was also adopted in training on CIDB, and the model 
parameters were initialized with the pre-training model. The learning rate dropped by an 
order of magnitude after every 15,000 iterations, as shown in Fig. 9. Other 
hyperparameters were determined to be consistent with the training on CICC. The loss 
value and accuracy on the training set were saved every 20 iterations, and model 
parameters were saved after every 5000 iterations. 

 
Figure 9: Learning-rate curve 

The total number of iterations was set to 40,000. To judge whether the proposed model was 
optimal, the model output for each 5000 iterations was used to detect on the test set of 332 
images, and the accuracies of multiple iterations were plotted as a line chart, as shown in 
Fig. 10. The loss-function decline curve is shown in Fig. 11. The proposed model had the 
highest accuracy rate, 86.4%, after 30,000 iterations. The model has a strong generalization 
ability. When the number of iterations is small, the model does not fully learn the features 
of cracks, and this is the underfitting stage. When the number of iterations is too high, the 
model learns meaningless noise, and the accuracy rate decreases, which is the overfitting 
stage. From the loss-function decline curve, it can be seen that after 30,000 iterations, the 
loss value tends to converge and reaches the local optimal solution. 

 

Figure 10: Accuracy of multiple iterations 
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Figure 11: Loss-function decline 

3.2.4 Testing and assessment 
In 2012, AlexNet made a breakthrough that the top-5 error rate was reduced to 16.4% in 
the top competition ILSVRC (ImageNet Large Scale Visual Recognition Challenge) in 
the computer vision field, and since then, deep CNN has been widely used in the field of 
computer vision [Krizhevsky, Sutskever and Hinton (2012)]. In 2014, VGG-16 set a new 
record that the top-5 accuracy is 90.1% for ILSVRC [Simonyan and Zisserman (2014)]. 
With the increase of neural network depth, the effect of network feature extraction is 
improved. However, the deepening of the network also brings the important problem of 
gradient disappearance, which decreases the network’s accuracy. Network depth dilutes 
the gradient, limiting the network to train effectively. The ResNet framework solves this 
problem well. 
Tab. 2 shows the comparative analysis of different networks when OHEM is not used. 
The computational efficiency is divided into training efficiency and test efficiency. The 
training efficiency is represented by the average time of an iteration, while the test 
efficiency refers to the average test speed of an image, as represented by the average test 
time. The accuracy is the ratio of the number of correctly predicted samples to the 
number of samples in the test set. These models were trained through 30,000 iterations 
without OHEM. The accuracy of Faster RCNN based on ZF was 68.4%, at a test time of 
0.027 s. The accuracy of Faster RCNN based on VGG16 was 80.7%, at a test time of 
0.055 s. The accuracy of R-FCN based on ResNet-50 was 79.0%, at a test time of 0.051 
s. R-FCN based on ResNet-101 achieved the highest accuracy, 84.6%, at a test time of 
0.076 s, without affecting the detection efficiency. ResNet-50 has 2.5 times more layers 
than VGG16. But R-FCN based on ResNet-50 trains faster and their detection accuracy is 
much the same. This is because the proposed model uses the fully convolutional neural 
network instead of fully connected layers. ResNet-50 has fewer layers than ResNet-101, 
hence its faster computation speed, but ResNet-101 is more accurate, and that is worth 
the slower speed. The accuracy increases when the depth is increased from 50 to 101, but 
decreases slightly with a depth of 152. The accuracy of the 152-layer model was 82.8%, 
1.8% lower than that of the 101-layer network. Although they have similar accuracy. This 
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may be due to the increase in the number of network layers leading to the overfitting 
problem [He, Zhang, Ren et al. (2015)]. The proposed model based on ResNet-101 
performs best. 

Table 2: Performance of different depths 

 Number of basic 
network layers 

Training 
efficiency 

Testing 
efficiency 

Accuracy 

Faster RCNN based on ZF 5 0.088 s 0.734 s 0.684 
Faster RCNN based on VGG16 16 0.213 s 0.674 s 0.807 

Proposed model based on ResNet-50 50 0.199 s 0.678 s 0.790 
Proposed model based on ResNet-101 101 0.347 s 0.720 s 0.846 
Proposed model based on ResNet-152 152 0.492 s 0.530 s 0.828 

 
Figure 12: Feature map 

To further illustrate the influence of model depth on performance, feature maps with 
different layers were extracted. Fig. 12(a) is derived from the last feature map of faster 
RCNN based on VGG16. Fig. 12(b) shows the feature map taken from a middle layer of 
R-FCN based on ResNet-101, and Fig. 12(c) is taken from the last layer of R-FCN based 
on ResNet-101. Comparing Figs. 12(a) and 12(c), it can be found that the R-FCN model 
has more feature maps and more obvious crack features. Therefore, this model can 
achieve higher accuracy. Comparing Figs. 12(b) and 12(c), it can be seen that with the 
same model, relatively shallow layers often learn fewer features, and with the increase of 
network depth, the crack area becomes clearer. Therefore, network depth has a crucial 
impact on accuracy. 
The PR curves shown in Fig. 13 are still used to evaluate CIDB detection. With the 
precision rate of 89.1%, the proposed model based on ResNet-101 had the highest recall 
rate, 84.3%. The corresponding figure for the proposed model based on ResNet-152 and 
ResNet-50 is 76.87% and 82.9%, respectively, and faster RCNN based on VGG16 had a 
70.8% recall rate, while Faster RCNN based on ZF had a recall rate of only 16.1%. This 
means that with the same precision rate, other models will mistakenly identify some cracks 
as non-cracks. This will overlook pavement that should be repaired preventively, resulting 
in greater economic losses. The red curve of the proposed model based on ResNet-101 is 
closer to the upper-right corner of the figure, and contains a larger area than other models. 
So, it can be considered that this model has better identification results. 
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Figure 13: Precision-recall curve 

4 Discussion 
4.1 Online hard example mining (OHEM) 
Due to the use of the fully convolutional neural network architecture, OHEM technology 
can be easily integrated into training. During forward propagation, RPN calculates the 
loss of 300 region proposals. Only the region proposals with the highest loss are 
backpropagated, so as to obtain a lower training loss and higher accuracy. When OHEM 
is used, the accuracy of results can be increased by 1.8 percentage points without 
increasing the training time and test time, as shown in Tab. 3. Fig. 14 compares the PR 
curve with and without OHEM. Under the same precision rate of 88.9%, the recall rate is 
82.4% without OHEM and 85.3% with OHEM. This shows that OHEM improves the 
model’s accuracy and recall rate. 

Table 3: Performance of OHEM 

 Accuracy Training 
efficiency 

Testing 
efficiency 

Proposed model without OHEM 0.846 0.347 s 0.720 s 
Proposed model with OHEM 0.864 0.348 s 0.712 s 

4.2 Data-augmentation 
Data augmentation refers to the enhancement of data volume through rotation, 
translation, scaling, contrast enhancement, mirroring, and other operations on existing 
images. Due to the dark color of the road image, the effect of contrast enhancement is not 
obvious. In this paper, we rotated the training set image by only 90°. Tab. 4 shows that 
when OHEM is used, the training model accuracy without data augmentation is only 
84.1%, and the accuracy is increased by 2.3 percentage points with data augmentation, 
with no decrease in training and testing efficiency. This is because data augmentation 
does not change the number of iterations and test images, and the training and test times 
do not increase. Fig. 14 compares the PR curve with and without data augmentation. 
When the precision is 88.9%, the recall rate without data augmentation is only 77.6%, 
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which is 7.7% less than with dataset enhancement. Data augmentation increases the 
number of samples and improves the model recognition effect. 

Table 4: Performance of data augmentation 
 Accuracy Training efficiency Testing efficiency 

Proposed model without data 
augmentation 0.841 0.353 s 0.628 s 

Proposed model with data 
augmentation 0.864 0.348 s 0.712 s 

 

 
Figure 14: Precision-recall curve 

4.3 Comparison of model detection effects 
To compare the performance of the new and traditional methods, the test sets of CCIC 
and CIDB were detected by the pavement-crack detection system, Faster RCNN, and the 
proposed model. The pavement-crack detection system is a traditional method of 
histogram equalization and binary processing. Figs. 15(a) and 15(b) show the detection 
effects of the three models on the CCIC. The traditional method identifies large regions 
and fails to effectively identify crack boundaries. Cracks of Figs. 15(c), 15(d), and 15(e) 
is detected by CIDB. The traditional method can no longer completely identify the crack. 
The images in (c) are of pavement detection under normal light. The traditional algorithm 
detects the left crack with a large detection area, and fails to detect the right crack. Faster 
RCNN cannot effectively identify the boundary between the left and right cracks. The 
proposed model effectively separates the two cracks and completely identifies them. The 
brightness of the image collected by the detection vehicle is often inconsistent, and the 
traditional method is not sensitive to light. The images in (d) are the results detected 
under bright light. The traditional algorithm detects only partial cracks. The detection 
results of Faster RCNN and the proposed model are similar, but the predicted box of the 
proposed model is closer to the crack boundary. The images in (e) are the results detected 
under dark light. The traditional method wrongly detects the dark part as a crack, and 
Faster RCNN identifies the crack as two segments, generating three prediction boxes. 
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The proposed model generates a more suitable prediction box. 
The above comparison shows that: 1. the traditional method of manually extracting crack 
features can only detect cracks through one or a few of the features, such as brightness, 
color, and boundary. The crack features extracted by CNN are more accurate and 
complete, for a better detection effect. 2. The proposed model has strong robustness to 
the change of light and dark, and can be better used in practical detection. 3. The cracks 
in the public dataset are obvious and simple, and the model with fine detection on CCIC 
cannot be used in practical applications. 

Pavement crack detection system Faster RCNN(VGG16) R-FCN（ResNet-101）

(a)

(b)

(c)

(d)

(e)

 
Figure 15: Recognition effects of different models 



 
 
 
Intelligent Detection Model Based on a Fully Convolutional Neural Network             1285 

4.4 Robustness 
Robustness is an important basis for judging model performance. In object detection, 
robustness refers to the model’s ability to recognize an object with translation, scale 
scaling, blur processing, and deformation processing. The robustness of the proposed 
model is demonstrate and evaluated with respect to translation, fuzzy processing, scale 
transformation, and deformation of the image. 

4.4.1 Translation processing 
As shown in Fig. 16(a), these pictures are cut from the upper-left, lower-left, upper-right, 
and lower-right corner of the same original image; i.e., the position of the same crack on 
the image is shifted. The image size is 400×400 pixels. All cracks in the figure are 
identified, and the translation of a crack has no impact on its detection. Compared with 
the image-level detection model designed by Zhang et al. [Zhang, Yang, Zhang et al. 
(2016)], our proposed model realizes region-level detection. In the actual detection of 
pavement, it is not necessary to consider the problem of multiple cracks or the location 
movement of cracks in a picture. 

4.4.2 Fuzzy processing 
As shown in Fig. 16(b), the resolution of the same image was directly reduced. From left 
to right, the resolutions are 200×200, 300×300, 400×400 and 512×512. There are two 
cracks in each image. The left crack is fairly obvious, while the right one is somewhat 
fuzzy. Only the right crack in the image with a resolution of 200×200 was not identified. 
Overall, this model is robust to fuzzy processing. In practice, cracks are not as obvious as 
those in public datasets, and the proposed model can be applied to actual problems. 

4.4.3 Scale transformation 
As shown in Fig. 16(c), the same image was captured with resolutions of 200×200, 
300×300, and 400×400 from the upper-left corner, so that the scales of the same cracks 
were different. All cracks were detected by our model with high confidence. The scale of 
cracks did not affect the detection. In actual detection tasks, the proposed model can 
better adapt to different pavement behavior and task requirements. 

4.4.4 Deformation 
As shown in Fig. 16(d), the same image data was shortened horizontally and vertically. 
From left to right, the resolutions were 512×256, 256×512, and 512×512. The crack on 
the left side could be identified by our model, and that on the right side could not. This 
may be because the right crack is fuzzy, and after deformation processing, it is more 
difficult to identify. In the actual collection of pictures, if the speed is too fast, the image 
may be distorted. The proposed model avoids this to a certain extent. 
These analysis results show that the proposed model has strong robustness and stability, 
which can not only perfectly identify cracks of stretching or translation, but also cracks in 
blurred and distorted images that are distinguished with difficulty by human eyes. Hence 
it can better adapt to practical problems. 
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(a) Translation processing 

(b) Fuzzy processing 

(c) Scale transformation 

 
(d) Deformation 

Figure 16: Robustness analysis diagram 

5 Conclusion 
We proposed an intelligent detection model for pavement cracks using a fully 
convolutional neural network. Different from traditional CNNs, the proposed model 
consists of a shared fully convolutional basic subnetwork, RPN, position-sensitive RoI 
pooling, and an output layer. RPN integrates the region extraction into CNN, and 
position-sensitive RoI pooling solves the problem of translation invariance. 
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Using 1595 images of concrete cracks from the public dataset CCIC, the proposed model 
was trained with 20000 iterations and obtained an accuracy of 91.4%. It performed better 
than ConvNet, boosting and SVM in terms of PR curve. The detection in this study is 
region-level object detection, which is a demanding task. However, CCIC takes pictures 
by mobile phone, which cannot be well integrated into automatic detection. Moreover, 
the cracks in the dataset are too obvious, which is not consistent with the actual road 
detection. Therefore, 4T image data were collected by vehicle CCD camera. After 
selection, segmentation, and preprocessing, 3313 image data were labeled, and 2982 
images were added with data augmentation, further building the Crack Image Database. 
Using a single high-performance GPU, the training set was trained for 30000 iterations. 
On the test set, the proposed model obtained 86.4% accuracy, which was better than 
Faster RCNN based on ZF (68.4%) and Faster RCNN based on vgg-16 (80.7%). The PR 
curve of the proposed model is better. 
OHEM and data augmentation increased the model accuracy by 1.8% and 2.3% points, 
respectively. Compared with the traditional algorithm and Faster RCNN, the proposed 
model can extract more comprehensive and accurate crack features, which are less 
affected by light and shade changes. The CIDB database collected in this study is more 
challenging to the model and can better reflect the actual road-crack information. Finally, 
we tested images of translation, fuzzy processing, scale transformation, and deformation, 
and all cracks were still detected. The proposed algorithm has good stability. 
Unavoidable practical problems such as driving speed and blur have little impact on the 
detection results. The proposed model can be applied to pavement detection under 
different practical conditions, and has strong robustness in actual problems. 
The CIDB of 6295 images was collected and trained to obtain the model in this study. It 
shows the potential of a fully convolutional neural network in pavement-crack detection. 
However, there are many kinds of pavement diseases, and only cracks are identified in 
this study. We will collect and train more kinds of pavement-disease image data to 
broaden the field of intelligent identification. 
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