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Abstract: In the Prognostics and Health Management (PHM), remaining useful
life (RUL) is very important and utilized to ensure the reliability and safety of
the operation of complex mechanical systems. Recently, unscented Kalman filter-
ing (UKF) has been applied widely in the RUL estimation. For a degradation sys-
tem, the relationship between its monitored measurements and its degradation
states is assumed to be nonlinear in the conventional UKF. However, in some spe-
cial degradation systems, their monitored measurements have a linear relation
with their degradation states. For these special problems, it may bring estimation
errors to use the UKF method directly. Besides, many uncertain factors can result
in the fluctuations of the estimated results, which may have a bad influence on the
RUL estimation method. As a result, a robust RUL estimation approach is pro-
posed in this paper to reduce the errors and randomness of estimation results
for this kind of degradation problems. Firstly, an improved unscented Kalman fil-
tering is established utilizing the Kalman filtering (KF) method and a linear adap-
tive strategy. The linear adaptive strategy is used to adjust its noise term
adaptively. Then, the robust RUL estimation is realized by the improved UKF.
At last, three problems are investigated to demonstrate the effectiveness of the
proposed method.
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1 Introduction

Due to the importance of reliable and safe operation of complex mechanical systems, more and more
researches have been conducted on the Prognostics and Health Management (PHM) in recent years [1–4].
The key points of PHM are condition state assessments and remaining useful life (RUL) estimations [5].
For a running system, its RUL is defined as the period from the current moment to the end of its useful
life. In order to give operators the alarms of equipment breakdowns in advance, RUL has been widely
applied in many fields, including rotating machinery [6,7], batteries [8,9], aerospace [10], etc.

Many RUL estimation methods have been developed in the past decades [1–6]. In general, the RUL
estimation methods can be classified into three categories [11]: the physical-model methods, the data-
driven methods and their hybrid. In the physical-model methods, the accurate physical models of
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degradation processes need to be established to achieve more precise RUL estimations [6]. However, it is often
difficult to construct the physical models of complex systems owing to their complicated degradation processes
and many uncertain factors [12]. Instead of precise physical models, the data-driven methods utilize condition
monitoring data to estimate RUL [1], which seemmore convenient for the prognostics of complex systems. The
hybrid approach usually represents a combination of the above methods. For the RUL estimation, many
difficult problems still exist in practical applications. One of them is the intractable uncertainty caused by
limited data, multiple unknown factors and so on [6]. For this reason, more effective methods still need to
be explored to deal with the uncertainty in the RUL estimation.

Recently, the stochastic filtering methods have been utilized in both the physics-model and data-driven
methods for their ability to tackle uncertainties. The stochastic filtering methods mainly consist of Kalman
filtering (KF) [13–15], extended Kalman filtering (EKF) [16–18], unscented Kalman filtering (UKF) [19–
21], and particle filtering (PF) [22–24]. KF is the most fundamental filtering method and used only for
linear systems [14]. EKF and UKF are developed from KF to deal with nonlinear problems [17,20]. PF
solves nonlinearity by the sequential Monte Carlo method [24]. Based on the unscented transform (UT)
method, UKF generally can achieve a better estimation accuracy than the EKF [19,25,26]. A key part of
PF is the sequential Monte Carlo which requires lots of calculations, so PF usually consume more
computations than UKF [27,28]. Due to the reasonable trade-off between computational complexity and
capability of handling system nonlinearity, UKF has been widely used and studied for RUL estimations.
Chen et al. [29] studied the RUL estimation of the fuel cell in the postal electric vehicles using the UKF
method. Dong et al. [30] applied UKF for the remaining dischargeable time estimation of lithium-ion
batteries. Tse et al. [31] predicted the remaining useful lives of slurry pumps using the UKF and captured
vibration signals. Dolence et al. [32] proposed an integrated approach for the RUL prediction of solid
oxide fuel cell stacks based on UKF. Wang et al. [33] studied the UKF for the prognostics of lithium-ion
batteries considering heterogeneous noise variances. Cui et al. [34] developed a modified UKF for the
RUL prediction of rolling bearing. Zheng et al. [35] researched the RUL estimation of lithium-ion
batteries by UKF and relevance vector regression. Daigle et al. [36] conducted a comparison between
UKF and PF for the model-based prognostics. Chang et al. [37] explored the RUL estimation of lithium-
ion batteries with UKF. Andre et al. [38] proposed a dual filter based on KF and UKF to estimate the
internal states of batteries. Wang et al. [39] researched the crack length estimation and propagation with
EKF and UKF. Plett [40] investigated UKF for the charge state estimation of Lithium polymer batteries.
Zhang et al. [41] presented a UKF-based approach for the remaining discharge energy prediction of the
large format lithium-ion battery packs. Santhanagopalan et al. [25] utilized UKF to estimate the state of
charge for the high power lithium-ion cells. In the UKF-based methods mentioned above, three main
steps can be generally summarized. Firstly, a state space model (SSM) is constructed to represent the
degradation process of a given system, consisting of process and measurement equations. Then, after the
initialization of the model, the current system state can be estimated using UKF and condition
measurements. Finally, the RUL can be predicted for the system based on the current state.

From the above, some UKF-based RUL estimation methods have been developed successfully, however
several important factors still need to be considered further in order to achieve more accurate and robust RUL
estimations. Firstly, for a degradation system, the relationship between its measurements and its degradation
states is currently assume to be nonlinear in the UKF. It should be noticed that practical degradation problems
can differ widely from each other. For some special degradation systems, their monitored physical quantities
have a linear relation with their degradation states. It may bring estimation errors to use the UKF directly in
this special kind of degradation problems. In addition to this, the uncertainties of some initial parameters,
such as initial states and initial noise, always exist. Their randomness often influences the estimation
results of UKF [42]. Both the aspects mentioned above can have the significant effects on RUL
estimations, but little research has been conducted on these. As a result, a robust RUL estimation method
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is proposed in this work based on an improved unscented Kalman filtering. For the first aspect, an improved
unscented Kalman filtering is constructed based on the UKF and KF, in which the KF is used to deal with the
linear relationship between the monitored qualities and the degradation states. For the second aspect, an
adaptive strategy [43] is utilized in the improved UKF, which can adjust the noise covariance adaptively
in the state estimation process. Based on the improved UKF, a robust RUL estimation method is finally
conducted. The effectiveness of the proposed RUL estimation method is demonstrated with three
engineering problems.

2 The Conventional UKF-Based RUL Estimation

For a degradation system, its RUL is defined as the interval from the current time to the moment when its
degradation threshold is reached. With the capability to handle stochastic problems, UKF has been developed
and widely used for RUL estimations. In the conventional UKF-based methods [29,30,32,34], there
generally exist three basic steps as follows:

Step 1: A state space model (SSM) need to be established to describe the degradation process of a given
system as follows [19,26,35]:

xk ¼ f xk�1ð Þ þ wk

yk ¼ h xkð Þ þ vk

�
(1)

where f �ð Þ and h �ð Þ are the process and measurement functions, respectively. k is a time step index. xk and yk
denote the unobserved state and the observed measurement of the degradation process at the time tk ,
respectively. The process functions are utilized to describe the degradation process. The measurement
functions construct the relationship between the state xk and the measurement yk . wk and vk are the
process and measurement noise terms, respectively. These noise terms represent unknown uncertain
factors in the degradation process and are usually set as Gaussian noises, namely wk ‐N 0;Σwð Þ and
vk ‐N 0;Σvð Þ.

Step 2: Initialize the initial parameters including: the mean x̂0 and the covariance P0 of the initial state x0,
the noise covariances Σw and Σv. Then, with the condition monitoring measurements y1 ; y2 ; . . . ; yk

� �
, the

means x̂1 ; x̂2 ; . . . ; x̂k½ � and the covariances P1 ; P2 ; . . . ;Pk½ � of the states x1 ; x2 ; . . . ; xk½ � at different times
can be estimated recursively by UKF [30,32].

Step 3: Based on the estimated states at the current time tk , the future information of the degradation
process can be predicted recursively. If the failure threshold of the system is reached at the time tm, its
RUL can be calculated as the interval between the current time tk and the predicted failure time tm,
namely, RUL ¼ tm � tk .

3 Formulation of the Proposed Method

3.1 A Special Kind of Degradation Problems
For some special degradation systems, their nonlinear degradation processes usually can be modeled

theoretically in a discrete form as follows:

xk ¼ fh xk�1ð Þ (2)

where θ are model parameters. Besides, their monitored quantities yk have a linear relation with the
degradation state xk . Considering uncertain factors, this kind of degradation problems can be represented
in a discrete form as follows:

yk ¼ H � fh xk�1ð Þ þ ek (3)
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where H is a matrix. The model parameters θ are random variables. The noise term ek is a Gaussian noise,
namely ek ‐N 0;Σeð Þ. Based on Eq. (2), the model in Eq. (3) can be rewritten as follows:

xk ¼ fh xk�1ð Þ
yk ¼ H � xk þ ek

�
(4)

The model in Eq. (4) can be seen as a special case of the classical SSM in Eq. (1), and can be solved by
the UKF method. However, due to the linear relationship between the monitored quantities with the states, it
may bring estimation errors to use the UKF method directly here. In order to obtain more precise and robust
estimations for this special case, an improved unscented Kalman filtering is then proposed based on the
classical UKF and KF.

3.2 An Improved Unscented Kalman Filtering
In this section, an improved unscented Kalman filtering is founded with the UKF and KF methods for

the special degradation problems mentioned above. In the improved UKF method, a linear adaptive strategy
[43] is used to adjust the noise term sk adaptively to reduce the influence of initial noise parameters. For the
special SSM in Eq. (4), the improved UKF algorithm is illustrated in detail as follows:

Step 1: Initialization

According to the history information, the initial parameters should be initialized firstly, including: the
mean x̂0 and covariance P0 of the initial state x0 and the initial noise covariance Σ0.

Step 2: State prediction at the time tk�1

Based on the information of the state xk�1, the unscented transform (UT) [19] is used to estimate the
mean x̂kjk�1 and covariance Pkjk�1 of the variable xkjk�1 where xkjk�1 ¼ f xk�1ð Þ. This step includes two
sub-steps as follows:

(a) Generate sigma points for the state xk�1

In the UT, the distribution of a Gaussian random variable is represented by a set of sigma points [44,45].
Using the mean x̂k�1 and covariance Pk�1 of the state xk�1, 2Lþ 1 sigma points vi with the corresponding
weights Wi are generated to represent the state variable xk�1 through the following equations [46,47]:

v0k�1 ¼ x̂k�1

vik�1 ¼ x̂k�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ �ð ÞPk�1

p� �
i i ¼ 1; 2; . . . ; L

vik�1 ¼ x̂k�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ �ð ÞPk�1

p� �
i�L i ¼ Lþ 1;Lþ 2; . . . ; 2L

W mð Þ
0 ¼ �= Lþ �ð Þ

W cð Þ
0 ¼ �= Lþ �ð Þ þ 1� a2 þ bð Þ

W mð Þ
i ¼ W cð Þ

i ¼ 1= 2 Lþ �ð Þf g i ¼ 1; 2; . . . ; 2L

8>>>>>>>><
>>>>>>>>:

(5)

where � ¼ a2 Lþ jð Þ � L is a scaling parameter. L is the dimension of the state mean x̂k�1. a is a scaling
factor and generally set to 10�3. j is another scaling parameter and set to 3� L. b is also a scaling
parameter and usually set to 2.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ �ð ÞPk�1

p� �
i is the ith column of the matrix square root of Lþ �ð ÞPk�1.

(b) Estimate the mean x̂kjk�1 and covariance Pkjk�1

The 2Lþ 1 sigma points vik�1 are propagated through the nonlinear process functions f �ð Þ as follows:
vikjk�1 ¼ f vik�1

� �
i ¼ 0; 1; . . . ; 2L (6)

Then, the mean x̂kjk�1 and covariance Pkjk�1, called the prior information of the state xk , can be
calculated as follows:
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x̂kjk�1 ¼
P2L
i¼0

W mð Þ
i vikjk�1

Pkjk�1 ¼
P2L
i¼0

W cð Þ
i vikjk�1 � x̂kjk�1

h i
vikjk�1 � x̂kjk�1

h iT

8>><
>>:

(7)

Step 3: State update at the time tk

In this step, the mean x̂kjk�1 and covariance Pkjk�1 are updated by the measurement data yk to obtain the
mean x̂k and covariance Pk of the state xk . Since the measurement equations are linear, this update is carried
out through the state update step of KF [48], instead of the classical UKF, as follows [48,49]:

x̂k ¼ x̂kjk�1 þ Kk yk �Hx̂kjk�1

� �
Pk ¼ Pkjk�1 � KkHPkjk�1

�
(8)

where the matrix Kk ¼ Pkjk�1H
T HPkjk�1H

T þ Σk�1

� ��1
is the Kalman gain matrix. Σk�1 is the noise

covariance estimation at the time tk�1.

Step 4: Noise covariance adjustment

In order to adjust the noise covariance, the residual-based covariance matching strategy in the adaptive
Kalman filtering [43] is applied:

Σk ¼ Ck þHPkH
T (9)

where Ck is the sum of a residual sequence:

Ck ¼ 1

N

Xk
j¼k�Nþ1

vjv
T
j (10)

where N is a window size parameter, and vj is a residual error at the time tj:

ŷj ¼ Hx̂j
vj ¼ yj � ŷj

�
(11)

where yj is the measurement data and ŷj is the predicted measurement through the estimated mean x̂j at the
time tj. If this step is carried out at the beginning of the state estimation process, namely 1 � k � N, the Ck

can be substituted by:

Ck ¼ 1

k

Xk
j¼1

vjv
T
j (12)

From the above, based on the Steps 2-4 and the measurements yiji ¼ 1; 2; . . . ; k
� �

, the mean x̂k and
covariance Pk of the current state xk can be estimated recursively, meanwhile the noise covariance is
adjusted adaptively.

3.3 The RUL Estimation
Based on the estimated state x̂k at the current time tk , the future degradation information x̂kþ1and ŷkþ1 at

the time tkþ1 can be predicted:
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x̂kþ1 ¼ f x̂kð Þ
ŷkþ1 ¼ H � x̂kþ1 þ s

�
(13)

where s ‐N 0;Σkð Þ is the noise term. Assuming a failure occurs when the degradation process crosses a given
failure threshold, the step in Eq. (13) can be carried out recursively until the degradation process reaches the
given failure threshold. If yk is a one-dimensional measurement, the failure time of the increasing degradation
process can be defined as follows:

ŷkþr � FT
ŷkþrþ1 > FT
RUL ¼ tkþr � tk

8<
: (14)

where ŷkþr and ŷkþrþ1 are the predicted degradation quantities at the time tkþr and tkþrþ1, respectively. FT is a
failure threshold and the time tkþr is defined as the failure time, when the degradation quantity hits the failure
threshold for the first time. Then, the RUL at the current time tk is obtained as RUL. If the degradation process
is decreasing, its failure time is defined inversely as the time tkþr when ŷkþr � FT and ŷkþrþ1 < FT .

In the conventional UKF-based RUL estimation, it is usually difficult to set the initial mean x̂0 well
because of its uncertainty in practice. Instead of a certain value, it may be easy to provide a reasonable
initial interval x̂L0 ; x̂

U
0

� �
for the initial mean x̂0, namely x̂0 2 x̂L0 ; x̂

U
0

� �
. In order to reduce the influence of

the uncertainty of x̂0, M initial samples are generated from its initial interval as its initialization in the
following RUL estimation algorithm. In conclusion, the framework of the robust RUL estimation method
is exhibited in Fig. 1 and the algorithm is shown in detail as follows:

Step 1: Initialization

After establishing the SSM of a degradation process, the initial parameters can be given by the historical
data of same or similar degradation problems, including: the initial mean interval x̂L0 ; x̂

U
0

� �
and the initial

covariance P0 of the initial state x0 and the initial noise covariance Σ0. Then, M initial samples
x̂i0ji ¼ 1; 2; . . . ;M
� �

are generated from the interval x̂L0 ; x̂
U
0

� �
for the initial mean x̂0. As a result, M initial

samples x̂i0;P0;Σ0

� �ji ¼ 1; 2; . . . ;M
� �

are obtained for the following steps.

Step 2: The current state estimation

Based on the M initial samples, M estimations x̂ik ;P
i
k ;Σ

i
k

� �ji ¼ 1; 2; . . . ;M
� �

of the current state xk can
be acquired through the improved UKF and the measurements yiji ¼ 1; 2; . . . ; k

� �
.

Step 3: Future degradation prediction

For each estimations x̂ik ;P
i
k ;Σ

i
k

� �ji ¼ 1; 2; . . . ;M
� �

of the current state xk , the prediction step in Eq. (13)
is carried out recursively until the degradation process reaches the given failure threshold FT .

Step 4: RUL estimation

After the Step 3, M RUL estimations RULi j x̂ik ;P
i
k ;Σ

i
k

� �
; i ¼ 1; 2; . . . ;M

� �
can be achieved at the

current time tk . Therefore, the distribution information of the RUL can be described based on these M
samples, such as the mean, the covariance, the confidence interval and so on.

4 Applications

4.1 The Battery Degradation Problem
The reliability of batteries are more and more important in complex electromechanical systems, such as

electric vehicles, airplanes, high-speed rail and so on. However, it is widely known that the capacity of a
battery degrades over cycles until its failure threshold is reached. This kind of degradation problem is
researched through a battery case [50]. In this case, the capacity degradation process is expressed by an
exponential growth model [50] as follows:
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C ¼ a exp �btð Þ (15)

where a and b are the model parameters, t is the time index, and C is the battery capacity. The capacity data
[50] are given at every 5 weeks as shown in Tab. 1. Based on the information (Ck�1, bk�1) at the time tk�1, the
degradation model can be rewritten in a discrete form as follows:

Ck ¼ exp �bk�1Dtð ÞCk�1 (16)

where Dt is a time interval between the time tk�1 and tk . Ck�1 and Ck are the capacity values at the time tk�1

and tk , respectively. bk�1 is the estimation of the parameter b at the time tk�1. Then, the SSM of this battery
can be constructed as follows:

Figure 1: The flowchart of the proposed RUL estimation method
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xk ¼ f xk�1ð Þ :
Ck ¼ exp �bk�1Dtð ÞCk�1

bk ¼ bk�1

�
(17)

yk ¼ H � xk þ ek ¼ Ck þ ek (18)

where Eqs. (17) and (18) are the process and measurement equations, respectively. xk ¼ Ck ; bk½ � is the state
vector including the capacity Ck and the model parameter bk at the time tk . yk is a capacity measurement. The

noise term is a Gaussian noise, namely ek ‐N 0;r2k
� �

. The initial parameters are given in Tab. 2. Ĉ0 and b̂0 of

the initial mean x̂0 ¼ Ĉ0; b̂0
h i

are set as intervals. rC and rb are the initial standard deviations of the initial

parameters C0 and b0, respectively. P0 is the initial covariance of the initial state x0. M is the number of the
initial state samples. N is the window size parameter in the improved UKF. FT is the degradation threshold of
battery capacity and set as 0.3 [50].

Based on the capacity measurements, the battery RULs at 45 weeks can be estimated by the filtering
methods under different initial noise standard deviations r0. The estimation results of the proposed
method and the UKF-based method are both given in Tab. 3. The 5, 50 (median) and 95 percentiles of
the RUL distribution and its means are estimated through the M RUL estimation samples, in which the
estimated mean value takes only integers. The estimated mean RULs of the battery are shown in Fig. 2.
The proposed method utilizes an adaptive strategy to adjust the noise variance adaptively and the
adjustment process of the noise deviation r is shown in Fig. 3, in which the noise is estimated and
updated gradually to the true value during the state estimation process. For the estimated RUL, M
estimated RUL samples are used to describe its distribution, and the histogram of the RUL by the
samples is shown in Fig. 4. In the proposed method, the state space model of the battery is updated firstly
by the monitoring measurement. Then the capacities of the battery is predicted at each time by the
updated model to estimate RUL. The diagram of the capacity prediction is shown in Fig. 5, in which M
estimated samples of the battery capacity is used to represent its distribution at each time.

Table 1: Battery degradation measurement [50]

Time step k Time (weeks) Capacity (Ahr) Time step k Time (weeks) Capacity (Ahr)

0 0 1.0000 5 25 0.7114

1 5 0.9351 6 30 0.6830

2 10 0.8512 7 35 0.6147

3 15 0.9028 8 40 0.5628

4 20 0.7754 9 45 0.7090

Table 2: The parameter initialization

Parameter Initial value Units Parameter Initial value Units

Ĉ0 [0.9000 1.1000] Ahr P0 r2C 0
0 r2b

� 	
/

b̂0 [0.0080 0.0160] / M 5000 /

rC 0.0577 / N 9 /

rb 0.0023 / FT 0.3000 Ahr
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Table 3: RUL (weeks) prediction at 45 weeks under different initial noise standard deviations

Method RUL percentiles Mean RUL Real RUL r0

5prct Median 95prct

The proposed
method

40 55 70 53 55 0.02

40 55 70 53 55 0.03

40 55 70 53 55 0.04

40 55 70 53 55 0.05

35 55 70 53 55 0.06

35 55 70 53 55 0.07

35 55 70 53 55 0.08

35 55 70 53 55 0.09

35 55 70 53 55 0.10

The UKF-based
method

50 60 70 60 55 0.02

45 60 70 58 55 0.03

40 55 70 55 55 0.04

35 55 70 52 55 0.05

30 50 70 50 55 0.06

25 45 70 47 55 0.07

25 45 70 44 55 0.08

20 40 65 42 55 0.09

15 40 65 40 55 0.10

Figure 2: The mean RULs estimated by the proposed method and the UKF-based method under different
initial noise deviations r0
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Figure 3: The adjustment process of the noise deviation r in the proposed method (r0 ¼ 0:08)

Figure 4: The histogram of the RUL at 45 weeks estimated by the proposed method (r0 ¼ 0:08)

Figure 5: The capacity prediction of the battery at 45 weeks by the proposed method (r0 ¼ 0:08)
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4.2 The Electrolytic Capacitor Degradation Problem
Electrolytic capacitors are also very critical components in many electromechanical systems, but they are

known for low reliability and frequent breakdowns in the practical systems [51]. In this case, the prognostics of
electrolytic capacitors are analyzed through a dataset from the NASA Ames Prognostics Data Repository [52].
In this dataset, six commercial capacitors were subjected to electrical overstress in order to observe and record
their degradation processes, referring to Refs. [51,52] for the further details of the experiments and dataset. For
a capacitor, its internal degradation results in the gradual increase of its resistance and the gradual decrease of its
capacitance over time. The percentage capacitance loss is mostly selected as a degradation indicator to represent
the degradation process, as shown in the Fig. 6. Considering the relevant research [51], an empirical
degradation model of this capacitor is utilized as follows:

Cl tð Þ ¼ exp a � tð Þ þ b (19)

where Cl tð Þ is the percentage loss of this capacitance at the time t. a and b are the degradation model
parameters. Based on the information (Ck�1

l , ak�1, bk�1) at the time tk�1, the degradation model can be
rewritten in a discrete form as follows:

Ck
l ¼ exp ak�1Dtkð Þ � Ck�1

l � bk�1

� �þ bk�1 (20)

where Ck
l and Ck�1

l are the percentage capacitance loss at the time tk and tk�1, respectively. Dtk is a time
interval between the time tk�1 and tk . ak�1 and bk�1 are the estimations of the parameters a and b at the
time tk�1, respectively. Then, the SSM for this capacitor can be constructed as follows:

xk ¼ f xk�1ð Þ :
Ck
l ¼ exp ak�1Dtkð Þ � Ck�1

l � bk�1

� �þ bk�1

ak ¼ ak�1

bk ¼ bk�1

8<
: (21)

yk ¼ H � xk þ ek ¼ Ck
l þ ek (22)

where Eqs. (21) and (22) are the process and measurement equations, respectively. xk ¼ Ck
l ; ak ; bk

� �
is the

state vector at the time tk including the percentage capacitance loss Ck
l , the model parameters ak and bk . yk is

the percentage capacitance loss measurement. The noise term ek obeys a Gaussian noise N 0; r2k
� �

. The sixth
capacitor is selected as the predicted object and its measurements are shown in Tab. 4. The initialization of

0
0

5

10

15

20

25

50 100 150 200

Figure 6: Degradation of capacitor performance
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the parameters in the RUL estimation method is given in Tab. 5. Ĉ0
l , â0 and b̂0 of the initial mean

x̂0 ¼ Ĉ0
l ; â0; b̂0

h i
are set as intervals. rC, ra and rb are the standard deviations of the initial parameters

C0
l , a0 and b0, respectively. P0 is the initial covariance of the initial state x0. FT is a threshold for the

percentage capacitance loss (%), which is set as 20 [51].

With the measurements of the capacitor, its RULs at 171 h are predicted by the filtering methods under
different initial noise standard deviations r0. The prediction results are shown in Tab. 6. The estimated mean
RULs of the capacitor are shown in Fig. 7. The histogram of the predicted RUL by the estimated RUL
samples is shown in Fig. 8. The diagram of the capacitance loss prediction of the capacitor is shown in
Fig. 9, in whichM estimated samples of the capacitance loss is used to describe its distribution at each time.

4.3 The Milling Tool Degradation Problem
For the inserts of tools in a milling machine, milling insert wear can arise from the abrasion of the hard

constituents in work piece material [53]. Once the wear on the inserts exceeds a standard threshold level, the
tools are considered to be disabled. The milling tool degradation is researched through a dataset from the
NASA Ames Prognostics Data Repository [54,55]. This dataset contains sixteen cases running on a
Matsuura machining center MC-510V under different speeds, feeds, and depth of cut. A 70 mm face mill
with 6 inserts (KC710) is chosen as the tool in the dataset, as shown in Fig. 10. The interaction between
work pieces and milling tools can result in different kinds of tool wear. In these experiments, the flank
wear VB is selected to evaluate the tool wear [55], as shown in Fig. 11. The VB measurements of the 3th
case in the dataset are shown in Fig. 12. Considering the changing tendency of the flank wear VB, an
empirical degradation model is founded on an exponential growth model as follows:

W tð Þ ¼ c � exp a � tð Þ þ b (23)

Table 4: Capacitor degradation measurement [52]

Time step k Time (h) Capacitance loss (%) Time step k Time (h) Capacitance loss (%)

0 0 0 5 116 5.990

1 24 0.442 6 139 7.540

2 47 1.550 7 149 9.760

3 71 1.990 8 161 12.680

4 94 3.250 9 171 17.230

Table 5: The parameter initialization

Parameter Initial value Units Parameter Initial value Units

Ĉ0
l [0 0.400] / rC 0.030 /

â0 [0.013 0.023] / ra 0.002 /

b̂0 [-0.570 -0.470] / rb 0.010 /

M 5000 / P0

r2C 0 0
0 r2a 0
0 0 r2b

2
4

3
5 /

N 5 /

FT 20.000 /
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Table 6: RUL (h) prediction of capacitor at 171 h under different initial noise standard deviations

Method RUL percentiles Mean RUL Real RUL r0

5prct Median 95prct

The proposed method 9 12 14 11 13 0.05

9 12 15 11 13 0.10

9 12 15 11 13 0.50

9 12 15 11 13 0.70

9 12 15 11 13 0.90

9 12 15 11 13 1.10

9 12 15 11 13 1.30

9 12 15 11 13 1.50

9 12 15 11 13 1.70

9 12 15 11 13 1.90

9 12 15 11 13 2.10

The UKF-based method 10 11 11 10 13 0.05

10 11 12 11 13 0.10

9 12 15 11 13 0.50

8 11 15 11 13 0.70

7 11 14 10 13 0.90

6 10 14 10 13 1.10

5 10 14 9 13 1.30

4 9 14 9 13 1.50

3 9 14 8 13 1.70

2 8 14 8 13 1.90

2 8 14 7 13 2.10

Figure 7: The mean RULs estimated by the proposed method and the UKF-based method under different
initial noise deviations r0
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where W tð Þ represents the flank wear VB at the time t. a, b and c are the model parameters. Based on the
information (Wk�1, ak�1, bk�1) at the time tk�1, the degradation model can be rewritten in a discrete form
as follows:

Wk ¼ exp ak�1 � Dtkð Þ � Wk�1 � bk�1ð Þ þ bk�1 (24)

whereWk andWk�1 are the flank wear at the time tk and tk�1, respectively. ak�1 and bk�1 are the estimations of the
parameter a and b at the time tk�1. Then, the SSM of the milling tool degradation can be constructed as follows:

xk ¼ f xk�1ð Þ:
Wk ¼ exp ak�1Dtkð Þ � Wk�1 � bk�1ð Þ þ bk�1

ak ¼ ak�1

bk ¼ bk�1

8<
: (25)

yk ¼ H � xk þ ek ¼ Wk þ ek (26)

Figure 8: The histogram of the estimated RUL at 171 h by the proposed method (r0 ¼ 1:1)

Figure 9: The capacitor degradation prediction at 171 h by the proposed method (r0 ¼ 1:1)
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where xk ¼ Wk ; ak ; bk½ � is the state vector at the time tk . Eqs. (25) and (26) represent the process and
measurement equations, respectively. yk is the flank wear VB measurement at the time tk . The noise term
ek follows a Gaussian noise N 0; r2k

� �
. The eleventh case in the dataset is selected as the object to be

Figure 10: Schematic of the tool and inserts of the face mill [55]

Figure 11: Tool wear VB as it is seen on the insert [55]

The 3th case in the datasets
Work piece material:  cast iron
Speed:  826 rev/min
Feed:  0.25 mm/rev
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Figure 12: Tool wear VB over time
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predicted. Its experiment conditions and the flank wear VB measurements are shown in Tabs. 7 and 8,
respectively. The initialization of the parameters in the estimation method is given in Tab. 9.
x̂0 ¼ Ŵ 0; â0; b̂0

h i
is the initial mean of the initial state x0 ¼ W0; a0; b0½ �, in which Ŵ0, â0 and b̂0 are set

as intervals. rW , ra and rb represent the standard deviations of the initial parameters W0, a0 and b0,
respectively. P0 is the initial covariance of the initial state x0. FT is a threshold for the flank wear VB,
which is set as 0.76 mm.

Based on the measurements of the milling tool, its RULs at 80 min are predicted by the filtering methods
under different initial noise standard deviations r0. The RUL estimated results are given in Tab. 10. The
estimated mean RULs of the milling tool are shown in Fig. 13. The histogram of the RUL by the
estimated RUL samples is shown in Fig. 14. The diagram of the tool wear prediction is shown in Fig. 15,
in which the distribution of the tool wear at each time is predicted by its M estimated samples.

Table 7: Experimental condition [55]

Case Depth of Cut (mm) Feed (mm/rev) Cutting speed (rev/min) Work piece material

11 0.75 0.25 826 cast iron

Table 8: Flank wear VB measurement [55]

Time step k Time (min) VB (mm) Time step k Time (min) VB (mm)

0 0 0 8 33 0.18

1 3 0.04 9 39 0.20

2 10 0.07 10 45 0.23

3 12 0.07 11 51 0.26

4 14 0.08 10 57 0.31

5 17 0.09 13 63 0.37

6 21 0.12 14 72 0.42

7 27 0.16 15 80 0.47

Table 9: The parameter initialization

Parameter Initial value Units Parameter Initial value Units

Ŵ0 [0, 0.080] mm rW 0.020 /

â0 [0.014, 0.024] / ra 0.002 /

b̂0 [-0.062, -0.052] / rb 0.002 /

M 5000 / P0

r2W 0 0
0 r2a 0
0 0 r2b

2
4

3
5 /

N 15 /

FT 0.760 mm
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Table 10: RUL (min) prediction of Mill Tool at 80 min under different initial noise standard deviations

Method RUL percentiles Mean RUL Real RUL r0

5prct Median 95prct

The proposed method 18 20 22 20 25 0.02

18 21 23 20 25 0.04

18 21 23 20 25 0.06

18 21 23 20 25 0.08

18 21 23 20 25 0.10

18 21 23 20 25 0.12

18 21 23 20 25 0.14

18 21 23 20 25 0.16

18 21 23 20 25 0.18

The UKF-based method 18 20 22 19 25 0.02

14 19 23 18 25 0.04

11 17 25 17 25 0.06

8 16 26 16 25 0.08

5 15 27 15 25 0.10

3 13 28 14 25 0.12

2 12 28 12 25 0.14

2 10 28 11 25 0.16

1 9 28 10 25 0.18

Figure 13: The mean RULs estimated by the proposed method and the UKF-based method under different
initial noise deviations r0

CMES, 2020, vol.123, no.3 1167



4.4 Analysis of the Results
The results of the three applications are shown in the above. By comprehensively analyzing the results,

we can find the following points:

1. Robustness. The mean of the RUL distribution is utilized as the estimated point to verify the robustness of
the proposed method, as shown in Tab. 12. Under different initial noise standard deviations, the estimated
RUL results of the proposed method remain stable with no fluctuation, which is shown in Tab. 12 and
Figs. 2, 7 and 13. However, the RUL results of the conventional UKF-based method are fluctuant
under the same conditions in the three cases, and their fluctuation intervals are [40.0, 60.0], [7.0, 11.0]
and [10.0, 19.0], respectively. This is because an adaptive strategy is utilized in the proposed method
to adjust the noise variance adaptively during the state estimation process as shown in Fig. 3. For
different number of initial samples, the fluctuation of the estimated results of the proposed method is
analyzed in Tab. 11, in which the method is tested 10 times. When the number is 500 or 1000, the
5 percentiles of the RUL distributions fluctuate in [35,40], [8,9], and [17,18] in the three cases,

Figure 14: The histogram of the estimated RUL at 80 min by the proposed method (r0 ¼ 0:10)

Figure 15: The tool wear prediction at 80 min by the proposed method (r0 ¼ 0:10)
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respectively. The mean of the estimated RUL fluctuates in [52,54] in Case 1. With the increase of the number,
the proposed method remains stable with no fluctuation when the number is 3000 or 5000. Therefore, the
estimated RUL results of the proposed method can remain stable under the uncertain parameters.

2. Accuracy. The mean RUL is also utilized as the estimated point to verify the accuracy of the proposed
method as shown in Tab. 12. The estimation error is defined as the absolute value between the
estimated point and the real RUL. A smaller average error means a more accurate estimation. In the
analyzed cases, the average errors of the estimated results by the proposed method are 2.0, 2.0 and
5.0, respectively. The average errors of the UKF-based method are 7.0, 3.5, and 10.3, respectively,
which are greater than the errors of the proposed method. The results show that the proposed method
can achieve more accurate RUL estimations.

3. To sum up, the proposed approach can reduce the randomness of its results and provide relatively robust
and accurate RUL estimations from the above analysis of three cases. In practice, fluctuant estimated
RULs may cause a difficulty for operators to make a proper maintenance plan, and the stable results
can reduce this influence. As a result, the proposed robust approach seems a useful tool in the RUL
estimation for many engineering problems.

Table 11: Fluctuation of the proposed method by test 10 times under different number of initial samples

RUL percentiles Mean RUL Number

5prct Median 95prct

Case 1 [35, 40] 55 70 [52, 54] 500

[35, 40] 55 70 [52, 54] 1000

35 55 70 53 3000

35 55 70 53 5000

Case 2 [8, 9] 12 15 11 500

[8, 9] 12 15 11 1000

9 12 15 11 3000

9 12 15 11 5000

Case 3 [17, 18] 21 23 20 500

[17, 18] 21 23 20 1000

18 21 23 20 3000

18 21 23 20 5000

Table 12: Comparison of RUL estimations under different initial noise standard deviations in the three cases

Method Fluctuation of mean RUL Real RUL Error range Average error

Case 1 The proposed method [53.0, 53.0] 55 [2.0, 2.0] 2.0

UKF-based method [40.0, 60.0] 55 [0.0, 15.0] 7.0

Case 2 The proposed method [11.0, 11.0] 13 [2.0, 2.0] 2.0

UKF-based method [7.0, 11.0] 13 [2.0, 6.0] 3.5

Case 3 The proposed method [20.0, 20.0] 25 [5.0, 5.0] 5.0

UKF-based method [10.0, 19.0] 25 [6.0, 15.0] 10.3
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5 Conclusions

In order to achieve robust and accurate RUL estimations, a new RUL estimation method is proposed
based on an improved UKF in this work. The proposed method is mainly utilized for a special kind of
degradation problems in which their monitored measurements have a linear relation with their
degradation states. In the proposed method, an improved UKF is constructed firstly based on the KF
method and an adaptive strategy. KF is utilized to tackle the linear relationship between the monitored
measurements and the degradation states. The adaptive strategy is used to adjust the noise covariance
adaptively in the state estimation process. Three degradation problems are analyzed to verify the
effectiveness of the proposed method. The results of three cases show that the proposed method can
achieve more robust and accurate RUL estimations than the conventional UKF-based method under the
uncertainties of the initial parameters. Hence, the proposed method seems a feasible choice for the RUL
estimation of many practical engineering problems.
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