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Abstract: Concrete is intrinsically endowed with randomness on meso-scale due to the
random distribution of aggregates, mortar, etc. In this paper, two random medium models
of concrete mesostructure are developed and comparative studies are provided based on
random field representation approach. In the first place, concrete is considered as a kind
of one-phase random field, where stochastic harmonic function is adopted as the approach
to simulate the random field. Secondly, in order to represent the stochastic distribution of
the multi-phase of concrete such as aggregates and mortar, two-phase random field based
on the Nataf transformation and the Hermite polynomials are introduced. Then, the proposed
two random medium models are testified by the multi-scale simulation results, specifically,
the mean value of the homogenized stress-strain relationship and the damage evolution curve.
Meanwhile, the generalized density evolution equation is utilized to measure the consistency
of these two random medium models by the probability distribution of damage.
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1 Introduction

Due to the random distribution of constituents (aggregates, cement, etc.) and defects (micro-
cracks and micro-voids) on meso-scale, concrete exhibits significant random material
properties, ranging from Young’s modulus, strength to softening behaviors. In order to
well capture these random behaviors, there is a fundamental need for the quantitative
characterization of the random mesostructure of concrete. The random modeling of the
concrete is critical not only for a better understanding of the material properties, but also
for the reliability assessment of concrete multi-scale modeling.
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1.1 Random modeling of concrete micro-structures
There are basically three approaches on random modeling of concrete mesostructures: the
digital image based approach, the random aggregate approach and the random field based
approach. As for the digital image based approach, the optical devices such as X-ray
scanners or CT (Computed Tomography) are applied to record the spatial distribution of
the multi-phase of concrete [Nitka and Tejchman (2018); Ren, Yang, Sharma et al.
(2015); Yang, Ren, Sharma et al. (2017)]. The digital images can be separated into
aggregate phase and mortar phase by different gray values. Distinct material properties
are assigned for the aggregates and mortar separately. Admittedly, the image based
approach provides a relatively accurate and realistic way to model the mesostructure of
concrete. However, usually a small number of samples can be obtained due to the high
costs of the experimental and reconstructive process. Therefore, the reconstructed
samples of the concrete could be inadequate from the statistical point of view. Partially
stemming from the image based approach, the random aggregate approach scatters
random distributed fully graded aggregates in the matrix to represent the mortar. By
mapping three-dimensional (3D) aggregates into two-dimensional (2D) shapes, circular
[Ma, Xu and Li (2016)], quadrangular [Li, Yu, Cao et al. (2018)] as well as polygonal
[Ma, Song and Xu (2018)] aggregate can be generated.

According to the development of random field theory, spatial correlated random material
properties of concrete, such as Young’s modulus, strength or fracture energy can be
generated as random field. Bruggi et al. [Bruggi, Casciati and Faravelli (2008)] generated
three non-Gaussian, multivariate and correlated random fields for the modeling of the
Young’s modulus, tensile strength and fracture energy, respectively. Within the context of
finite element, the random fracture phenomenon is validated by Monte Carlo simulation.
Yang et al. [Yang and Xu (2008); Yang, Su, Chen et al. (2009)] simulated random
cracking process by considering a 2D Weibull distributed random field of tensile
strength. Moreover, the method was expanded into 3D Weibull random field of tensile
strength in simulating the realistic crack patterns in concrete like heterogeneous quasi-
brittle material [Su, Yang and Liu (2010)]. Liang et al. [Liang, Ren and Li (2013)]
applied a stochastic harmonic function based random field to simulate the damage
process and failure modes of concrete.

For the simplification of random field reconstruction, the aforementioned random field
based models are inclined to deem concrete as one-phase random field. When taking a
close observation at the concrete, it is evident to find out that the material properties
ranging from strength to fracture energy of aggregates are much stronger than that of
mortar, usually reach as high as three times in the regular concrete [Neville (1995)].
Through the experimental observation, it is also validated that the cracks mainly happen
in the mortar phase or the interface between aggregates and mortar. Hence, it is more
reasonable to consider the concrete as two- or multi-phase random medium. A number of
approaches have been proposed to address the reconstruction of two/multi-phase random
fields [Feng, Cen, Li et al. (2016); Ilango, Sarkar and Sameen (2013)]. The primary idea
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of these approaches is that once the intermediate Gaussian field has been generated, the
generation of two-phase random field can be done conveniently using a variety of
existing simulation methods, such as Nataf transformation. The two-phase random field
reconstruction methods have been adopted to the permeability and conductivity of
sandstones and porous soil. Although the two-phase random field is particularly suitable
for the random modeling of concrete, to the best knowledge of the authors, there is
seldom application on the fracture or damage modeling of concrete microstructure to
date. Therefore, one of the prospective of this work is to apply the two-phase random
field to the meso-scale modeling of concrete.

1.2 Multi-scale modeling approach
Multi-scale modeling techniques provide effective ways to evaluate how the random
material properties on micro- or meso-scale influence the macroscopic material behaviors.
The reconstructed random mesostructure could also be testified by the multi-scale
simulation results. Guedes et al. [Guedes and Kikuchi (1990)] attained the effective
elastic parameters of the composite materials by homogenization method with adaptive
finite element. Fish et al. [Fish and Yu (2001)] introduced a multi-scale damage model
based on the asymptotic homogenization. Ren et al. [Ren, Chen, Li et al. (2011)]
proposed a micro-crack informed damage model, where the Helmholtz free energy
bridging is deduced and utilized as the vehicle to relate the cracked micro-structure to
damaged macro-scale continua.

As for the randommaterials, multi-scale modeling is also thriving recently. Taking randomly
distributed grains into consideration, Wriggers et al. [Wriggers and Moftah (2006)]
developed a multi-scale damage model from meso-scale analysis, in which the size of
aggregates is Fuller distributed and the location of the aggregates is uniformly
distributed. Benedetti et al. [Benedetti and Aliabadi (2013)] proposed a multi-scale
damage model for a polycrystalline quasi-brittle material. Lin et al. [Lin, Chen and Liang
(2016)] performed micro-crack informed multi-scale analysis to consider the failures of
material with stochastic microstructure. Based on the multi-scale damage representation,
Liang et al. [Liang, Chen, Li et al. (2017)] investigated the relationship of the statistical
variation of microscopic concrete properties and macroscopic statistical variations.

1.3 Scope of this study
This paper presents a comparative study of two random medium models of concrete
mesostructure under the framework of multi-scale modeling. Another objective of this
study is to explore how the random mesostructure affects the probability distribution of
macroscopic material properties. The paper is organized as follows. In Section 2, two
random medium models are put forward. As for the one phase random medium model,
the material property of concrete is assumed as Gaussian random field by stochastic
harmonic function. As for the two-phase random field reconstruction, the aggregate is
considered as the strong phase, while the mortar is considered as the weak phase. In
Section 3, the homogenization based multi-scale energy bridging is applied as the
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framework so that macroscopic stress-strain relationship as well as damage evolution can be
attained from the meso-scale analysis. Then, the numerical model of mesoscopic concrete
based on the cohesive element and finite element with respect to the irregular cracking
process is given in Section 4. Comparisons between one-phase random medium model
and two-phase random medium model are given by macroscopic stress-strain
relationship. The generalized density evolution equation (GDEE) is introduced to further
compare the probability density function (PDF) of the damage based on these two
random medium models. Discussion and Concluding remarks are given in Section 5.

2 Two random medium models

2.1 One phase random medium model
In the one phase random medium model, the sizes and structures of different phases are
represented by the spatial correlation relationship of the random field, hence the specific
phases like aggregates and mortar are not explicitly shown in this approach.

A 2D Gaussian random field Y0 x1; x2ð Þ with zero mean value (l¼0) and unit standard
deviation (b¼1) is generated by the newly developed stochastic harmonic function
(SHF). Substantially, SHF belongs to the family of spectrum representation, whereas only
finite stochastic harmonic functions [Chen, Sun, Li et al. (2013)] are required for the
prescribed target power spectral density function.

The SHF of 2D random field is

Y ðx1; x2Þ

¼
ffiffiffi
2

p XN1

n1¼1

XN2

n2¼1

h
An1n2 cosðK1n1x1þK2n2x2þ�ð1Þ

n1n2
Þþ ~An1n2 cosðK1n1x1�K2n2x2þ�ð2Þ

n1n2
Þ
i (1)

where Y ðx1; x2Þ is the reconstructed random field for Y0 x1; x2ð Þ; N1, N2 are the number of the
components; An1n2 , ~An1n2 represent the amplitudes of the n1-th harmonic components; K1n1 ,
K2n2 denote the corresponding wave numbers;�n1n2;1,�n1n2;2 are independent random phases.

Defining the cut-off wave numbers K1u and K2u, the whole support of K1n1 and K2n2 should

be 0;K1u½ � and 0;K2u½ �, respectively. The interval points KðpÞ
1n1

ð1�n1�N1�1Þ meet the

criterion that 0�KðpÞ
11 �KðpÞ

12 � . . .�KðpÞ
1N1�1�K1u, where KðpÞ

10 ¼0, KðpÞ
1N1

¼K1u. Similarly, the

interval points KðpÞ
2n2

ð1�n2�N2�1Þ have 0�KðpÞ
21 �KðpÞ

22 � . . .�KðpÞ
2N2�1�K2u, where

KðpÞ
20 ¼0, KðpÞ

2N2
¼K2u.

K1n1 , K2n2 , �n1n2;1, �n1n2;2 are random variables in Eq. (1), and the harmonic conditions
should be adopted:

(i) K1n1 , K2n2 n1¼1; 2; . . . ;N1 ; n2¼1; 2; . . . ;N2ð Þ are independent random variables,
which follow a uniform distribution over the sub-supports as
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pKjnjðKjÞ¼
1

KðpÞ
jnj �KðpÞ

jnj�1
¼ 1

DKjnj
; K 2 KðpÞ

jnj�1;K
ðpÞ
jnj

� i
; j¼1; 2

0; other

8<
: (2)

(ii) �n1n2;1, �n1n2;2 are independent random variables which are uniformly distributed in the
range of 0; 2p½ �;
(iii) An1n2 , ~An1n2 can be calculated by the following equations

An1n2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SY0Y0ðK1n1 ;K2n2ÞDK1n1DK2n2

q
(3)

~An1n2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SY0Y0ðK1n1 ;�K2n2ÞDK1n1DK2n2

q
(4)

where SY0Y0 is the power spectrum density (PSD) of the target random field.

The relationship between correlation function and PSD is given by Fourier transform as

SY0Y0ðK1;K2Þ¼ 1

ð2pÞ2
Z 1

�1

Z 1

�1
RY0Y0ðn1; n2Þe�iðK1n1þK2n2Þdn1dn2 (5)

where RY0Y0 is the autocorrelation function of the target random field; n1, n2 are the distance
of x1, x2 directions.

If the autocorrelation function of random field is prescribed, the procedure to reconstruct the
random filed Y x1; x2ð Þ can be summarized as follows:

1. Specify the cut-off wave number K1u,K2u and separate the whole support 0;K1u½ � and
0;K2u½ � into KðpÞ

jnj�1;K
ðpÞ
jnj

h i0
s.

2. Take steps (i) and (ii) for the random parameters in SHFs.

3. Generate samples by Eq. (1) where the involved amplitudes are obtained by Eqs. (3) and (4).

A thorough investigation is proposed that the random field generated by SHFs are stationary
and asymptotically Gaussian [Chen, Sun, Li et al. (2013)].

As for any Gaussian random field Y1ðx1; x2Þ with non-zero mean (l 6¼ 0) and non-unit
standard deviation (b 6¼ 1), the following relationship should be applied as

Y1ðx1; x2Þ¼lþb2Y ðx1; x2Þ (6)

2.2 Two phase random medium model
To start with, we consider concrete as two phase random field: the strong phase which
indicates the aggregates in it and the weak phase which indicates the mortar and other
components. A discrete valued random field can be demonstrated below to simulate the
concrete as:
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Z0 xð Þ¼ A if x in the strong phase
B if x in the weak phase

�
(7)

where x¼ x1; x2f g is the 2D coordinate for the simplicity.

Assuming that the strong phase represents the aggregate of concrete and weak phase
represents the mortar, it is obvious that A’s have a probability equal to the ratio of
aggregates, which can be given as ‘q’, and B’s have a probability 1� qð Þ. The ratio of
aggregates can be calculated by mix proportion of concrete.

Normalize the random field Z0 xð Þ into l¼0, b¼1 and define the random field
Z xð Þ as follows:

Z xð Þ¼
q� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� qÞp if x in the strong phase

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� qÞp if x in the weak phase

8>><
>>: (8)

The autocorrelation function of the normalized random field yields

RZZ x; x0ð Þ ¼ E Z xð ÞZ x0ð Þ½ �
¼
Z 1

�1

Z 1

�1
z1z2pzz z1; z2ð Þdz1dz2

(9)

where pzz z1; z2ð Þ indicates the bivariate discrete distribution of Z.

The Nataf transformation is then used to convert the Gaussian random field Y which can be
generated by SHFs into the normalized two-phase random field Z. The autocorrelation
function of Z are used to compute the autocorrelation function of Y . Nataf transformation
holds that a certain Z value ‘z’ can be mapped to a Y value ‘y’ under the same
cumulative distribution functions (CDF). Therefore, the mapping between Z and Y is

FZ zð Þ¼FY yð Þ (10)

where FZ zð Þ and FY yð Þ denote the CDF of discrete random variable of z and Gaussian
random variable y, respectively. This Nataf transformation is demonstrated in Fig. 1.

It is clearly demonstrated in Fig. 1 that the CDF of normalized Z is step like where the
probability of q represents the strong phase (aggregates) and the probability of 1� qð Þ
represents the weak phase (mortar). Take Eq. (10) into consideration that the region
y�y1 can be mapped as the strong phase and the region y > y1 can be mapped as the
weak phase.
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Therefore, the Nataf transformation is represented as

tðyÞ¼
q� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� qÞp y�y1

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� qÞp y > y1

8>><
>>: (11)

Substituting Eq. (11) into Eq. (9), it yields

RZZðx; x0Þ ¼ E t Y ðxÞð Þ � t Y ðx0Þð Þ½ �
¼
Z 1

�1

Z 1

�1
tðy1Þtðy2Þpttðy1; y2Þdy1dy2

(12)

where pttðy1; y2Þ is the bivariate Gaussian distribution.

The Hermite polynomials is applied to solve Eq. (12) as

pttðy1; y2Þ¼
X1
i¼0

X1
j¼0

cijHiðy1ÞHjðy2Þfðy1Þfðy2Þ (13)

where fðxÞ¼e�x2=2=
ffiffiffiffiffiffi
2p

p
is the Gaussian probability distribution function; cij is the shape

function which can be obtained by orthogonal condition Hermite polynomials.

Substituting Eq. (13) into Eq. (12), the following relationship between RYY and RZZ can be
calculated (see [Ilango, Sarkar and Sameen (2013)] for details) as

RZZ¼
X1
m¼0

G2
m

m!
Rm
YY (14)

Gm¼
Z 1

�1
tðyÞHmðyÞfðyÞdy (15)
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Figure 1: Nataf tranformation. (a) Normalized Z. (b) Standard Gaussian distribution
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With the prescribed ratio of aggregates q and autocorrelation function RZZ , the procedure to
generate the random filed Z0 can be summed up as follows:

1. Calculate RYY of the Gaussian random field through Eqs. (14) and (15).

2. Generate the samples of Gaussian random field by SHF based on Eq. (1) where the
relevant parameters are from (i), (ii), Eqs. (3) and (4).

3. Convert the samples of Gaussian random field into normalized two-phase random field Z
by using Eq. (11).

4. Transform Z into Z0 by assigning the value of A and B in Eq. (7) to the corresponding
phase in Eq. (8).

The detailed generation process and the samples of the one- and two-phase random field are
given in Section 4.

3 Multi-scale modelling of concrete

As for the concrete, it is conventionally treated as a homogeneous material on macro-scale,
while the heterogeneities and randomness in concrete micro-structures (aggregates,
cement, etc.) strongly influence the macroscopic material properties. Therefore, the
multi-scale modeling is required to solve complex problems which involve the micro-
structure of material.

It should be mentioned that although the randomness is considered in meso-cell, the multi-
scale problems is solved by the approximated assumption of the representative volume
element (RVE) and the homogenization based damage representation. As the foundation
of the homogenization, the RVE is defined clearly in two situations: (1) the micro- or
meso-cell of the material is periodic; (2) the micro- or meso-cell contains sufficient
numbers of the micro-scale element that process the statistical periodicity and ergodicity.
Ostoja-Starzewski [Ostoja-Starzewski (2006)] clarified the criterion of the random
material, in which the stochastic representative volume element (SRVE) can be
transferred into RVE. Meanwhile, the RVE can only be approached approximately on
finite scales when the meso-cell is stochastic. In this study, the approximated assumption
of the RVE is considered as the cornerstone of homogenization based multi-scale damage
representation.

Considering a two-scale problem, the macroscopic coordinate and the mesoscopic
coordinate x are adopted. In this study, it should be noted that the meso-scale coordinate
x is the same as the random field of concrete microstructure. The relationship between x
and w could be defined by introducing a small scale parameter � as

w¼ x
�

(16)

As demonstrated in Fig. 2, a 2D domain � and its boundary � is considered at macro-scale.
Taking a small region of � into consideration, it can be represented as a random meso-cell
�x which contains a distribution of arbitrary micro-cracks �c. In the two-scale problem, r is
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the stress in which mesoscopic and macroscopic responses are embedded in the total
solution; n is the normal vector of surface; u is the displacement; �u is the prescribed
displacement on the surface �u; t is the surface traction on �t and h is the surface
traction on �c.

As shown in Fig. 3, the homogenized stress and strain of meso-cell actually represent the
macroscopic stress and strain since the same homogenous assumptions are made.

The homogenized stress and strain are defined as the results of the tractions and
displacements prescribed on the homogeneous material with the following definition as

�r¼ 1

Vx

I
@�x

t � xð Þd� (17)

�e¼ 1

2Vx

I
@�x

u� nþn� uð Þd� (18)

Accordingly, define the averaged stress and strain which represent the averaged stress and
strain in meso-cell as

rh i¼ 1

Vx

Z
�x

rd� (19)

eh i¼ 1

Vx

Z
�x

ed� (20)

After the definition of both the homogenized and averaged stress and strain, the main
perspective is to attain the homogenized stress and strain, namely the macroscopic stress
and strain from the meso-cell analysis.

h
cw

x

tΓ

Γ

Γ

Γ

cΓt

Ω

u

h

One phase random medium

Two phase random medium

u

Figure 2: Two scale problem
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As widely applied in damage models [Ju (1989); Wu, Li and Faria (2006)], Helmholtz free
energy (HFE) is employed to relate the strain energy in the cracked mesostructure and the
damaged homogenized continuum.

The HFE of the meso-cell is defined as

w¼ 1

2
r : e (21)

The homogenized HFE evolves as

�w¼ 1

2
�r : �e (22)

The relationship between the HFE of the homogenized material to the HFE [Ren, Chen, Li
et al. (2011)] in the cracked micro-structure is provided as

�w¼ 1

Vx

Z
�x

wd�þ1

2

I
�c

u � hd�
� �

(23)

In this study, we adopt the scalar damage model as

d¼1�
�w
w0

(24)

where w0 is the HFE of the undamaged material with the expression as

w0¼
1

2
e : C0 : e (25)

where C0 is the undamaged constitutive tensor.

In the present paper, Eq. (24) is employed to obtain the damage evolution functions for
concrete materials.

h

cΓ
homogenization

,σ ε ,σε

xΩ xΩ

 

Figure 3: Homogenization procedure
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4 Comparative analysis

The mesostructure of concrete is modelled by using the presented two random medium
models. In order to testify these two random medium models, the geometry, boundary
conditions and material properties are chosen according to a uniaxial test [Ren, Yang,
Zhou et al. (2008)].

4.1 Numerical model of meso-cell
Since the initiation, development and coalescence of micro-cracks are highly irregular and
random, the random cohesive model is generated to simulate the cracking process of brittle
materials. As depicted in Fig. 4, each Delaunay triangle is directly modeled by a linear
displacement based finite element. These elements are connected by the cohesive
elements which represent the potential crack paths within the solid. In the simulation, the
finite element is formulated by 3-noded plane stress element in ABAQUS, while
the cohesive element is formulated by 4-noded cohesive element. The average size of the
finite element is 1.0 mm and the average width of the cohesive element is 0.005 mm.
The size of the specimen is 150 mm×150 mm. Therefore, the concrete specimen contents
about 20000 finite element and 30000 cohesive elements.

Due to the strong nonlinearities introduced by the cracking process, we choose the explicit
solution algorithm to get the integration of the crack process. Since the explicit solution is
applied in this simulation, the density of concrete is defined as qv¼2500 kg=m3. The average
time of simulation is 2.5 h for 1 sample. The numerical specimen is developed by using the
finite element package in ABAQUS. According to the uniaxial tensile test, geometry of the
numerical specimen and its boundary conditions are given in Fig. 4.

The fracture behaviors are described by the linear decay cohesive law [Hillerborg, Modéer
and Petersson (1976)], where the cohesion on the crack tips can be solely determined by the
maximum cohesive stress ft and the fracture energy Gf . Introduce the fracture energy as an
intrinsic property of concrete, and specify its formulation as

Finite
element

Cohesive
element

Figure 4: Numerical model of meso-cell
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Gf¼
Z w1

0
fdw (26)

where w1 is the maximum width of the cracks with the expression as

w1¼2Gf =ft (27)

It is assumed that under shear loads, the shear fracture will happen in quasi-brittle material.
As for the shear fracture (Model-II fracture), the cohesive stress can be expressed as the
function of crack shear displacement (CSD). The traction-separation relationship can be
defined for shear tractions and crack width. The cohesive elements in ABAQUS are
based on the cohesive crack models. The material parameters such as tensile strength,
shear strength, tensile (mode-I) fracture energy and shear (mode-II) fracture energy
should be determined. Since the uniaxial tension is applied in this study, the shear
strength and shear (mode-II) fracture energy actually doesn’t play any role in the
simulation. So, the shear fracture properties were simply assumed the same as the tensile
ones Gs¼Gf .

4.2 Generation of random medium models
Although the material properties such as Young’s modulus, strength and fracture energy are
random, for the simplicity and concision of the study, the elastic parameters are assumed
constant. The Young’s modulus and Poisson ratio are chosen as: E¼37559 MPa, m¼0:2.
The tensile strength of concrete for the cohesive element is ft¼3:28 MPa. In the classic
fracture mechanics, the fracture energy is considered as the deterministic property of the
material. However, the random cracking processes and the unpredictable failure modes
cannot be well tackled by the deterministic description. In this study, the fracture energy
Gf is modeled as spatial correlated random field in space.

Both in the one-phase and two-phase random field, the geometry of the concrete specimen is
150 mm×150 mm (length×width) which is identical to the experimental size. The mean
value of the fracture energy is chosen as l¼100 N=m, and the standard deviation of the
fracture energy is b¼10 N=m.

Among various types of autocorrelation function in random field studies, exponential type
[Shinozuka and Deodatis (1996)] is the mostly applied in the generation of heterogeneous
materials. In this study, the autocorrelation function of random field is selected as

RZZðn1; n2Þ ¼ exp � n1
b1

� �2

� n2
b2

� �2
 !

; 0 < n1 < 1; 0 < n2 < 1 (28)

where b1, b2 are the correlation lengths along x1, x2 directions. Since the correlation length
indicates the characteristic length of a random medium, it can be chosen as maximum
aggregate size in concrete according to many studies [Ren and Li (2012)]. Hence, the
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correlation lengths b1 and b2 are chosen as b1¼b2¼8 mm which represent the maximum
aggregate size in Ren’s et al. [Ren, Yang, Zhou et al. (2008)] experiment.

The corresponding PSD can be obtained as follows

SY0Y0 K1;K2ð Þ¼ b1b2
4p

exp � b1K1

2

� �2

� b2K2

2

� �2
" #

(29)

As for the one-phase random medium model, 100 samples of Gaussian random field are
generated. The prescribed PSD and reconstructed PSD of the random field are depicted
in Fig. 5. Comparisons between the target and reconstructed PSD at certain wave number
are plotted in Fig. 6.

Fig. 7 illustrates two samples of the one-phase random field. It can be seen in Fig. 7 that
variation of fracture energy is within the range of 60; 150½ � which indicates a strong
variation in concrete.

According to Section 2.2, two-phase random field can be generated by Nataf
transformation and Hermite polynomials where Gaussian random field is served as the
intermediate random field.
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Figure 5: PSD of one-phase random field. (a) Target PSD of one-phase random field. (b)
Reconstructed PSD of one-phase random field
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Figure 6: PSD of one-phase random field at certain wave number. (a) K2¼0. (b) K1¼0
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With the concrete mix propotion in the test, we can back-calculate the ratio of the aggregates
q as q¼0:451, and the corresponding mortar as 1� qð Þ¼0:549. In this paper, the two-phase
random field can be demonstrated below to simulate the concrete fracture energy as:

Gf ðxÞ¼ 157:74 N=m if x is in the strong phase ðaggregatesÞ
52:58 N=m if x is in the weak phase ðcementÞ

�
(30)

The mean value of the two-phase random field is 100 N=m, which is the same as that of one-
phase random field. The correlation function RZZ of the two-phase random field is also
adopted as Eq. (28) where the correlation length is also b1¼b2¼8 mm. Then, SZZ of two-
phase random field can also be used as Eq. (29). The recursive adaptive Simpson
quadrature is applied to solve the integration in Eq. (15). The integration interval is
chosen as �20; 20½ �. In order to achieve a balance of efficiency and accuracy, the
expansion terms in Eq. (14) is given as 20 for solving RYY .

The target PSD SZZ and reconstructed PSD of the two-phase random field are depicted in
Fig. 8. Similarly, 100 samples of two-phase random field are generated. Comparisons
between the target SZZ and the reconstructed PSD are given in Fig. 9.

Two samples are demonstrated in Fig. 10, in which the correlation length is approximated as
aggregate size.

(a) (b)

Figure 7: Samples of the one-phase random field. (a) Sample 1. (b) Sample 2
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4.3 Meso-cell simulation of two random medium models
Analysis is performed on all the random samples. One of the one-phase random samples is
picked for the cracking process in Fig. 11: at very early stage of loading, approximated from
0 to 0:2 um, the stress and strain both increase linearly and no micro-cracks can be observed;
when the applied displacement reaches to 0.5-0.7 um, micro-cracks concentrate at a certain
area and the stress concentration happens at the tips of the cracks; at final stage, a main crack
cut through the concrete specimen which fits well with the experimental observations.
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Figure 9: Comparisons of target and reconstructed PSD of two-phase random field. (a)
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Figure 10: Samples of the two-phase random field. (a) Sample 1. (b) Sample 2

Figure 11: Cracking process of one-phase random sample. (a) u¼0:2 um. (b) u¼0:7 um. (c)
u¼um. (d) experimental cracks
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The homogenized stress-strain relationship of 100 samples are given in Fig. 12. It can be
seen from the results that the strength and the softening behavior show a strong random
behavior. Comparisons between the experimental results and mean curve of stress-stain
relationship are also put forward in Fig. 12(a) which validate the one-phase random
medium model. The damage curves of the samples and mean curve are given in Fig. 12
(b) to directly quantify how the strength is influenced by the microscopic cracking process.

Schematically, the crack propagation in a picked meso-cell at different loading stages of two-
phase random medium model are shown in Fig. 13. Similar cracking process can be observed
in Fig. 13 as: no micro-cracks distributed in the early stage of loading; with the increase of
loading, the micro-cracks happen in a certain area of sample; in the end of loading, the
micro-cracks gather together into a main crack and the tensile failure happens.
Nevertheless, the cracks show more tortuousness in the two-phase random medium model
than that in the one-phase random medium model. This phenomenon can be attributed to
the existence of the strong phase (aggregates) which obstruct the cracking paths.

Figure 12: Multi-scale simulation results of one-phase random field. (a) Homogenized
stress-strain curves. (b) Damage curves

Figure 13: Cracking process of two-phase random sample. (a) u¼0:2 um. (b) u¼0:7 um. (c)
u¼um. (d) experimental cracks
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Correspondingly, the homogenized stress-strain relationship of all two-phase random
samples are given in Fig. 14(a). The damage curves of the samples and mean curve are
given in Fig. 14(b).

4.4 Comparison of two random medium models
In order to quantitatively compare these two random medium models, the mean value and PDF
of damage curves are investigated. The mean value of damage curves are depicted in Fig. 15.

Admittedly, it is shown in Fig. 15 that these two randommediummodels have similar damage
curves to mean value extent. However, mean value is a relatively rough index for the random
variables. Therefore, to precisely obtain probability of the homogenized stress-strain
relationship and the variation in damage due to the statistical variations of microstructures,
the generalized density evolution equations (GDEE) [Li and Chen (2008)] can be introduced.

In general, random damage can be represent as the function of the strain

d¼f ð�; eÞ ; dðe0Þ¼d0 (31)

Figure 14: Multi-scale simulation results of two-phase random field. (a) Homogenized
stress-strain curves. (b) Damage curves
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Figure 15: Comparison of the mean value of damage curves
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where d0¼0 is the initial value of the damage;� is the random parameter vector whose joint
probability density function is p�ðhÞ ; h the realization of�. The damage rate with respect to
strain is given as

@d

@e
¼ @f ð�; eÞ

@e
¼hð�; eÞ (32)

The conditional transition PDF of d under the condition �¼hf g is defined as pdj�
_

d; ejhð Þ,
where d¼ _

d is a realization in the probability space. The range of the possible value of
damage d is 0� _

d�1. When �¼hf g, there exists _

dðeÞ¼f ðh; eÞ.
This condition can be written as

pdj�
_

d; ejhð Þ¼0 ;
_

d 6¼ f ðh; eÞ (33)

pdj�
_

d; ejhð Þ¼1 ;
_

d¼f ðh; eÞ (34)Z þ1

�1
pdj�

_

d; ejhð Þdh¼1 (35)

Combining Eqs. (33)-(35), the conditional transition PDF of the damage is

pdj�
_

d; ejhð Þ¼d
_

d�f h; eð Þð Þ (36)

where dð�Þ is the Dirac delta function.
Taking the derivative of Eq. (36), it yields

@pdj�
_

d; ejhð Þ
@e

¼ @d
_

d�f h; eð Þð Þ
@e

¼ @d yð Þ
@y

� �
y¼ _

d�f h;eð Þ
� @

_

d�f h; eð Þð Þ
@e

¼ @ d
_

d�f h; eð Þ½ �f g
@

_

d
� @

_

d

@y
� @

_

d�f h; eð Þð Þ
@e

¼ �hðh; eÞ � @pdjΘ
_

d; ejhð Þ
@

_

d

(37)

Multiplying p� hð Þ on both sides of Eq. (37), the GDEE for the damage evolution can be
expressed as

@pd�
_

d; e; hð Þ
@e

þhðh; eÞ � @pdΘ
_

d; e; hð Þ
@

_

d
¼0 (38)
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From Eqs. (37) and (38), the initial condition can be rewritten as

pd�
_

d; e0; hð Þ¼dð_d�_

d0Þp� hð Þ (39)

Then, the PDF of dðeÞ is given as

pd
_

d; eð Þ¼
Z
��

pd�
_

d; e; hð Þdh (40)

The procedure to obtain the PDF of dðeÞ is summarized as follows:

1. Generate one-phase and two-phase random medium samples of meso-cell given in
Sections 2.1 and 2.2.

2. Simulate the cracking processes of meso-cell by cohesive elements in Section 4.1.

3. Obtain homogenized HFE by Eq. (23) and the damage evolution functions from Eq. (24).

4. Put hð�; eÞ¼@d=@e into the generalized density evolution equation Eq. (31) and solve
Eq. (37) under the initial condition Eq. (38).

5. Repeat Steps (2)-(4) for each sample and take numerical integration regarding h to for PDF.

The tensile damage PDFs of one-phase and two-phase random medium models are depicted
in Fig. 16. Since the PDFs of tensile damage are surfaces, it is easier to show the PDF value
by contour. For each strain, the PDF surface becomes the PDF curve.

In order to compare two random medium models at certain strain, PDFs at two strain
e¼0:0002; 0:0004 are given in Fig. 17.

It is evident in Fig. 17 that the PDFs of damage in both randommedium models are irregular
over an interval, especially after the peak. For a given strain configuration, the PDFs have
two or more peaks, which implies the presence of bifurcations during the response process.
It is noted in Fig. 17 that for a given strain, the damage PDFs of random medium models
demonstrate a similar distribution.

5 Discussion and conclusion

5.1 Discussion
It can be observed in Figs. 11-17, the simulation results of one and two-phase random field
have shown some similarities and distinctions. From the sample point of view, the cracking
processes of one-phase and two-phase randommedium are different. It is depicted in Fig. 13
that the cracking process of two-phase sample is more tortuous than the one-phase random
sample in Fig. 11. However, from the homogenized stress-strain curves and damage curves
point of view, these two models show similar results. These similarities are probability due
to the same correlation function, mean value and variance of one-phase random field and
two-phase random field, which are all collective information. The homogenization will
eliminate some local behavior and retain the collective behavior. Therefore, the
homogenized stress-strain curves and damage curves are similar for the one-phase and
two-phase random field.
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Accuracy and robustness of the performed analysis is influenced by the numerical methods
in the meso-scale simulation, especially when fracture and damage are involved. Owing to
the effectiveness and efficiency, the cohesive interface elements are employed to capture
crack growth. However, the cohesive interface elements encounter several numerical
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errors in some situations, such as mesh-dependencies and yield spurious crack patterns
[Song, Wang and Belytschko (2008)]. These numerical errors might introduce undesired
uncertainties into the subsequent statistical analysis. Therefore, the meshfree methods
[Ambati, Gerasimov and De Lorenzis (2015); Bordas, Rabczuk and Zi (2008);
Rangarajan, Chiaramonte, Hunsweck et al. (2015); Wei and Chen (2018)] can be applied
in the meso-cell simulation to enhance the precision of the simulation.

In modeling the realistic microstructure of concrete by random field reconstruction,
autocorrelation function and correlation length show significant influences on concrete
samples. As for the autocorrelation function, several types such as exponential
[Shinozuka and Deodatis (1996)], trigonometric [Feng, Cen, Li et al. (2016); Torquato
and Yeong (1998)], chess board shaped [Ilango, Sarkar and Sameen (2013)], linear-path
[Ilango, Sarkar and Sameen (2013)] are applied in the random field generation approach.
Since the exponential type autocorrelation function is the most thoroughly investigated
and seldom limitation has been shown in the former studies, it is also chosen in this
study for the concrete microstructure. The other essential parameter in the random field
modeling is the correlation length on account of determining the size and range of
inhomogeneities. It is discussed in several studies [Jiao, Padilla and Chawla (2013);
Simonovski, Kovač and Cizelj (2004)] that the correlation length depends upon the size
of the grain, specifically the aggregate size of concrete. It is also believed by the
authors that the correlation length has some connections to the characteristic length
[Bazant and Pijaudier-Cabot (1989)] (internal length [Haidar, Pijaudier-Cabot, Dubé
et al. (2005)]) in the nonlocal models. At the same time, however, the precise
correlation length of concrete has not been issued to the best knowledge of the authors.
Therefore, the maximum aggregate size is preliminarily utilized in this study. A
possible direction for future work could be the deliberation of the suitable
autocorrelation function as well as the correlation length in the random field modeling
of concrete like multi-phase random materials.

5.2 Conclusion
Two random medium models of concrete based on random field reconstruction approaches
are put forward in this paper. The stochastic harmonic functions are adopted for the one-
phase random field, where microstructural characteristic of concrete is described by an
autocorrelation function. Due to the randomly distributed aggregates, mortar and other
constituents, concrete is widely accepted as a kind of multi-phase heterogeneous material.
In order to represent the multi-phase microstructure of concrete, the newly developed
two-phase random field generation approach is applied in this paper. The multi-scale
analysis as well as the multi-scale damage representation are introduced to investigate
how these two microscopic random medium models determine the macroscopic
mechanical behaviors such as stress-strain relationship and damage process of concrete. It
is revealed in the simulation results that fracture phenomena such as the tortuous cracks
and random cracking paths, which cannot be captured in homogeneous-based models,
can be well captured in this proposed random medium models. What’s more, GDEE has
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been introduced to thoroughly compare these two random medium models from the
probability point of view. The similarities of both mean value and PDFs reveal that the
presented two random medium models can be equivalently applied in the engineering
problems where stress-strain relationship and damage process are the main concerns. It
can also be conferred that researchers could select proper random medium model based
on their research interests.
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