
FP-STE: A Novel Node Failure Prediction Method Based on Spatio-Temporal
Feature Extraction in Data Centers

Yang Yang1,*, Jing Dong1, Chao Fang2, Ping Xie3 and Na An3

1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing,
China

2Beijing Smartchip Microelectronics Technology Company Limited, Beijing, China
3The 54th Research Institute of CETC, Shijiazhuang, China

*Corresponding Author: Yang Yang. Email: yyang@bupt.edu.cn
Received: 10 December 2019; Accepted: 17 March 2020

Abstract: The development of cloud computing and virtualization technology has
brought great challenges to the reliability of data center services. Data centers
typically contain a large number of compute and storage nodes which may fail
and affect the quality of service. Failure prediction is an important means of
ensuring service availability. Predicting node failure in cloud-based data centers
is challenging because the failure symptoms reflected have complex characteris-
tics, and the distribution imbalance between the failure sample and the normal
sample is widespread, resulting in inaccurate failure prediction. Targeting these
challenges, this paper proposes a novel failure prediction method FP-STE (Failure
Prediction based on Spatio-temporal Feature Extraction). Firstly, an improved
recurrent neural network HW-GRU (Improved GRU based on HighWay network)
and a convolutional neural network CNN are used to extract the temporal features
and spatial features of multivariate data respectively to increase the discrimination
of different types of failure symptoms which improves the accuracy of prediction.
Then the intermediate results of the two models are added as features into SCS-
XGBoost to predict the possibility and the precise type of node failure in the
future. SCS-XGBoost is an ensemble learning model that is improved by the inte-
grated strategy of oversampling and cost-sensitive learning. Experimental results
based on real data sets confirm the effectiveness and superiority of FP-STE.

Keywords: Failure prediction; data center; features extraction; XGBoost; service
availability

1 Introduction

With the introduction of virtualization technology, the phenomenon of large-scale service failures due to
node failures frequently occurs in cloud data centers. According to incomplete statistics, the Google
application engine has at least one downtime every quarter. Amazon has experienced two large-scale
downtimes in 2011 and 2017, a large number of applications are affected by the disruption. The average
time between the failures of IBM’s ASCIW Hite is only about 40 hours. Google analyzed the running
data within one year from dozens of sites deployed in different regions with nodes ranging from 1000 to

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Modeling in Engineering & Sciences
DOI:10.32604/cmes.2020.09404

Article

echT PressScience

http://dx.doi.org/10.32604/cmes.2020.09404
http://dx.doi.org/10.32604/cmes.2020.09404

8000, indicated that the node failure rate is 2–3%, which means that one node will fail every 36 hours [1].
Research shows that node failure is one of the main causes of service downtime [2].

The current research on reliability assurance mainly focuses on fault detection and diagnosis which are
both remedial measures taken after the failure. As a proactive reliability management and failure prevention
mechanism, failure prediction technology can predict the failure tendency of nodes before the actual failure
occurs, helps the system avoid costly service losses and additional cost of repairs. The result of prediction can
also provide an important reference for resource mapping, virtual machine migration and fault isolation of
cloud data center, ensuring the continuity and quality of service [3]. Therefore, this paper mainly studies
the problem of node failure prediction.

At present, most existing node failure prediction methods belong to monitoring based failure prediction
approaches [4]. The basic principle is to build a failure prediction model by applying machine learning
techniques according to the characteristics of historical failure data (including node performance
monitoring indicators and error logs), and then use the model to predict the likelihood of a node failing in
the coming days [2]. However, the existing failure prediction model based on the classical machine
learning algorithm can only realize binary prediction on whether a node fails, but cannot achieve accurate
multiple prediction of failure types. After analysis, this article summarizes the challenges of building an
accurate prediction model for node failure in data centers into three aspects:

Complicated Failure Causes: Due to the complexity of the large-scale data center, node failures could
be caused by many different software or hardware issues, such as software bugs, OS crash, disk failure,
service exception, etc. However, in the current researches, basic classification algorithms in machine
learning are mostly used to construct failure prediction models that are more suitable for solving binary
failure prediction problems of a single component such as disk, memory and CPU [5,6]. Therefore, it is
difficult for these models to make an effective division of multiple failure types.

Complex Failure Symptoms and Rough Feature Extraction: The symptoms of failures are complex,
but the feature extraction process of the existing methods is too rough and simple without mining the deep
characteristics of failure symptoms. The node performance monitoring indicators we detected (such as
memory usage, CPU load, disk read and write rates, network packet loss, etc.) belong to time series data
[7]. Most of the failure prediction methods are not designed specifically for time-series data [8], so the
temporal characteristics behind are ignored. What’s more, the node of cloud data centers often has
multiple copies to guarantee service reliability. The features of neighboring nodes in the cluster,
especially in the same load balancing group often have a certain correlation [9]. The traditional prediction
method also lacks an analysis of the spatial related characteristics. Regretfully, these ignored spatio-
temporal correlation information is very helpful to improve the accuracy of prediction results.

Highly Imbalanced Data: Finally, the imbalance of samples can also affect the accuracy of the
prediction results. In reality, the probability of failure is much lower than normal [10]. So the positive and
negative samples in the training data set are unbalanced, which is a big challenge for the classification
algorithm, because the classifier will favor the majority class, resulting in the high prediction accuracy of
the majority class(normal class), and the low prediction accuracy of the minority class (failure class).

This paper aims to explore new approaches to solve the above problems. Specifically, the innovations
and contributions of this article are summarized as follows:

� A novel node failure prediction method is proposed for data centers named FP-STE (Failure Prediction
based on Spatio-temporal Feature Extraction), which realizes accurate prediction of multiple types of
node failure for the first time.

1016 CMES, 2020, vol.123, no.3

� Considering the complexity and implicitness of failure symptoms, an improved GRU network HW-GRU
and a CNN model are firstly used to extract the temporal and spatial characteristics of node features
respectively which improves the accuracy of failure prediction.

� Aiming at the influence of sample imbalance on the prediction effect, a new ensemble learning model,
SCS-XGBoost is proposed to realize accurate multi-class failure prediction which is improved by the
integrated strategy of SMOTE sampling and cost-sensitive learning.

The rest of this article is organized as follows. Section 2 reviews some related works. Section 3 describes
our node failure prediction method FP-STE. Simulation results and corresponding discussions are presented
in Section 4. Finally, Section 5 summarizes this paper.

2 Related Work

Failure prediction using machine learning techniques has gained enormous attention in recent times, and
a lot of research has been conducted in this area. According to the literature [3,4,9], failure prediction method
can be classified into two categories: failure tracking based failure prediction and monitoring-based failure
prediction.

For failure tracking based prediction approaches, the basic idea is to derive the spatiotemporal
correlation rules of failure from previous failures that have occurred, so as to infer the upcoming failures.
Failure prediction decision can be made by either estimating the probability distribution of a random
variable for the time to the next failure [11–14] or building on the co-occurrence of failures [9,15,16].
The author in [11] developed a machine learning approach for predicting individual component time until
failure which they reported as far more accurate than the traditional MTBF approach. But the drawback
of their work was that their model has not been trained on a module with real-time failure. Hence, there
is no assurance that this model will predict failure accurately. Mohammed et al. [12] proposed a failure
prediction model based on ARIMA (1,1,1) time series and machine learning. The primary algorithms
they considered are the support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN),
classification and regression trees (CART) and linear discriminant analysis (LDA). In recent years, deep
learning methods have also been used to predict failure time series. Xu et al. [13] introduced a method
based on Recursive Neural Network (RNN) to assess the health statuses of hard drives. Zhang et al. [14]
presented a virtual network failure diagnosis method based on LSTM, which has early failure prediction
capability. Fu et al. [15] and Yu et al. [16] mine the causal association between log events and generate
event correlation graphs to represent event rules and predict failure events.

The biggest drawback of failure tracking based prediction approaches is that they can only provide the
time when the failure occurs and cannot predict the failure cause type, so it is not suitable for the failure
prediction of data center node with multiple failure causes.

In monitoring-based failure prediction approaches, failures are considered as deviations from normal
behaviors and can be predicted via such techniques as function approximations, pattern recognition, and
classifiers with the assumption that failure-prone behaviors can be identified by characteristic patterns of
symptoms. For example, memory leaks can be caught by their symptoms such as abnormal memory
usage, CPU load, disk I/O, or unusual function calls in the system. Li et al. [5] collected various
performance data of the Apache Web server and established an autoregressive system model to predict
the exhaustion of resources. On this basis, Hoffmann et al. [6] proposed the UBF prediction model which
has higher accuracy in predicting the “remaining free memory”, but for the “Web server response time”,
the method based on SVM is more efficient. Liang et al. [17] analyzed the log records of IBMs
BlueGene/L and proposed a failure prediction method based on a custom nearest neighbor classifier that
performs better than the other standard classification algorithms such as RIPPER and SVM. The IBM
Research Institute published research results at KDD 2016 using RGF algorithms and migration learning

CMES, 2020, vol.123, no.3 1017

to predict hard disk failures [18]. Khan et al. [19] used an ensemble classifier to achieve hard drive failure
prediction on a cloud infrastructure. Liu et al. [20] presented a switch failure prediction method in data center
networks based on Random Forest. Sun et al. [21] proposed a deep-learning-based prediction scheme for
system-level hardware failure prediction and design a loss function to train the model with extremely
imbalanced samples effectively. Experimental results show the effectiveness of the model in predicting
disk and memory failures.

There are two main disadvantages: On the one hand, these researches only considered single component
failure prediction for example hard disk failure, while node failure can be triggered by any software or
hardware issue, or a mixture of both, which requires analyzing more heterogeneous characteristics and
brings greater challenges for feature extraction and classifier. On the other hand, most of the works above
convert failure prediction into a classification problem. But the feature extraction parts of these methods
are too simple, only considering the statistical characteristics of parameters. In addition, the single
classifiers they used have limitations, especially when dealing with unbalanced samples and multiple
classification problems. So, the existing monitoring-based failure prediction approaches cannot achieve
accurate multi-class failure prediction of nodes.

To solve the above problems, this paper proposes a new failure prediction method using HW-GRU,
CNN, and an improved ensemble learning model SCS-XGBoost to realize accurate multi-class
failure prediction.

3 FP-STE: The Proposed Failure Prediction Method

3.1 Overview
According to the theories of monitoring-based failure prediction described in Section 2, failure

prediction technology is to detect the wrong side effects (i.e., symptoms) to determine whether the system
is about to fail, and then use the model to predict the time and type of failure. In other words, we need to
build a model between symptoms and failures, use the model to simulate the internal functions of the
system, calculate the system running trend to determine whether the system is about to generate failure.

This paper proposes a new node failure prediction method called FP-STE (Failure Prediction
based on Spatio-temporal Feature Extraction). The basic principle of FP-STE is shown in Fig. 1 and
described as follows.

Assuming that the current system time is t, the FP-STE is trained by using the historical monitoring data
of the system during the T period before the time t, so that the FP-STE learns the characteristic patterns of
symptoms and has the capability of failure prediction. Then, in the failure prediction stage, the operating
parameters in the current observation window Dtd are extracted and input into the three trained models to
predict the status of the target node at the next moment. FP-STE mainly includes three important stages:
data preparation, feature extraction and failure prediction.

Data Preparation: we collect all symptom information of the nodes from the monitor and network
management system to constitute the training set and the test set. One sample in the training set is
expressed as fX1�M ; Yg, X1�M is the feature vector of the node including key performance indicators and
alarm information, and M represents the number of features. Y represents node status label including the
normal status class and a variety of predefined failure classes.

Feature Extraction: feature extraction is to get high-level abstract characteristics of complex failure
symptoms, which can improve the accuracy of prediction. Deep learning technology can ensure the most
effective information extraction and feature expression because of its multi-layer structure. FP-STE builds
two independent learners HW-GRU and CNN to capture the temporal and spatial features respectively.

Failure Prediction: the intermediate results of CNN and HW-GRU are input into the improved
ensemble learning model SCS-XGBoost which gives the final prediction results (normal or the type of

1018 CMES, 2020, vol.123, no.3

failure). SCS-XGBoost is an ensemble learning model that is improved by an integrated strategy of
oversampling and cost-sensitive learning, which can improve the predictive effect on imbalance samples.

In the next sections, we will introduce the three important models in FPSTE: HW-GRU, CNN, SCS-
XGBoost.

3.2 HW-GRU: An Improved Recurrent Neural Network Based on HighWay Network
Through long-term monitoring and analysis of the node’s performance indicators (such as CPU usage,

memory usage, I/O rate), it can be found that the performance indicators of normal running nodes show
regular and stable changes. However, for nodes with a risk of failure, the performance indicators will
show sudden or gradual abnormal fluctuations, which is a symptom of node failure. Therefore, node
indicators have a certain correlation in the time dimension. In addition, for different types of failure, the
nodes often experience a state evolution for a period of time when they reach the failure state, and
the running performance parameters will show different fluctuation laws in the time dimension. We think
that extracting the temporal characteristics of the analysis node’s performance indicators will increase the
discrimination of node states and make the prediction process more accurate.

GRU (Gated Recurrent Unit) is a time recursive neural network model that can memorize the influence
of historical input information on subsequent output results and the specific information at specific points in
time, which is very suitable for processing time-series data and extracting related information of adjacent
features in time dimension [22]. As is shown in Fig. 2, the high-capacity deep network obtained by
connecting GRU neurons layer by layer can be used to process complex sequence data, further improving
the prediction accuracy. Therefore, considering the complexity of failure symptoms, this paper uses

HW-GRU
(Extract temporal

features)

CNN
(Extracting spatial

features)

Data normalization

SCS-XGBOOST

Predict Label

Date
collection

Feature
extraction

Failure
prediction

t t+1

T

Training Set

t t+1

TT

Training Set

t t+1

T

dΔt

Test Set

Data
Collector

Data
Collector

Data
Collector

Data
CollectorCollector

Virtual
Machine

Collector
Virtual

Machine

Collector
Virtual

Machine

Hypervisoryp

Physical Machine

Data normalization

Trained Model

Evaluation
Predict
Result

t t+1

TT

dΔtd

Test Set

Data normalization

Trained Model

Evaluation
Predict
Result

Training Period Online Prediction Period

LABLE
(N,1)

concat

dΔt

Figure 1: The overview of FP-STE

CMES, 2020, vol.123, no.3 1019

multi-layer GRU deep networks to extract the temporal characteristics of performance indicators in the time
window Dtd before the failure occurs.

However, there are also some drawbacks to multi-layer GRU deep networks. First of all, the high level of
abstraction will lose some important features that are important to distinguish the operating status and failure
types of nodes, which is contrary to our original goal of obtaining more feature details. Secondly, as the GRU
network deepens, the training efficiency of deep neural networks will decrease, which is not suitable for
online fault prediction. Finally, the tanh activation function is prone to produce vanishing gradient
problems, which leads to hovering at one point and unable to search for the optimal solution.

Aiming at the first two problems, this paper uses the Highway mechanism [23] to improve the multilayer
GRU network and proposes a new network structure named HW-GRU. It can achieve cross-layer
information transfer, that is, the output information at a certain time can be directly transmitted to the
next layer without going through the neural network of the current hidden layer, so that the temporal
features extracted from the shallow layer can be retained to improve the accuracy of failure prediction,
and the convergence speed of model training can be increased. At the same time, this article also uses the
Relu activation function to adjust the GRU neuron and set a small learning rate to prevent the GRU
network from entering dead neurons. The structure of the HW-GRU neuron is shown in Fig. 3.

zt ¼ s ðWhz�hit�1 þWxz�xit þ bzÞ (1)

rt ¼ sðWhr�hit�1 þWxr� xit þ brÞ (2)ecit ¼ reluðWhc�ðrt � hit�1Þ þWxc�xit þ bcÞ (3)

hit ¼ 1� ztð Þ�hit�1 þ zt�ecit (4)

dt ¼ sðWhd�hit�1 þWxd�xit þ bdÞ (5)

hiþ1t ¼ 1� dtð Þ�hit þ dt�xit (6)

zt is the update gate, rt is the reset gate, ecit is the memory gate, dt is cross-layer selection gate which
determines how much of the output and input information of the previous layer is reserved to the next
layer. xit is the input vector at time t in the ith layer, hit�1 h

i
t�1 is the output information at time t � 1 in the

ith layer, W is the weights, b is the offset, s is sigmoid activation function, Relu is also activation
function, ⊙ is the Hadamard product, hit is the output of at time step t in the ith layer, hiþ1t is the output at
time t in the ðiþ 1Þth layer.

GRU GRU GRU

GRU GRU GRU

2
th 2

+1th2
–2th

2
–2th

1
t–2h

1
t–2h 1

th 1
+1th

t–1 t+1x tx x

GRU

The structure of GRU neuron

Figure 2: Double-layer GRU neural network model

1020 CMES, 2020, vol.123, no.3

The multi-layer HW-GRUmodel designed for temporal feature extraction in this paper includes an input
layer, three HW-GRU hidden layers, a full connection layer, and a Softmax layer. The improved multi-layer
HW-GRU network can not only speed up the training speed and prevent the model from falling into the local
optimum but also integrate the time features at different levels to obtain the most comprehensive feature
extraction effect, which meets the requirements of failure characteristics extraction. The model
architecture as well as the model parameter is shown in Fig. 4 and described as follows.

1) Input layer: The performance index and node status label of the target node are collected by the node
monitor, and incomplete data are removed to obtain the original data. Using the sliding time window to
recombine the original data to generate the input and output data of the model. Let the input of HW-GRU
model be Xtd ¼ ½xt1 ; xt2 ; � � � ; xtd �Dtd�M , representing all state information of the node in the Dtd period
before time td. The output is of the model is Ytd , which represents the node state type at time td. M is the
dimension of node features.

2) HW-GRU hidden layers: The HW-GRU hidden layers are used to extract and abstract the temporal
feature of the input data layer by layer. Each hidden layer contains Dtd HW-GRU neurons connected by the
front and back moments, and the input of each neuron corresponds to the feature sequence of a moment. The
output of the ith hidden layer can be expressed as Hi ¼ ½hit1 ; hit2 ; � � � ; hitd �, then the output at the next layer (theðiþ 1Þth layer) at the time t can be calculated by Eqs. (1)–(6).

3) Output layers: The output layer of the network consists of a fully connected neural network layer
(also known as a dense layer) and a Softmax network layer. The fully connected layer is used for vector
dimension transpose. Through the dense layer composed of 32 fully connected neurons, the two-
dimensional vector output from the hidden layer is converted into a one-dimensional vector of 1� 32.
Softmax layer is a classifier that outputs the probability of different types of failure events at the next
time. We take the output vector V1ð1� 32Þ of last moment neurons in the third HW-GRU layer that
remembers the characteristic information of all previous moments as the extracted temporal feature.

µ

1- µ +

relu µl

µµ 1- µ +µ

µ

µµ

i
th

Zt

Ct
rt

i+1
th

i
t–1h

i
tx

∼

σ

σσ

Figure 3: The structure of HW-GRU neuron

HW-GRU HW-GRU HW-GRU HW-GRU

HW-GRU HW-GRU HW-GRU HW-GRU

HW-GRU HW-GRU HW-GRU HW-GRU

Input data

DENSE(N*M,32)

Softmax

Predict Label

LossAdam

Label

OUTPUT V1(1*32)

Figure 4: The structure of the multi-layer HW-GRU model

CMES, 2020, vol.123, no.3 1021

3.3 CNN: Convolutional Neural Network
In the spatial dimension, the research of the literature [9,15,16] shows that the state of the node is

affected by the state of the adjacent node and shows a certain correlation. That is to say, when the
performance parameter of a node is significantly different from other nodes, the node is likely to
fail. In addition, when the value of a performance indicator of a node is abnormal, other indicators
of the node will fluctuate, and different failure types often have significant effects on different
performance indicators. For example, the packet loss rate will change greatly when porting IP
address conflict, while the disk read and write rate will change significantly when the disk fails. The
specificity, mutation and correlation of the performance parameters of these nodes in the spatial
dimension may become the key to early symptom recognition of node failure. Therefore, we need a
model to capture the correlation between different nodes’ parameters, and take the extracted
correlation features as the additional features of the classifier, so as to improve the accuracy of
failure recognition.

CNN is a feedforward neural network, which extracts hidden local correlation features by layer-by-
layer convolution and pooling of input data, and generates high-level features by layer-by-layer
combination and abstraction [24]. As we all know, CNN has made great success in the field of
image classification, it can effectively extract pixel information of two-dimensional images. Spatial
feature extraction of failures requires the integration of attribute features of multiple nodes. The
original data composed of feature vectors of multiple nodes also belongs to two-dimensional
structured data, so the process of spatial feature extraction and abstraction we expected to be
realized in this paper is very similar to the process of pixel information extraction of images.
Therefore, this paper tries to use the CNN model for spatial correlate feature extraction of network
node failure for the first time.

The CNN model designed for spatial feature extraction in this paper consists of an input layer, a hidden
layer, and an output layer. The hidden layer comprises two convolution layers, one pooling layer, and three
sets of fully connected dense layers. The output layer is composed of a layer of SoftMax. The model
architecture as well as the model parameter is shown in Fig. 5. and described as follows.

1) Input tensor transformation: Firstly, we need to convert the feature vectors of multiple nodes
associated with the target node into a two-dimensional feature tensor. Let the feature vector of node n at
time t be Xn tð Þ ¼ ½X 1

n tð Þ;X 2
n tð Þ; � � � ;XM

n tð Þ�. In order to comprehensively consider the correlation between
nodes and features, this paper constructs spatial information of nodes at time t into spatial feature graph B:

INPUT:B(t)
8*33

16@3*3
Filter

16@4*4
Filter

16@5*5
Filter

C1:
48@8*33

2*2 Filter
4@2*2
Filter

P2:
48@4*14

C3:
192@4*14

Convolution:C2Pooling:P1Convolution:C1

F4:
10752

F5:
32

Flatten
Full

connection

OUTPU:TV2(1*32)

F6:
8

Softmax

Predict label:
Yn(t+1)……

……
……
……

Figure 5: The structure of CNN model

1022 CMES, 2020, vol.123, no.3

BðtÞ ¼
X1ðtÞ
X2ðtÞ
..
.

XNþ1ðtÞ

26664
37775 ¼

X 1
1 ðtÞ X 2

1 ðtÞ � � � XM
1 ðtÞ

X 1
2 ðtÞ X 2

2 ðtÞ � � � XM
2 ðtÞ

..

. ..
. ..

.

X 1
Nþ1ðtÞ X 2

Nþ1ðtÞ � � � XM
Nþ1ðtÞ

26664
37775 (7)

in which, M is the dimension of node performance parameters. N is the number of the closest nodes to the
node n (especially in the same load balancing group). In Section 4, M is 33 and N is 7. The output of CNN is
Ynðt þ 1Þ which is the label of node n at time t þ 1.

2) Convolution layer: The model contains two convolutional layers C1 and C2. The function of the
convolutional layer is to use filters (convolution kernel) to slide in the input data and perform convolution
weighting operation to complete feature extraction. Different scale filters can extract different local features.
Large-scale filter may find the symmetric property, while small-scale filter could find particular
characteristics. In the convolution layer C1, we use 48 filters of different scales to extract different local
features of node attributes, including 3 � 3, 4 � 4 and 5 � 5. The number of each kind of filter is set to
16. In the convolution layer C2, we use four 2 � 2 filters to take the insightful information between nodes.
In order to keep the dimension of feature maps extracted by different sizes of filters consistent, the padding
method is “same”. Moreover, we apply the “ReLu” activation function right after each convolutional layer.

3) Pooling layer: Pool layer is the lower sampling layer in CNN, which is used to reduce the dimension,
shorten the training time and control over fitting. The most common pool types are Max pooling and mean
pooling. This paper uses maximum pooling to retain more significant information. The size of convolution
kernel of pooling layer P1 is set to 2 � 2.

4) Dense layers: The main function of the dense layer is to extract the distinguishing features by
combining and sampling the features extracted from the convolutional layer, and finally achieve the
purpose of classification. The CNN model designed in this paper has three dense layers: The first dense
layer (flatten) is to transpose the feature maps obtained by convolution and merge them into a one-
dimensional vector. The second dense layer is to further extract high-level features to obtain a 1 � 32
one-dimensional vector. The activation function of the first two layers is ReLu. The activation function of
the last dense layer is softmax, which is used for failure classification and to transfer the prediction result
into probabilities. Therefore, the output of the CNN is the probability of a certain type of failure.

5) Feature extraction: We extracted the output vector V2ð1� 32Þ of the second dense layer as the
abstract spatial features which will be used as the additional input of classifier.

3.4 SCS-XGBoost: An Ensemble Learning Model Improved by SMOTE Sampling and Cost-Sensitive

Learning
In this paper, node failure prediction is equivalent to a multi-classification problem. In order to overcome

the limitation of a single classifier in multi-type failure prediction, we choose the ensemble learning model
XGBoost [25] has the classifier for failure prediction. Considering the influence of sample imbalance on the
prediction results, this paper optimizes XGBoost by the integration strategy of SMOTE sampling and cost-
sensitive learning [26]. The new model is renamed to SCS-XGBoost that can better adapt to the imbalance of
samples and improve the precision of prediction.

1) The Data Level: SMOTE Oversampling

At the data level, we use the SMOTE algorithm [10] to oversample the minority classes. Specifically, for
each sample x in minority training set Sjð1 	 j 	 KÞ, the k-nearest neighbor algorithm is adopted to select the
neighborhood sample set Sk , and then randomly select a neighbor sk to generate a new sample according to
Eq. (8). Repeat the above operation aj times for each sample in Sj, we can get the oversampling dataset

CMES, 2020, vol.123, no.3 1023

S0j ¼ nj aj. Where nj is the sample number of the minority class j, aj is the sampling rate of the class j,
which is determined by the ratio of the sample number of this class to the total sample number.

xnew ¼ sk þ randð0; 1Þ � ðsk � xÞ (8)

2) The Algorithm Level: Cost-Sensitive Learning

The traditional XGBoost algorithm assumes that the misclassification cost of all samples is the same. But
for imbalanced classification problems such as fraud detection, intrusion detection, medical diagnostic
classification, and failure prediction, the value of correctly identifying the minority classes (negative
samples) is much higher. The cost-sensitive learning strategy is to distinguish the cost of different categories
of samples when they are misclassified, thereby improving the prediction accuracy of the minority classes.

XGBoost has an important advantage is that it supports custom loss functions. So, at the algorithm level,
we use the idea of cost-sensitive learning to improve the multi-class loss function mlogloss of XGBoost, and
propose a new multi-class loss function w� mlogloss based on weight offset. The main idea is that for
normal data samples a lower weight a will be given to the model loss when classification result is wrong.
At the same time, a higher weight b will be given to the model loss when failure samples are
misclassified. So that the model pays more attention to the failure samples during optimization, and
improve the accuracy of the prediction.

The loss function of the model is defined as Eq. (9). In which, N is the number of sample sets. K is the
number of categories. m̂ is the normal label. yi is the actual label of the sample i. ŷi is the prediction label of
sample i, 0 < i 	 N . PðxÞ represents the probability that the prediction is x. IðxÞ is the indication function. a,
b are the weight coefficients, 0 <a<b. wj is the score on the jth leaf node in the tree f . T is the total number
of leaf nodes in the tree f . � and c are custom parameters.

w� mlogloss ¼ Lðyi; ŷiÞ ¼ �
1

KN

X
k2K

XN
i¼1
½aIðyi¼m̂Þ þ bð1�Iðyi¼m̂ÞÞ�½Iðyi ¼ kÞ logPðŷiÞ

þð1� Iðyi ¼ kÞÞ logð1� logPðŷiÞÞ þ cT þ 1

2
�
XT
j¼1

w2
j �

(9)

The basic principle of SCS-XGBoost is to train k classification tree sets F ¼ ff1 xð Þ; f2 xð Þ; � � � ; fk xð Þg.
For a given training set D ¼ fðXn;YnÞgNn¼1, assign each input sample to different leaf nodes according to
the attribute points. Each leaf node corresponds to one a real-time value score. When given a sample that
needs to be predicted, the predicted result for that sample is the sum of the predicted scores for each tree.
The SCS-XGBoost algorithm is shown in Algorithm 1.

4 Performance Evaluation Results

4.1 Experimental Environment and Data Set
To evaluate the proposed approach, we collect data from a cloud simulation platform in a lab

environment, including 20 servers and 64 virtual machines. This paper uses the open source monitoring
tool Ganglia to obtain the performance data (including CPU, Memory, Disk, Network and External State),
and also extracts the alarm information and error log from the network management system. The
collection period is 1 min. Tab. 1 shows the classification performance metrics we collected. We
identified seven failure categories from the history log to mark the data, including abnormal fan speed,
abnormal CPU temperature, CPU overload, memory leak, I/O exceptions, severe delays, and severe
packet loss. We extracted approximately 222,500 data from June to December 2018, which is divided
into a training set of 212,500, and a test set of 10,000. The positive and negative sample ratio is about 10:1.

1024 CMES, 2020, vol.123, no.3

Algorithm 1: The SCS-XGBoost algorithm

INPUT: Training dataset D ¼ fðxi; yiÞgNi¼1, the minority class dataset Sj ðSj 2 DÞ;
the resample ratio aj; the number of iteration M; the regularization term �

a sample-weighted cost-sensitive loss function Lðy; f ðxÞÞ
OUTPUT: Classification tree FM ðxÞ
1: Random sample j subsets bSj from Sj, bSj��� ���= aj Sj

�� ��
2: generate new sample S0j=SMOTEðbSj; ajÞ
3: update the training dataset D0 Dþ S0j;

4: get the new training dataset D0 ¼ f x1; y1ð Þ; x2; y2ð Þ; � � � xN̂ ; yN̂
� �g

5: for t ¼ 1 to M do

6: for i ¼ 1 to N̂ do

7: calculate the gradient on �: gt xið Þ ¼ �@ft�1ðxiÞLðyi; f ðxiÞÞ
8: calculate the hessian on �: ht xið Þ ¼ �@2

ft�1ðxiÞLðyi; f ðxiÞÞ
9: determine the tree structure fRjtgTj¼1 by maximizing the leaves score:

score ¼max score;
1

2

ðPi2IL giÞ
2P

i2IL hi þ �
þ ð

P
i2IR giÞ

2P
i2IR hi þ �

� ð
P

i2I giÞ2P
i2I hi þ �

" #
� c

 !

10: determine the optional leaf weight fwjtgTj¼1 given fRjtgTj¼1 by

w�jt ¼ argmin
wj

P
i2Ijt
ðLðyi; ft�1ðxiÞ þ wjÞÞ þ �ðwjÞ

 !
11: update ftðxÞ ¼ ft�1ðxÞ þ

PT
j¼1

w�jtIðx 2 RjtÞ
12: end for

13: FtðxÞ ¼ Ft�1ðxÞ þ ftðxÞ
14: end for

15: Return FM ðxÞ

Table 1: Categorized performance metrics

Category CPU Memory Disk Network External State

metrics user percent
idle percent
IO wait
hardware interrupts
software interrupts
system percent

total availability
percent memory
used memory
active memory
buffer memory
cache memory
slab memory
swap memory

disk usage
read count
write count
read byte
write byte

sent byte
receive byte
sent packet
receive packet
error in/
error out
delay
packet loss

CPU temperature
fans speed
load balancing group
count of normal alarm
count of warning alarm
count of critical alarm

CMES, 2020, vol.123, no.3 1025

The experimental environment in this paper is a server with 8 G memory and 1.6 GHz CPU (Xeon e5-
2603 v3). All the algorithms are written in Python 3.7 environment using Keras library and scikit-learn tools.
The main training parameters of each component of FP- STE are set as shown in Tab. 2.

4.2 Performance Measures
In this section, we present some metrics to evaluate the performance of our proposed method. Precision,

Recall, F1 and AUC are used to evaluate the prediction effect of a single category. Precision is the percentage
of predicted failure events that are correctly labeled. Recall is the true failure percentage of all failure
occurring in the environment. F1 represents the comprehensive performance in terms of correctness and
accuracy. ROC (Receiver operating characteristic curve) is another tool for measuring the imbalanced
data in classification, which is a comprehensive index reflecting the continuous variables of sensitivity
and specificity [27]. One of the indicators for comparing different ROC curves is the area under the curve
(AUC) which shows the average performance of the classifier for imbalanced and cost-sensitive
problems. The details of these metrics are described in Eqs. (10)–(12).

Precision ¼ TP

TP þ FP
(10)

Recall ¼ TP

TP þ FP
(11)

F1 ¼ 2� Precision� Recall

Precisionþ Recall
(12)

Since FP-STE is designed for multi-classification problems, we also use four Micro-averaging measures
[28] to examine the quality of the overall classification, including Micro-Precision, Micro-Recall, Micro-F1,
Micro-AUC. The calculation is similar to the formulas Eqs. (10)–(12), but is based on the cumulative True
Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) of all categories.

4.3 Experimental Results
In this section, we will evaluate the performance of our proposed method from three aspects: the

comprehensive prediction effect, the effectiveness of feature extraction and the effectiveness of the
improved algorithm. Because there are few prediction methods for node multi-type failure prediction in
the academic field, we compare FP-STE with some algorithms used in single-type failure prediction,
including SVM [12], Logistic Regression [18], LSTM [14], Random Forest [20].

4.3.1 The Comprehensive Prediction Effect
The evaluation of the prediction effect is mainly divided into two parts: the overall prediction result and

the prediction result in each category.

Table 2: The training parameters of FP-STE

Model HW-GRU CNN SCS-XGBoost

parameters windows_size Dtd: 20 N : 7 eta: 0.2

epoch: 20 epoch: 15 max_depth: 4

batch_size: 128 batch_size: 128 subsample: 1

dropout: 0.5 dropout: 0.8 num_boost_round: 20000

learning_rate: 0.1 learning_rate: 0.05 early_stop_round: 50

1026 CMES, 2020, vol.123, no.3

Firstly, we analyzed the overall prediction result of FP-STE. Tab. 3 and Fig. 6 show a comparison of FP-
STE with other methods. It can be found out that among the comparison algorithms, LR has the highest
Micro-Recall, which is 60%. LSTM has the highest Micro Precision, which is 54%. LR has the highest
Micro-F1, which is 54%. In comparison, The Micro-Recall, Micro-Precision, and Micro-F1 of the FP-
STE are 28%, 59%, and 37% higher than the best case of other algorithms. Therefore, it can be assured
that the overall failure prediction effect has been greatly improved, and the number of missed and
misjudged samples has been greatly reduced. Meanwhile, FP-STE has the highest AUC value 0.966,
which is 5.8%, 10.8%, 14.1%, and 7.5% higher than other algorithms, indicating that the algorithm in
this paper is more suitable for multi-class prediction of unbalanced samples. This is of great significance
for failure prediction in real industrial scenarios.

Secondly, we analyzed the prediction effect of FP-STE on each category. As shown in Fig. 7, FP-STE
has basically the same prediction effect for failure categories and normal categories. Except for “cpu-T”,
“memory”, and “fans”, the F1 of all categories can reach over 70%, and the F1 of “I/O” and “delay”
even reach up to 99% and 96%. However, the Precision, Recall and F1 of the failure classes obtained by
other methods are significantly lower than the normal class, which indicates that FP-STE performs better
in multi-failure identification compared with other methods.

Taking the LR algorithm with better comprehensive performance as an example, LR has a very good
prediction effect on the two types of failure, such as “I/O” and “severe delay”, where the F1 value is
close to 1. But the prediction effect on CPU-related and memory-related failures are very inadequate. The
F1 and Recall are both below 10%, indicating that the prediction results basically have no reference

Table 3: The overall results of FP-STE and comparative approaches

Metric SVM RF LR LSTM FP-STE

Micro-Recall 52% 49% 60% 50% 77%

Micro-Precision 53% 46% 49% 54% 86%

Micro-F1 41% 44% 54% 42% 74%

Figure 6: The overall results of FP-STE and comparative approaches (a) Micro-F1, Micro-Precision and
Micro-Recall. (b) Micro-ROC

CMES, 2020, vol.123, no.3 1027

value. However, the F1 values of “severe delay”, “I/O” and “normal” obtained by FP-STE has exceeded
90%. In terms of “CPU overload”, “severe packet loss” and “fan” failures, the F1 values have also
reached more than 60%. Even on the “CPU temperature” and “memory leak” which are unpredictable by
all other methods, FP-STE can also provide a valuable F1 that is more than 30%, especially the Precision
value can even reach 97% and 98%, respectively.

Other algorithms are similar to the LR algorithm, and they only have good prediction results for certain
failure types, while FP-STE has higher stability and universality, showing significant advantages. But we also
found the performance of FP-STE fluctuates a lot on extremely imbalanced failure classes, where “cpu-T”,
“memory”, and “fans” achieve unsatisfactory results, which illustrates that there still exists improvement
spaces for FP-STE.

4.3.2 The Effectiveness of HW-GRU and CNN
Next, we have analyzed the usefulness of feature extraction. FP-STE utilizes two base learners (HW-GRU

and CNN) to incorporate the temporal and spatial features, respectively. So, we evaluated the usefulness of each
type of features by applying these two models separately. The results are shown in Tab. 4.

It can be seen that if only using the original data without feature extraction, the Micro-F1 of SCS-
XGBoost is 58% and the AUC is 0.935. If only the temporal features were added, the Micro-F1 would
increase by 13.8% and the Micro-AUC would increase by 2.9%. If only the spatial features were added,
the Micro-F1 would increase by 3.4% and the Micro-AUC would increase by 0.6%. The FP-STE method
proposed in this paper uses both time and space features. Judging from experimental results, the
performance improvement of FP-STE is the most obvious. The Micro-Recall increased by 26.2%, the
Micro-Precision increased by 21.1%, the Micro-F1 increased by 27.6%, the Micro-AUC increased by
3.3%. In summary, the experimental results show that the temporal and spatial features extracted by

Figure 7: Precision, Recall and F1 of different failure classes. (a) Recall. (b) Precision. (c) F1

1028 CMES, 2020, vol.123, no.3

HW-GRU and CNN are useful for node failure prediction, and the temporal features have more predictive
power. Therefore, FP-STE can capture the spatio-temporal features behind the original data, and get the
best prediction effect.

4.3.3 The effectiveness of the SCS-XGBoost
In addition, we have analyzed the performance improvement of the optimized algorithm SCS-XGBoost.

As is shown in Fig. 8, our proposed method has a better classification effect on imbalanced data. In particular,
compared with the traditional XGBoost algorithm, the improvement of the Micro-F1 brought about by the
SMOTE + XGB algorithm which is only improved by the SMOTE method is about 12%, while the SCS-
XGBoost achieved an improvement of about 22%. On the Micro-Recall indicator, the SMOTE + XGB
has only achieved a 6% improvement, while SCS-XGBoost has improved by 15%. On the Micro-
Precision indicator, the improvement ratio of the SCS-XGBoost algorithm is also higher than that of
SMOTE+XGB algorithm by more than 10%. The experimental results show that SCS-XGBoost which
adopts an integrated strategy of oversampling and cost-sensitive learning can better study the characteristics
of minority and majority classes than other solutions that only use partial strategies. So, FP-STE is more
suitable for actual node failure prediction scenarios.

In summary, all the above experimental results confirm that FP-STE is an excellent failure prediction
method and has a better prediction effect than the other methods. It is noted that in our data magnitude,
the training duration of FP-STE can be controlled within 2 minutes, and the prediction time is controlled
in the second level, so it provides more possibilities for its application in real production environments.

Figure 8: The comparation result of the effectiveness of the SCS-XGBoost

Table 4: The effectiveness of feature extraction

Metric Original
(SCS-XGBoost)

Tempotal only
(HW-GRU +
SCS- XGBoost)

Spatial only
(CNN + SCS-
XGBoost)

FP-STE

Micro-Recall 0.61 0.68 0.60 0.77

Micro-Precision 0.71 0.80 0.62 0.86

Micro-F1 0.58 0.66 0.60 0.74

Micro-AUC 0.935 0.962 0.941 0.966

CMES, 2020, vol.123, no.3 1029

5 Conclusion

Data-driven failure prediction technology will play an increasingly important role in the intelligent
management and system maintenance of the next generation networks. In order to improve the reliability
of data center services, this paper proposes a node failure prediction method named FP-STE. This method
uses HW-GRU and CNN to extract the features of time and space dimensions from different sources, and
inputs the extracted features into the improved model SCS-XGBOOST to predict the failure tendency of
the nodes. The experimental results show that the proposed method has higher prediction accuracy and is
more conducive to multi-class failure prediction. However, there are still further improvements in FP-
STE. The future research work can be carried out from the following aspects: this method only verifies
the failure types that can be obtained in the laboratory environment, and the prediction effect for other
failure types needs to be further verified. In addition, to improve the effectiveness and efficiency of the
model for industrial areas, more improved strategies should be adopted in FP-STE to speed up the
training of the model and further improve the accuracy of failure prediction under the extreme imbalance
of samples. We hope our work can provide some references for the failure prediction research of large-
scale data centers in the future.

Funding Statement: This work was supported in part by National Key Research and Development Program
of China (2019YFB2103200), NSFC (61672108), Open Subject Funds of Science and Technology on
Information Transmission and Dissemination in Communication Networks Laboratory (SKX182010049),
the Fundamental Research Funds for the Central Universities (500419319 2019PTB-019), the Industrial
Internet Innovation and Development Project 2018 of China.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Chalermarrewong, T., Achalakul, T., See, S. C. W. (2012). Failure prediction of data centers using time series and

fault tree analysis. IEEE 18th International Conference on Parallel and Distributed Systems, Singapore, 794–799.

2. Lin, Q., Hsieh, K., Dang, Y., Zhang, H., Sui, K. et al. (2018). Predicting node failure in cloud service systems.
Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Lake Buena Vista, Florida, 480–490.

3. Mariani, L., Pezzè, M., Riganelli, O., Xin, R. (2020). Predicting failures in multi-tier distributed systems. Journal
of Systems and Software, 161, 110464. DOI 10.1016/j.jss.2019.110464.

4. Salfner, F., Lenk, M., Malek, M. (2010). A survey of online failure prediction methods. ACM Computing Surveys,
42(3), 1–42. DOI 10.1145/1670679.1670680.

5. Li, L., Vaidyanathan, K., Trivedi, K. S. (2002). An approach for estimation of software aging in a web server.
Proceedings International Symposium on Empirical Software Engineering, Nara, Japan, IEEE, 91–100.

6. Hoffman, G., Malek, M. (2006). Call availability prediction in a telecommunication system: a data driven
empirical approach. 25th IEEE Symposium on Reliable Distributed Systems (SRDS’06), Leeds, UK, 83–95.

7. Miao, H., Li, B., Sun, C., Liu, J. (2019). Joint learning of degradation assessment and RUL prediction
for aeroengines via dual-task deep LSTM networks. IEEE Transactions on Industrial Informatics, 15(9),
5023–5032. DOI 10.1109/TII.2019.2900295.

8. Jin, S., Zhang, Z., Chakrabarty, K., Gu, X. (2018). Failure prediction based on anomaly detection for complex core
routers. Proceedings of the International Conference on Computer-Aided Design, San Diego, CA, USA, 1–6.

9. Zheng, W., Wang, Z., Huang, H., Meng, L., Qiu, X. (2016). SPSRG: a prediction approach for correlated failures in
distributed computing systems. Cluster Computing, 19(4), 1703–1721. DOI 10.1007/s10586-016-0633-2.

1030 CMES, 2020, vol.123, no.3

http://dx.doi.org/10.1016/j.jss.2019.110464
http://dx.doi.org/10.1145/1670679.1670680
http://dx.doi.org/10.1109/TII.2019.2900295
http://dx.doi.org/10.1007/s10586-016-0633-2

10. Sun, M., Qian, H., Zhu, K., Guan, D., Wang, R. (2017). Ensemble learning and SMOTE based fault diagnosis
system in self-organizing cellular networks. GLOBECOM 2017–2017 IEEE Global Communications
Conference, Singapore, 1–6.

11. Chigurupati, A., Thibaux, R., Lassar, N. (2016). Predicting hardware failure using machine learning. Annual
Reliability and Maintainability Symposium (RAMS), Tucson, AZ, USA, 1–6.

12. Mohammed, B., Awan, I., Ugail, H., Younas, M. (2019). Failure prediction using machine learning in a virtualised
HPC system and application. Cluster Computing, 22(2), 471–485. DOI 10.1007/s10586-019-02917-1.

13. Xu, C., Wang, G., Liu, X., Guo, D., Liu, T. Y. (2016). Health status assessment and failure prediction for hard
drives with recurrent neural networks. IEEE Transactions on Computers, 65(11), 3502–3508. DOI 10.1109/
TC.2016.2538237.

14. Zhang, L., Zhu, X., Zhao, S., Xu, D. (2017). A novel virtual network fault diagnosis method based on long short-
term memory neural networks. IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 1–5.

15. Fu, X., Ren, R., McKee, S. A., Zhan, J., Sun, N. (2014). Digging deeper into cluster system logs for failure
prediction and root cause diagnosis. IEEE International Conference on Cluster Computing (CLUSTER),
Madrid, Spain, 103–112.

16. Yu, Y., Chen, H. (2019). An approach to failure prediction in cluster by self-updating cause-and-effect graph.
International Conference on Cloud Computing, Cham, Springer, 114–129.

17. Liang, Y., Zhang, Y., Xiong, H., Sahoo, R. (2007). Failure prediction in IBMBlueGene/L event logs. Seventh IEEE
International Conference on Data Mining, Omaha, Nebraska, USA, 583–588.

18. Botezatu, M. M., Giurgiu, I., Bogojeska, J., Wiesmann, D. (2016). Predicting disk replacement towards reliable
data centers. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, 39–48.

19. Ganguly, S., Consul, A., Khan, A., Bussone, B., Richards, J. et al. (2016). A practical approach to hard disk failure
prediction in cloud platforms: big data model for failure management in datacenters. IEEE Second International
Conference on Big Data Computing Service and Applications (BigDataService), Oxford, United Kingdom, 105–116.

20. Zhang, S., Liu, Y., Meng, W., Luo, Z., Bu, J. et al. (2018). Prefix: switch failure prediction in datacenter networks.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2(1), 1–29. DOI 10.1145/3179405.

21. Sun, X., Chakrabarty, K., Huang, R., Chen, Y., Zhao, B. et al. (2019). System-level hardware failure prediction
using deep learning. 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 1–6.

22. Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F. et al. (2017). Machine health monitoring using local feature-based
gated recurrent unit networks. IEEE Transactions on Industrial Electronics, 65(2), 1539–1548. DOI 10.1109/
TIE.2017.2733438.

23. Zilly, J. G., Srivastava, R. K., Koutník, J., Schmidhuber, J. (2017). Recurrent highway networks. Proceedings of
the 34th International Conference on Machine Learning, Sydney, NSW, Australia.

24. Liu, C. L., Hsaio, W. H., Tu, Y. C. (2018). Time series classification with multivariate convolutional neural
network. IEEE Transactions on Industrial Electronics, 66(6), 4788–4797. DOI 10.1109/TIE.2018.2864702.

25. Chen, T., Guestrin, C. (2016). Xgboost: a scalable tree boosting system. Proceedings of the 22nd ACM Sigkdd
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 785–794.

26. Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A., Togneri, R. (2017). Cost-sensitive learning of deep feature
representations from imbalanced data. IEEE Transactions on Neural Networks and Learning Systems, 29(8),
3573–3587.

27. Wu, Z., Lin, W., Ji, Y. (2018). An integrated ensemble learning model for imbalanced fault diagnostics and
prognostics. IEEE Access, 6, 8394–8402. DOI 10.1109/ACCESS.2018.2807121.

28. Tong, V., Tran, H. A., Souihi, S., Mellouk, A. (2018). A novel QUIC traffic classifier based on convolutional neural
networks. IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 1–6.

CMES, 2020, vol.123, no.3 1031

http://dx.doi.org/10.1007/s10586-019-02917-1
http://dx.doi.org/10.1109/TC.2016.2538237
http://dx.doi.org/10.1109/TC.2016.2538237
http://dx.doi.org/10.1145/3179405
http://dx.doi.org/10.1109/TIE.2017.2733438
http://dx.doi.org/10.1109/TIE.2017.2733438
http://dx.doi.org/10.1109/TIE.2018.2864702
http://dx.doi.org/10.1109/ACCESS.2018.2807121

	FP-STE: A Novel Node Failure Prediction Method Based on Spatio-Temporal Feature Extraction in Data Centers
	Introduction
	Related Work
	FP-STE: The Proposed Failure Prediction Method
	Performance Evaluation Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

